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A table of Fourier transforms and properties

Forward: F (ν) =
∫∞
−∞ f (t) e−j2πνtdt Inverse: f (t) =

∫∞
−∞ F (ν) ej2πνtdν

Some properties

F (t) ↔ f (−ν)

f ∗ (t) ↔ F ∗ (−ν)

f (at) ↔ 1
|a|F

(
ν
a

)
f (t− t0) ↔ e−j2πνt0F (ν)

ej2πν0tf (t) ↔ F (ν − ν0)
dn

dtn
f (t) ↔ (j2πν)n F (ν)

−j2πtf (t) ↔ dF (ν)
dν∫ t

−∞ f (τ) dτ ↔ 1
j2πν

F (ν) + 1
2
F (0) δ (ν)

(f ∗ g) (t) ↔ F (ν)G (ν)

f (t) g (t) ↔ (F ∗G) (ν)

Some transform pairs

δ (t) ↔ 1

u (t) e−at ↔ 1
j2πν+a

u (t) ↔ 1
2
δ (ν) + 1

j2πν

exp (j2πν0t) ↔ δ (ν − ν0)
cos (2πν0t) ↔ 1

2
[δ (ν − ν0) + δ (ν + ν0)]

sin (2πν0t) ↔ j
2

[−δ (ν − ν0) + δ (ν + ν0)]

Π (t) ↔ sinc (ν)

sgn (t) ↔ 1
jπν

∞∑
k=−∞

δ (t− kT ) ↔ 1

T

∞∑
k=−∞

δ

(
ν − k

T

)
exp (−πt2) ↔ exp (−πν2)

DFT: X[r] =
1

N

N−1∑
k=0

x[k] exp

(
− j2πrk

N

)
IDFT: x[k] =

N−1∑
r=0

X[r] exp

(
j2πrk

N

)

Hilbert transform: f̂(t) = f(t) ∗ 1

πt
, F̂ (ν) = −j sgn(ν)F (ν)

Convolution integral: (f ∗ h) (t) =

∫ ∞
−∞

f (τ)h (t− τ) dτ

The Laplace transform and properties

The Laplace transform : FL(s) =

∫ ∞
0

f(t)e−st dt

Complex inversion formula: f(t) =
1

2πj

∫ σ+j∞

σ−j∞
FL(s)estds

Derivatives: f ′(t)↔ sFL(s)− f(0), f ′′(t)↔ s2FL(s)− sf(0)− f ′(0)
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1. (a) Using f1(t) and f2(t) to denote arbitrary inputs and g1(t) and g2(t) to denote the
respective outputs, describe what it means for a system to be:

(i) Linear. (2 marks)

(ii) Causal. (2 marks)

(iii) Time invariant. (2 marks)

(b) The function f(t) has Fourier transform F (ν). From the definition of the Fourier
transform derive expressions, in terms of F (ν) for

(i) d
dt
f(t). (3 marks)

(ii) f(t− t0). (3 marks)

(iii) The real part of f(t). (3 marks)

(c) Calculate the convolution of sinc(at) and sinc(bt), where a and b are positive real
numbers and a > b. (4 marks)

(d) Show that:

(i) f ∗ g = g ∗ f. (3 marks)

(ii) (f ∗ g)′ = f ′ ∗ g = f ∗ g′. (3 marks)
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2. (a) The function f(t) has Fourier transform F (ν). Give an expression for∫ ∞
−∞

t2|f(t)|2 dt

in terms of F (ν). (6 marks)

(b) (i) Give a definition of stability for a system (in terms of its inputs and out-
puts). (2 marks)

(ii) Consider the linear time invariant system with impulse response

h(t) = u(t− 1)
1

t
.

Here u(t) is the unit step function. Is this system stable? Give a proof
starting from the definition of stability that supports your answer.

(6 marks)

(c) The function b(t) is periodic with period T . That is b(t) = b(t + kT ), for
all t and for all integers k. Show that the Fourier transform of b consists of
weighted delta functions at evenly spaced frequencies. What is the frequency
spacing? (5 marks)

(d) What is the Fourier transform of s(t), the function graphed below. Explain your
answer.

(6 marks)
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3. (a) Consider a linear time invariant system with impulse response h(t). Show that
the function f(t) = exp(j2πνt) is an eigenfunction. What is the eigenvalue? In
light of this result explain why Fourier transforms are a useful tool when dealing
with linear time invariant systems. (5 marks)

(b) Using λ for the wavelength, k = 2π/λ and f0(x, y) for the wave amplitude in the
xy-plane at z = 0, the paraxial diffraction integral states that

fz(x, y) =
1

jλz

∫ ∞
−∞

∫ ∞
−∞

f0(x0, y0) exp

{
jk

2z
[(x− x0)2 + (y − y0)2]

}
dx0 dy0.

The Fourier transform of this relationship is

Fz(u, v) = F0(u, v) exp

[
2π2

jk
(u2 + v2)z

]
.

(i) Consider an optical beam with a Gaussian amplitude distribution at z = 0,

f0(x, y) = A0 exp[−B0(x
2 + y2)].

Show that the amplitude distribution remains Gaussian as it propagates with

fz(x, y) = A(z) exp[−B(z)(x2 + y2)].

Include in your answer an expression for B(z) (10 marks)

(ii) Suppose that paraxial beam has a wave amplitude in the xy-plane at z = 0
of

f0(x, y) = q(x, y),

and that this leads to wave amplitude at z = z0 of

fz0(x, y) = r(x, y).

If instead f0(x, y) = q(x, y) exp(jαx), what would be the resulting fz0(x, y)?
(You can assume that α is small enough that the paraxial approximation
remains valid.) (10 marks)
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4. (a) Let f(t) be a real-valued signal with Fourier transform F (ν).

(i) Define the analytic signal fa(t) in terms of F (ν), and show that Fa(ν) =
2u(ν)F (ν), where u(ν) is the unit step function.

(3 marks)

(ii) Show that the real part of fa(t) is equal to f(t), and define the Hilbert
transform of f(t), denoted by f̂(t), in terms of fa(t).

(3 marks)

(iii) If m(t) is a real-valued, band-limited (i.e., M(ν) = 0 for |ν| > νm) function
and νc > νm, show that the Hilbert transform of

f(t) = m(t) cos(2πνct)

is
f̂(t) = m(t) sin(2πνct).

(8 marks)

(b) A modulating signal m(t) = sin(2πνmt) is transmitted via a carrier of frequency
νc (� νm) using upper sideband (USB) modulation.

(i) Write down the expression for the transmitted signal f(t) and sketch its
spectrum F (ν).

(4 marks)

(ii) Show how the USB modulated signal can be demodulated using a recon-
structed carrier signal and a low-pass filter.

(4 marks)

(iii) Discuss briefly some advantages of USB modulation in comparison with dou-
ble sideband modulation and amplitude modulation.

(3 marks)

Note:

cos(θ) cos(φ) = 1
2
[cos(θ + φ) + cos(θ − φ)]

sin(θ) sin(φ) = 1
2
[cos(θ − φ)− cos(θ + φ)]

sin(θ) cos(φ) = 1
2
[sin(θ + φ) + sin(θ − φ)]

TURN OVER



7 PHSI 461

5. (a) (i) Write down the definition of the two-sided Laplace transform FL(s) of the
function f(t) and describe what is meant by the region of absolute convergence
of the Laplace transform.

(3 marks)

(ii) Using the complex inversion formula, find the inverse Laplace transform (for
t > 0 and t < 0) of

FL(s) =
1

(s− 1)(s2 + 1)
,

where the region of convergence is 0 < Re(s) < 1. (8 marks)

(b) Consider the mass-spring system shown below. Two unit masses 1 and 2 are
attached to three identical springs of force constant K.

1 2

K K K

If x and y are the displacements of masses 1 and 2 from their equilibrium positions,
respectively, then the system is described by the equations of motion

d2x

dt2
= −Kx−K(x− y),

d2y

dt2
= −Ky +K(x− y).

(i) Explain why the Laplace transforms XL(s) and YL(s) of x(t) and y(t), re-
spectively, are absolutely convergent in the region Re(s) > 0.

(3 marks)

(ii) Setting K = 1, use Laplace transforms to find the solutions x(t) and y(t) of
these equations if the masses are released from rest with each of the following
initial displacements:

A. x(0) = 1, y(0) = −1,

B. x(0) = 1, y(0) = 1.

Hence identify the normal mode frequencies of the mass-spring system.
[Hint: Consider the linear combinations u(t) = x(t) + y(t) and v(t) = x(t)−
y(t).] (11 marks)

Note: The following Laplace transform pairs may be helpful.

L{cos(ωt)} =
s

s2 + ω2
, L{sin(ωt)} =

ω

s2 + ω2
[ω real, Re(s) > 0]
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6. (a) (i) A finite energy signal f(t) has Fourier transform F (ν). By considering the
passage of this signal through an ideal band-pass filter, followed by an energy
measurement, show that |F (ν)|2 gives the energy spectral density.

(5 marks)

(ii) Define the energy autocorrelation function of the signal f(t), and show that
the energy spectral density is the Fourier transform of this function.

(6 marks)

(b) (i) The Ornstein-Uhlenbeck process is an example of a stochastic process and
can be modelled by the stochastic differential equation

dx(t) = −κx(t)dt+
√
DdW (t),

where κ and D are constants. Explain each of the terms in this equation and
describe in particular the properties of the increment dW (t).

(4 marks)

(ii) The stationary autocorrelation function for the Ornstein-Uhlenbeck process
is

〈x(t)x(s)〉 =
D

2κ
e−κ|t−s|.

Define what is meant by “stationary process” and compute the power spectral
density of the Ornstein-Uhlenbeck process.

(5 marks)

(iii) Give the autocorrelation function and power spectral density for a white noise
process. Explain why such a process is an idealisation.

(5 marks)
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