UNIVERSITY OF OTAGO EXAMINATIONS 2011

(TIME ALLOWED: 3 HOURS)

$\underline{\text { This examination paper comprises } 8 \text { pages }}$

Candidates should answer questions as follows:
Answer FOUR Questions
The following material is provided:
See page 2.
Use of calculators:
No restriction on the model of calculator to be used, but no device with communication capability shall be accepted as a calculator.
(Calculators are subject to inspection by examiners.)
Candidates are permitted copies of:

Other Instructions:
DO NOT USE RED INK OR PENCIL.

A table of Fourier transforms and properties
Forward: $F(\nu)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} 2 \pi \nu t} d t \quad$ Inverse: $f(t)=\int_{-\infty}^{\infty} F(\nu) \mathrm{e}^{\mathrm{j} 2 \pi \nu t} d \nu$

Some properties

$$
\begin{aligned}
F(t) & \leftrightarrow f(-\nu) \\
f^{*}(t) & \leftrightarrow F^{*}(-\nu) \\
f(a t) & \leftrightarrow \frac{1}{|a|} F\left(\frac{\nu}{a}\right) \\
f\left(t-t_{0}\right) & \leftrightarrow \mathrm{e}^{-\mathrm{j} 2 \pi \nu t_{0}} F(\nu) \\
\mathrm{e}^{\mathrm{j} 2 \pi \nu_{0} t} f(t) & \leftrightarrow F\left(\nu-\nu_{0}\right) \\
\frac{d^{n}}{d t^{n}} f(t) & \leftrightarrow(\mathrm{j} 2 \pi \nu)^{n} F(\nu) \\
-\mathrm{j} 2 \pi t f(t) & \leftrightarrow \frac{d F(\nu)}{d \nu} \\
\int_{-\infty}^{t} f(\tau) d \tau & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu} F(\nu)+\frac{1}{2} F(0) \delta(\nu) \\
(f * g)(t) & \leftrightarrow F(\nu) G(\nu) \\
f(t) g(t) & \leftrightarrow(F * G)(\nu)
\end{aligned}
$$

Some transform pairs

$$
\begin{aligned}
\delta(t) & \leftrightarrow 1 \\
u(t) \mathrm{e}^{-a t} & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu+a} \\
u(t) & \leftrightarrow \frac{1}{2} \delta(\nu)+\frac{1}{\mathrm{j} 2 \pi \nu} \\
\exp \left(\mathrm{j} 2 \pi \nu_{0} t\right) & \leftrightarrow \delta\left(\nu-\nu_{0}\right) \\
\cos \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{1}{2}\left[\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\sin \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{1}{2}\left[-\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\Pi(t) & \leftrightarrow \operatorname{sinc}(\nu) \\
\operatorname{sgn}(t) & \leftrightarrow \frac{1}{\mathrm{j} \pi \nu} \\
\sum_{k=-\infty}^{\infty} \delta(t-k T) & \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(\nu-\frac{k}{T}\right) \\
\exp \left(-\pi t^{2}\right) & \leftrightarrow \exp \left(-\pi \nu^{2}\right)
\end{aligned}
$$

DFT: $X[r]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp \left(-\frac{\mathrm{j} 2 \pi r k}{N}\right) \quad$ IDFT: $x[k]=\sum_{r=0}^{N-1} X[r] \exp \left(\frac{\mathrm{j} 2 \pi r k}{N}\right)$
Hilbert transform: $\hat{f}(t)=f(t) * \frac{1}{\pi t}, \hat{F}(\nu)=-\mathrm{j} \operatorname{sgn}(\nu) F(\nu)$
Convolution integral: $(f * h)(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) \mathrm{d} \tau$

The Laplace transform and properties
The Laplace transform : $F_{L}(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t$
Complex inversion formula: $f(t)=\frac{1}{2 \pi \mathrm{j}} \int_{\sigma-\mathrm{j} \infty}^{\sigma+\mathrm{j} \infty} F_{L}(s) \mathrm{e}^{s t} \mathrm{~d} s$
Derivatives: $f^{\prime}(t) \leftrightarrow s F_{L}(s)-f(0), \quad f^{\prime \prime}(t) \leftrightarrow s^{2} F_{L}(s)-s f(0)-f^{\prime}(0)$

1. (a) Using $f_{1}(t)$ and $f_{2}(t)$ to denote arbitrary inputs and $g_{1}(t)$ and $g_{2}(t)$ to denote the respective outputs, describe what it means for a system to be:
(i) Linear.
(ii) Causal.
(iii) Time invariant.
(b) The function $f(t)$ has Fourier transform $F(\nu)$. From the definition of the Fourier transform derive expressions, in terms of $F(\nu)$ for
(i) $\frac{d}{d t} f(t)$.
(ii) $f\left(t-t_{0}\right)$.
(iii) The real part of $f(t)$.
(c) Calculate the convolution of $\operatorname{sinc}(a t)$ and $\operatorname{sinc}(b t)$, where a and b are positive real numbers and $a>b$.
(d) Show that:
(i) $f * g=g * f$.
(3 marks)
(ii) $(f * g)^{\prime}=f^{\prime} * g=f * g^{\prime}$.
(3 marks)
2. (a) The function $f(t)$ has Fourier transform $F(\nu)$. Give an expression for

$$
\int_{-\infty}^{\infty} t^{2}|f(t)|^{2} d t
$$

in terms of $F(\nu)$.
(b) (i) Give a definition of stability for a system (in terms of its inputs and outputs).
(ii) Consider the linear time invariant system with impulse response

$$
h(t)=u(t-1) \frac{1}{t} .
$$

Here $u(t)$ is the unit step function. Is this system stable? Give a proof starting from the definition of stability that supports your answer.
(c) The function $b(t)$ is periodic with period T. That is $b(t)=b(t+k T)$, for all t and for all integers k. Show that the Fourier transform of b consists of weighted delta functions at evenly spaced frequencies. What is the frequency spacing?
(d) What is the Fourier transform of $s(t)$, the function graphed below. Explain your answer.

3. (a) Consider a linear time invariant system with impulse response $h(t)$. Show that the function $f(t)=\exp (j 2 \pi \nu t)$ is an eigenfunction. What is the eigenvalue? In light of this result explain why Fourier transforms are a useful tool when dealing with linear time invariant systems.
(b) Using λ for the wavelength, $k=2 \pi / \lambda$ and $f_{0}(x, y)$ for the wave amplitude in the $x y$-plane at $z=0$, the paraxial diffraction integral states that

$$
f_{z}(x, y)=\frac{1}{j \lambda z} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{0}\left(x_{0}, y_{0}\right) \exp \left\{\frac{j k}{2 z}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]\right\} d x_{0} d y_{0}
$$

The Fourier transform of this relationship is

$$
F_{z}(u, v)=F_{0}(u, v) \exp \left[\frac{2 \pi^{2}}{j k}\left(u^{2}+v^{2}\right) z\right] .
$$

(i) Consider an optical beam with a Gaussian amplitude distribution at $z=0$,

$$
f_{0}(x, y)=A_{0} \exp \left[-B_{0}\left(x^{2}+y^{2}\right)\right]
$$

Show that the amplitude distribution remains Gaussian as it propagates with

$$
f_{z}(x, y)=A(z) \exp \left[-B(z)\left(x^{2}+y^{2}\right)\right] .
$$

Include in your answer an expression for $B(z)$
(10 marks)
(ii) Suppose that paraxial beam has a wave amplitude in the $x y$-plane at $z=0$ of

$$
f_{0}(x, y)=q(x, y)
$$

and that this leads to wave amplitude at $z=z_{0}$ of

$$
f_{z_{0}}(x, y)=r(x, y) .
$$

If instead $f_{0}(x, y)=q(x, y) \exp (j \alpha x)$, what would be the resulting $f_{z_{0}}(x, y)$? (You can assume that α is small enough that the paraxial approximation remains valid.)
(10 marks)
4. (a) Let $f(t)$ be a real-valued signal with Fourier transform $F(\nu)$.
(i) Define the analytic signal $f_{a}(t)$ in terms of $F(\nu)$, and show that $F_{a}(\nu)=$ $2 u(\nu) F(\nu)$, where $u(\nu)$ is the unit step function.
(3 marks)
(ii) Show that the real part of $f_{a}(t)$ is equal to $f(t)$, and define the Hilbert transform of $f(t)$, denoted by $\hat{f}(t)$, in terms of $f_{a}(t)$.
(iii) If $m(t)$ is a real-valued, band-limited (i.e., $M(\nu)=0$ for $\left.|\nu|>\nu_{m}\right)$ function and $\nu_{\mathrm{c}}>\nu_{m}$, show that the Hilbert transform of

$$
f(t)=m(t) \cos \left(2 \pi \nu_{\mathrm{c}} t\right)
$$

is

$$
\hat{f}(t)=m(t) \sin \left(2 \pi \nu_{\mathrm{c}} t\right) .
$$

(8 marks)
(b) A modulating signal $m(t)=\sin \left(2 \pi \nu_{\mathrm{m}} t\right)$ is transmitted via a carrier of frequency $\nu_{\mathrm{c}}\left(\gg \nu_{\mathrm{m}}\right)$ using upper sideband (USB) modulation.
(i) Write down the expression for the transmitted signal $f(t)$ and sketch its spectrum $F(\nu)$.
(ii) Show how the USB modulated signal can be demodulated using a reconstructed carrier signal and a low-pass filter.
(iii) Discuss briefly some advantages of USB modulation in comparison with double sideband modulation and amplitude modulation.

Note:

$$
\begin{aligned}
& \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] \\
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)]
\end{aligned}
$$

5. (a) (i) Write down the definition of the two-sided Laplace transform $F_{L}(s)$ of the function $f(t)$ and describe what is meant by the region of absolute convergence of the Laplace transform.
(ii) Using the complex inversion formula, find the inverse Laplace transform (for $t>0$ and $t<0$) of

$$
F_{L}(s)=\frac{1}{(s-1)\left(s^{2}+1\right)}
$$

where the region of convergence is $0<\operatorname{Re}(s)<1$.
(b) Consider the mass-spring system shown below. Two unit masses 1 and 2 are attached to three identical springs of force constant K.

If x and y are the displacements of masses 1 and 2 from their equilibrium positions, respectively, then the system is described by the equations of motion

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=-K x-K(x-y) \\
& \frac{d^{2} y}{d t^{2}}=-K y+K(x-y)
\end{aligned}
$$

(i) Explain why the Laplace transforms $X_{L}(s)$ and $Y_{L}(s)$ of $x(t)$ and $y(t)$, respectively, are absolutely convergent in the region $\operatorname{Re}(s)>0$.
(ii) Setting $K=1$, use Laplace transforms to find the solutions $x(t)$ and $y(t)$ of these equations if the masses are released from rest with each of the following initial displacements:
A. $x(0)=1, y(0)=-1$,
B. $x(0)=1, y(0)=1$.

Hence identify the normal mode frequencies of the mass-spring system.
[Hint: Consider the linear combinations $u(t)=x(t)+y(t)$ and $v(t)=x(t)-$ $y(t)$.]

Note: The following Laplace transform pairs may be helpful.
$\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}, \quad \mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}} \quad[\omega$ real, $\operatorname{Re}(s)>0]$
6. (a) (i) A finite energy signal $f(t)$ has Fourier transform $F(\nu)$. By considering the passage of this signal through an ideal band-pass filter, followed by an energy measurement, show that $|F(\nu)|^{2}$ gives the energy spectral density.
(ii) Define the energy autocorrelation function of the signal $f(t)$, and show that the energy spectral density is the Fourier transform of this function.
(b) (i) The Ornstein-Uhlenbeck process is an example of a stochastic process and can be modelled by the stochastic differential equation

$$
d x(t)=-\kappa x(t) d t+\sqrt{D} d W(t)
$$

where κ and D are constants. Explain each of the terms in this equation and describe in particular the properties of the increment $d W(t)$.
(ii) The stationary autocorrelation function for the Ornstein-Uhlenbeck process is

$$
\langle x(t) x(s)\rangle=\frac{D}{2 \kappa} \mathrm{e}^{-\kappa|t-s|} .
$$

Define what is meant by "stationary process" and compute the power spectral density of the Ornstein-Uhlenbeck process.
(iii) Give the autocorrelation function and power spectral density for a white noise process. Explain why such a process is an idealisation.

