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Abstract

We begin by the introduction of 2D systems and their properties in the
general sense. Focus then turns to the interacting trapped 2D regime in the
context of the ultra-cold Bose gas. Details for the ideal cases and interacting
homogenous case are investigated, and these results are discussed in terms of
their possible implications to the interacting trapped system. We pose the
question of the behaviour of the BKT transition.

We outline the motivation and numerical implementation of classical field
simulations, followed by a discussion of the classical field energy cutoff.

We present numerical results that show how the properties of macroscopic
parameters vary across the BKT transition, these parameters are momentum
bimodality, vortex distribution and peak position density.
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Chapter 1

Introduction

1.1 Overview of Ultra-Cold Bose Gases

A Bose gas is a quantum mechanical system comprised of unbound bosons.
For any system of finite extension, allowable energy states are discrete. Fur-
ther, each state must contain an integer number of bosons, and the average
occupation is given by the Bose-Einstein distribution 3.20. The ultra-cold
regime is defined to be temperatures for which the mean occupation of single
states becomes of order unity and quantum statistical mechanics becomes
important.

The energy spectrum is of fundamental importance to behaviour of ultra-
cold Bose gases. Hence, the confining potential is of extreme importance.
This can be seen rather dramatically by considering the anisotropic three-
dimensional (3D) harmonic potential. Let the confinement in one direction
(tight) be much greater than that for the other two (loose). Set the temper-
ature, such that the thermal energy is greater than the energy spacing of the
loose directions but much smaller that that of the tight. In this regime, the
excited states of the tight direction are “frozen out”, meaning their occu-
pation is negligible. This regime is called a two-dimensional (2D) gas. The
reduction of dimensionality has a profound effect on macroscopic behaviour.
One-dimensional gases can also be obtained, but these are not considered
here.
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1.2 Phase Transitions in Two-Dimensional Sys-

tems

The phases of 3D systems are relatively well defined and insight to behaviour
can be gained by simple arguments. At zero temperature, all system com-
ponents are in the ground state. Hence there is complete “off diagonal
long range order” ODLRO, indicating that two well-separated points in the
system exhibit coherence, similar to the properties of a laser. With rising
temperature, the ground state occupation falls rapidly until a critical tem-
perature Tc is reached. This fundamental change that occurs at the phase
transition is that for T < Tc the system has long range order. This order,
which is a manifestation of the sudden increase in ground state occupation
as temperature drops below Tc, is known as Bose-Einstein condensation and
these ground state particles are collectively known as the Bose-Einstein con-
densate (BEC). For the thermal phase, above Tc, coherence between any two
points decreases exponentially as a function of separation. We note that
Bose-Einstein condensation is a second order phase transition.

The situation is much more complicated in 2D. First, consider the ideal
homogenous system where the potential is constant everywhere. Unlike the
usual 3D case, the density of states is such that the thermal cloud cannot be
saturated for any finite number of atoms, thus BEC does not occur, except
at T = 0. The addition of an externally applied harmonic potential to 2D
systems, significantly modifies the density of states g(ε), so that BEC is now
possible at some finite Tc.

Returning to the homogenous system we now consider interactions. In
1973 a new kind of quasi-order was described by Kosterlitz et al[11], for 2D
interacting systems. Their name for this was topological order, due to the
absence of long-range order but the presence of local coherence. More pre-
cisely, the coherence decreases algebraically with distance. Above a critical
temperature TBKT , the topological order is thought to diminish rapidly. This
is known as the Kosterlitz Thouless phase transition for 2D. The microscopic
mechanism proposed for this order is based on the pairing of vortices of op-
posite circulations. Isolated vortices create a large phase disturbance and are
energetically costly. Vortex pairs reduce the phase disturbance by means of
partial cancelation. This effect is particularly significant at large distances,
analogous in this respect to an electric dipole. The breaking of vortex pairs
at higher temperature is predicted to occur rapidly, the resulting free vortices
are responsible for the swift destruction of topological order at TBKT . From
here on, topological order will be referred to as the Berezinskii-Kosterlitz-
Thouless (BKT) phase, in recognition to those who developed this theory.
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Finally, consider 2D systems that are both harmonically trapped and
include interactions. This case is complicated, with macroscopic behaviour
and microscopic mechanisms being poorly understood. There has been much
speculation and one prominent idea proposes that BEC exists below Tc, while
BKT occurs between Tc and TBKT followed by a thermal phase above TBKT .
However, this is likely to be a simplification of the actual behaviour and Tc

maybe a crossover temperature rather than a real phase transition. Addi-
tionally as the trap is relaxed and the system approaches the thermodynamic
limit N → ∞ (Nω2 = constant), then Tc → 0, while TBKT remains finite.
These ideas are summarised by figure 1.1, the predictions for this phase dia-
gram are based on free energy arguments from Hutchinson and coworkers[18].
Extensive work has been done on the coherence and properties of the BEC
phase [9]. In the past 3 years 2D trapped gases have been experimentally
realised and three important papers have been published by the ENS (Paris)
group[10, 17, 12]. A debate is emerging, as how to interpret the results and
reliable simulations have yet to be carried out to understand their results.

Figure 1.1: (Figure taken from Ref. [18]).
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1.3 Two-Dimensional Experimental Setups and

Results

We now briefly review the experiments in the 2D regime[10, 17, 12]. These
experiments begin with a condensate of 87Rb atoms magnetically trapped in a
cylindrically symmetric trap. The condensate is produced by radio-frequency
(rf) evaporation and contains of order 4×105 bosons. A one-dimensional (1D)
optical lattice is applied in the vertical direction (figure 1.2), which divides
the 3D cloud. This periodic potential compresses the individual regions,
resulting in 2D systems as defined in §1.1.

The number of atoms contained within these stacked 2D systems can be
reduced by rf induced evaporation. An additional magnetic field creates a
gradient potential along the vertical direction. This has the effect of splitting
the resonant frequencies, such that rf evaporation can selective address indi-
vidual systems. Some experiments require only one 2D system, for example
when looking at the momentum distribution. While stacked systems are used
with each other to interfere several to study phase defects and coherence in
2D systems.

There have been three seminal experimental results which are relevant to

Figure 1.2: (Figure taken from Ref. [10]). An optical lattice is shown to
divide a quantum degenerate 3D gas. The transparent ellipsoid represents
the gas before applying the lattice and the red regions show two resulting
2D trapped gases after. The optical lattice is produced by two laser beams
propagating in the y-z plane and intersecting at a small angle
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the BKT phase. The first[17], reports the detection of phase defects in the
interference of two or more 2D systems. The characteristics of these defects
strongly imply the existence of free vortices. The second[10], demonstrates
the algebraic decay of “off diagonal order”. The shift from algebraic to ex-
ponential decay of order was also shown to coincide with the proliferation of
free vortices and was interpreted as the BKT transition (i.e. transition from
normal to BKT phase). The third[12], shows the onset of bimodality as a
critical atom number is surpassed, indicating a condensation of some variety.
They claim, this critical atom number is of order 5 times higher that the
ideal gas prediction for conventional Bose-Einstein condensation and suggest
bimodality occurs at the same place the coherence properties change, i.e. at
the BKT transition.

These results add support to the existence of a BKT phase, although,
BEC has not yet been confirmed experimentally. The properties and bound-
aries of these phases are still far from clear.

1.4 Research Focus

The principle aim of this research is to investigate numerically, the behaviour
of the proposed BKT phase transition, which occurs at TBKT . Classical field
simulations (CFS) applied to 2D ultra-cold Bose gases, lie at the core of this
project. Specifically of interest, is whether a well defined phase transition
occurs at all, and if so how this relates to the proposed microscopic BKT
mechanism.

We focus on the behaviour of three macroscopic observables as the criti-
cal temperature TBKT is traversed. These are, bimodality in the momentum
distribution, the number and spatial location of vortices, and the position
density distribution. The onset of bimodality infers the commencement of
degeneracy. There is an emerging debate in the community as to the equiv-
alence of bimodality with the BKT transition. We will use our methods to
probe this relationship in detail.

The secondary focus, is to explore the self consistency of CFS, with a par-
ticular emphasis on the dependence of macroscopic parameters on the cutoff
energy. Ideally, these parameters should not vary too much. Furthermore,
we aim to find techniques that aid in the choice of initial parameters, for the
production of desired equilibrium states.
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1.5 Chapter Overview

In chapter 2, we further discuss 2D phases in the context of ultra-cold gases.
Beginning with derivations for the ideal gas, we then focus on theoretical
predictions for the trapped interacting regime, providing results for later
comparison with simulations.

In chapter 3, we outline the motivation and numerical implementation of
classical field simulations, followed by a discussion of the classical field en-
ergy cutoff.

In chapter 4, we present the main results of this research. That is, mo-
mentum bimodality, vortex distribution and peak position density, and the
variation of these as the phase transition temperature TBKT is crossed.

In chapter 5, we conclude, by summarising the results of our research and
making comparisons with existing theory and experimental results.

In the appendix, we present results for the dependence of macroscopic param-
eters on the cutoff energy, and results of our attempt to develop techniques
to aid in choosing initial state parameters.
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Chapter 2

Phases of Two-Dimensional
Bose Gases

In the first section of this chapter, we derive analytical predictions for the
phases of 2D ideal gases. Some of these results are presented in convenient
form for later comparison with our results in the interacting regime. Section
two explores the (interacting) BKT phase transition in more depth, including
an argument for the sudden onset of free vortices.

2.1 Ideal Gas Theory

For the ideal 2D Bose gas, information about the existence or behaviour of
BEC can be gained from statistical mechanical arguments.

First, the density of states as a function of energy, g(ε), needs to be found.
The requirement for BEC is that the density of states smoothly approaches
zero as energy tends to zero. If BEC is possible then it will begin when the
chemical potential µ is significantly closer to the ground state energy ε0, than
any other state[15].

By integrating g(ε) multiplied by the Bose-Einstein distribution n̄BE, we
obtain the number of atoms in the excited states

Nex =

∫ ∞

0

g(ε)n̄BEdε, (2.1)

i.e. this result excludes the ground state occupation. If µ is much less
than ε0, then the occupation of the ground state is insignificant compared to
the total number of bosons. Alternatively, if µ is very close to ε0, then the
ground state occupation is large and must be included in addition to Nex.
Hence, in both cases we take Nex to represent the total number of bosons
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in the excited states, refer to this as the thermal cloud. Then if the actual
number of atoms in the system, N , exceeds Nex(µ = 0, T ) (i.e. the saturated
thermal cloud), the remaining atoms must reside in the condensate (ground
state), i.e. Ncond = N − Nex(µ = 0, T ). Thus the condition for BEC is
that Nex(µ = 0, T ) is finite. Alternatively this can be inverted to give the
more familiar critical temperature expression: Tc(N), so that for N atoms,
if T < Tc(N), a finite condensate will exist.

In the next subsections we consider both the homogeneous and harmon-
ically trapped cases.

2.1.1 Ideal Homogeneous Case

First, calculate the density of states for a 2D square with sides L (figure
2.1). Requiring the wavefunctions go to zero at the boundaries results in the
modes being restricted to discrete energies εn (equation 2.2).

Figure 2.1:

εn =
h2

8mL2
(n2

x + n2
y) =

h2

8mL2
n2, (2.2)

where nx and ny are non-negative integers and

n2 ≡ n2
x + n2

y. (2.3)

From figure 2.2 we can see the total number of states G(ε) from n = 0
to n = nmax is given by the area enclosed by the semicircle in the positive
quadrant of n-space,

G(nmax) =
1

4
πn2

max. (2.4)

11



0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

n
x

n
y

n
max

Figure 2.2:

Now, use equation 2.2 to write nmax in terms of ε, then differentiate equation
2.4 with respect to energy to obtain the density of states

g(ε) =
2πmA

h2
(2.5)

which notably is independent of ε. This density of states does not go to zero,
hence there is no BEC in the uniform case.

Recall, Nex (equation 2.1) represents the total number of bosons in the
excited states only. Plugging g(ε) into this gives,

Nex =
2πmA

h2

∫ ∞

0

1

eβ(ε−µ) − 1
dε. (2.6)

Multiplying both the top and bottom lines by e−β(ε−µ) and changing variables
to x = β(ε− µ) one obtains,

Nex = A
2πmkT

h2

∫ ∞

−βµ

e−x

1− e−x
dx = −A

2πmkT

h2
ln(1− eµβ) (2.7)

Crucially, as µ → 0 Nex(µ, T ) →∞, which implies that the thermal cloud
cannot be saturated, therefore BEC is not possible in the ideal homogeneous
case.

2.1.2 Ideal Harmonically Confined Case

The energy states of a 2D harmonic oscillator are

εn = ~(ωxnx + ωyny), (2.8)
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where ωx and ωy are the trapping frequencies in the x and y directions re-
spectively. For a given energy, ε, the maximum quantum number in each
direction are respectively
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Figure 2.3:

nx max =
ε

~ωx

, ny max =
ε

~ωy

. (2.9)

The total number of states that have energy, from 0 to a given ε, is represented
by the area shaded in figure 2.3, i.e.

G(ε) =
1

2
nx maxny max =

ε2

2~2ωxωy

. (2.10)

As done in the uniform case, we obtain the density of states by differentiating
G(ε) to get

g(ε) =
ε

(~ω̄)2
, ω̄ ≡ √

ωxωy. (2.11)

In contrast to the uniform case, this does go to zero proportionally to energy,
hence a BEC will exist below critical temperature Tc. To find the critical
temperature, apply equation 2.1, i.e.

Nex =

∫ ∞

0

g(ε)

eβ(ε−µ) − 1
dε, β ≡ 1

kT
, (2.12)
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where k is the Boltzmann constant and T is temperature. Changing variables
to x = β(ε− µ) we obtain

Nex =

(
kT

~ω̄

)2 ∫ ∞

0

x

ex/eβµ − 1
dx (2.13)

=

(
kT

~ω̄

)2

Γ(2)g2(e
βµ), (2.14)

Γ is the gamma function and g2 is the Bose function (polylogarithm). Setting
the chemical potential µ equal to zero we get

g2(1) = ζ(2) =
π2

6
, (2.15)

Γ(2) = 1! = 1, (2.16)

Nex(µ = 0, T ) =
π2

6

(
kT

~ω̄

)2

, (2.17)

where ζ is the Riemann zeta function. Thus we obtain a finite saturated
thermal cloud. Setting Nex = N we can invert this to find the critical
temperature Tc,

Tc =
~ω̄
kπ

√
6N. (2.18)

Equation 2.14 shows the total number of bosons in the excited states, is
proportional to T2. Therefore, if Ncond is the number of bosons in the ground
state then the condensate fraction is given by

Ncond

N
= 1−

(
T

Tc

)2

. (2.19)

Hence, for the trapped ideal gas, the condensate fraction versus temperature
is an inverse parabola, as shown in figure 2.4.

2.1.3 Critical Density for Ideal Gas BEC

Here, we rephrase the condition for BEC in terms of the critical density
instead of Tc. This turns out to be convenient for later comparison with
results.

First, consider the ideal homogeneous case, equation 2.7 can be written
as
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Nex = − A

λ2
db

ln(1− eµβ), (2.20)

where

λdb =
h√

2πmkT
(2.21)

is the thermal deBroglie wavelength. Noting that Nex/A is the the density
per area, n, and rearranging this expression we arrive at the form,

nλ2
db = − ln

(
1− eµ/(kT )

)
, (2.22)

hence, as µ → 0, n → ∞, which is an alternative way of showing that
the thermal cloud cannot be saturated and BEC is not possible in the 2D
homogeneous case.

This should be contrasted to the ideal 3D homogenous case where the
maximum density, nc, is ncλ

2
db = 2.612 [15]. Therefore in 3D, saturation of

the thermal cloud is possible, resulting in BEC when N > Nex(T ).

Focusing again on the ideal 2D trapped case, consider equation 2.14,

Nex =

(
kT

~ω̄

)2
π2

6
(2.23)

This is finite, hence if N > Nex(T ), the thermal cloud saturates with the
excess atoms residing in the condensate. However, this condensate is a fragile
phenomenon. To see this, use the local density approximation, which is to
replace the chemical potential µ by µ + V (x) in equation 2.22, that is

n(x)λ2
db = − ln

(
1− e(µ−V (x))/(kT )

)
. (2.24)
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If this is integrated over all space the result reduces to equation 2.23. However
since µ = 0, this implies the density is infinite at the trap centre (where
V (x) = 0), even though Nex is finite. Hence, the inclusion of any finite level
of interactions would results in an infinite energy. The implications of this
is that, even for very small interactions it is not clear from equation 2.23,
whether BEC is possible in the interacting 2D trapped regime.

2.2 Berezinskii-Kosterlitz-Thouless Phase Tran-

sition

In the previous sections we have considered the ideal 2D gases, showing
that BEC is only possible with a confining potential. Interaction effects are
expected to greatly modify if not destroy these predictions.

2.2.1 Interacting 2D Trapped Regime

The interacting 2D trapped regime is very complicated as trapping effects
compete with interaction effects. Much speculation has resulted and a promi-
nent idea advocates the existence of 3 phases, this is described as follows.
From cold to hot, these phases are BEC, BKT and thermal (or normal).
We note, that the boundaries between these are by no means clear, there
may also be considerable overlap. The termination of BEC occurs with the
proliferation of paired vortices[16]. Paired vortices disrupt off diagonal long
range order, resulting in algebraic decay and hence the BKT phase. BKT
phase is disrupted with the swift appearance of free vortices, here superflu-
idity also ceases. As the temperature rises further, the increasing number of
free vortices gradually destroys what remains of the BKT phase, producing
the quasi-condensate tail.

For this research, we are primarily concerned with the BKT phase tran-
sition and the underlying proliferation of free vortices. Our results should
help clarify the nature of the 2D trapped diagram.

2.2.2 Interacting 2D Homogeneous Regime

This subsection discusses the thermodynamics of free vortices at TBKT for
the homogeneous case, and their likelihood of appearing in the superfluid of
the BKT phase[2]. The basic ideas of the homogeneous regime have been
well understood since the 1970’s, but the particular case of the 2D uniform
Bose gas was only quantitatively analysed by Prokof’ev around the year 2000
using Monte Carlo methods.
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Consider a free vortex centred in a disk of superfluid with radius R. The
energy cost associated, E, is due to the kinetic energy of the superfluid,

E ∝
∫ R

ξ

v2(r)rdr ∝ ln

(
R

ξ

)
. (2.25)

Where v(r) = ~
mr

is the velocity field of a vortex as a function of radial
distance r and ξ is the radius of the vortex core. Entropy, S, results as a
consequence of positioning the vortex core of area πξ2 in the superfluid disk
of area πR2.

S ∝ ln

(
R2

ξ2

)
∝ ln

R

ξ
. (2.26)

Because of the common factor of logs the Helmholtz free energy, F = E−TS,
can be written in the form,

F

kT
≈ (nsλ

2
db − 4), (2.27)

where ns is the superfluid density.
Plugging the free energy into the Boltzmann factor, predicts the likelihood

of free vortices appearing in the superfluid. For a large system where R À ξ,
nsλ

2 > 4 results in a large positive F which implies free vortices are unlikely.
Alternatively, if nsλ

2 < 4, F is large and negative indicating the proliferation
of free vortices.

However, our simulation method (and experiments) measures total den-
sity, n, instead of ns, hence of interest is how to relate these quantities.
Prokof’ev et al. have investigated this in the case of weak, but realistic inter-
actions, using quantum Monte-Carlo calculations[14]. For the critical total
density, nc, they obtain the following,

ncλ
2
db = ln

(
ξ

f̄

)
, (2.28)

where we have introduced the dimensionless interaction strength:

f̄ '
√

8π
a

lz
¿ 1, (2.29)

with

lz =

√
~

mωz

. (2.30)

The confinement scale, lz is a function of particle mass, m, and the angular
trap frequency in the tight direction, ωz. The scattering length is a and is a
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measure of the collisional interactions between atoms, and the dimensionless
number, ξ = 380± 3, is numerically determined.

Equation 2.28 is of great interest to this project. Later, we will compare
it with our harmonically trapped simulation results, to investigate whether
or not this critical density is applicable to the harmonically trapped 2D gas.

2.2.3 Quasi-Condensate

In this dissertation we use the word condensate when broadly referring to
any of BEC, BKT or quasi-condensate. This is convenient since our nu-
merical method cannot directly decipher between these. Quasi-condensate
is an important concept. Atoms in a quasi-condensate do not exhibit den-
sity fluctuations, just like a BEC, however the quasi-condensate does not
have have long range coherence that is characteristic of a BEC. It is likely
that The BKT phase has properties of a quasi-condensate, although a tail of
quasi-condensate may also extend to temperatures warmer than TBKT . It is
possible that bimodality is a characteristic of the quasi-condensate, as it is
for BEC.
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Chapter 3

Classical Field Simulations

3.1 Energy Modes and Phase Transitions

In the absence of interactions, the system modes are determined by the ex-
ternal potential. The trapping potential of interest here, is the 3D harmonic
oscillator, which is sufficiently anisotropic to be quasi-2D in nature. The
inclusion of interactions greatly modifies the states, such that a treatment in
terms of single particle modes is impossible due to the nonlinear interactions
between modes.

The low energy modes are spatially confined to the trap centre, and have
relatively high occupation. The high energy modes, are more widely spread
and their average occupation is comparatively low. Consequently, the centre
of the trap is the region of greatest density.

The low energy modes are difficult to simulate because interactions are
a significant parameter, due to their high density. The temperature range
of primary interest is near the BKT critical temperature, TBKT . However, a
general property of phase transitions is strong fluctuations, in this case there
are large density fluctuations in the system. These fluctuations mean that
mean field theories are not appropriate for simulating the BKT regime.

3.2 Motivation

To model a bosonic gas by classical field simulations (CFS), the general idea
is to divide the system modes into two regions (figure 3.1). The classical
region contains the modes with energy below a cutoff Ecut, the incoherent
region contains the remaining high energy modes above Ecut.

As discussed in §3.1, modes of the classical region exist predominantly
in the trap centre where the density is high, thus interactions are dominant.

19



......
 

 

E
cut

Classical
Region

Incoherent
Region

Energy

Figure 3.1: Partition of energy modes into two regions. The cutoff energy
Ecut separates the incoherent from the classical region. Due to interactions,
the physical energy states are vastly different to those shown at low energies

These strong interactions are difficult to model by traditional kinetic theories.
However, the high mode occupation allows us to approximate these modes
by classical fields [1]. For low occupations the classical field approximation
is bad, as ultraviolet divergences occur. This is analogous to the ultra-violet
catastrophe of Rayleigh-Jeans blackbody theory. For this reason the energy
cutoff plays an important role in separating the highly occupied classical
region from the sparsely occupied incoherent region.

For the low density incoherent region, interactions are relatively insignif-
icant which makes modeling easier.

3.3 Classical Region Formalism

The following is a brief outline of the theory implemented numerically for
inhomogeneous trapping potentials[1]. This theory is applicable to dilute
Bose gases. For more general theory, see earlier work in references [3, 6, 7, 8].

The Hamiltonian Ĥ can be described by that of the single particle Ĥsp

combined with the interaction Hamiltonian ĤI i.e.

Ĥ = Ĥsp + ĤI , (3.1)

Ĥsp =

∫
d3x̃ψ̂†(x̃)

(
− ~

2

2m
∇2 + Vtrap(x̃)

)
ψ̂(x̃), (3.2)

ĤI =
1

2
U0

∫
d3x̃ψ̂†(x̃)ψ̂†(x̃)ψ̂(x̃)ψ̂(x̃), (3.3)
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where ψ̂(x̃) is the quantum Bose field operator and x̃ is position. Interactions
are approximated by the contact interaction strength U0=4π~2a/m, with a
being the s-wave scattering length and m the atomic mass.

Vtrap(x̃) is the external harmonic trapping potential

Vtrap(x̃) =
1

2
m(ω2

xx̃
2 + ω2

y ỹ
2 + ω2

z z̃
2), (3.4)

where ωx, ωy and ωz represent the angular frequencies of the trapping poten-
tial in the x, y and z directions respectively.

The field operator obeys the Heisenberg equation of motion

i~
∂ψ̂

∂ t̃
=

(
− ~

2

2m
∇2 + Vtrap(x̃)

)
ψ̂(x̃) + U0ψ̂

†(x̃)ψ̂(x̃)ψ̂(x̃). (3.5)

However, this is unsolvable in our regimes of interest, unless further approx-
imations are made. The general idea is to divide the field operator into a
classical and incoherent region. This is done via projection, i.e.

Ψ̂(x̃) ≡ P{ψ̂(x̃)} =
∑
n∈C

ϕn(x̃)

∫
d3x̃′ϕ∗n(x̃′)ψ̂(x̃′), (3.6)

η̂(x̃) ≡ Q{ψ̂(x̃)} =
∑

n 6∈C

ϕn(x̃)

∫
d3x̃′ϕ∗n(x̃′)ψ̂(x̃′), (3.7)

where C indicates the modes of the classical region and ϕn(x̃) denotes the
eigenfunctions that diagonalise Ĥsp. Hence Ψ̂ represents the classical field
and η̂, the incoherent field. The classical region is chosen such that it contains
all the low energy modes below a cutoff Ecut. As explained in §3.2, it is
important to choose Ecut such that modes in C are highly occupied, and the
remaining modes of the incoherent region, sparsely occupied. Now, consider a
system near equilibrium, where the average mode occupation decreases with
increasing energy. If Ecut is chosen such that the average mode occupation
at the cutoff, is of order 5, then the above condition should be satisfied.

The Heisenberg equation of motion can be split by applying projections
3.6 and 3.7. Now, consider only the classical part. The constituent modes
are highly occupied, hence, we approximate the quantum field by a classical
field, i.e. Ψ̂(x̃) → Ψ(x̃). Where Ψ(x̃) is a complex number, and is a function
of x̃ and time. This is known as the classical field approximation. Mode
occupation is no longer restricted to integer values. The final approximation
is to neglect the effect of the incoherent modes, on the classical region. This is
reasonable for two main reasons. The incoherent region has low density, thus
does not significantly modify the effective potential experienced by classical
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modes. Also, physical systems near equilibrium experience very little net
flow of particles between classical and incoherent regions.

These approximations leave us with the projected Gross-Pitaevskii equa-
tion PGPE:

i~
∂Ψ(x̃)

∂ t̃
=

(
− ~

2

2m
∇2 + Vtrap(x̃)

)
Ψ(x̃) + P{U0|Ψ(x̃)|2Ψ(x̃)}. (3.8)

The projection operator P in the final term, retains the particles in the clas-
sical region, in the presence of s-wave collisions. The PGPE is the equation
we implement numerically.

3.4 Numerical Implementation

3.4.1 Classical Region

For useful simulations, it is important that the modes below Ecut closely
represent the physical system. Also, since all included modes are highly
occupied, the propagation of every mode must be accurate.

To simplify the following notation, we take the harmonic trapping po-
tential to be isotropic. Expressing the PGPE (3.8) in computational units
(untilded), one obtains

i
∂Ψ

∂t
= −∇2Ψ +

1

4
(x2 + y2 + z2)Ψ + CNL|Ψ|2Ψ, (3.9)

where we define units of distance x0 =
√
~/2mω, time t0 = ω−1 and energy

~ω, where ω is again the trapping frequency. For simplicity of describing
the numerical implementation we have taken the harmonic potential to be
iso-tropic. Also, define the nonlinear constant CNL = NCU0/~ωzx

3
0. If the

classical field Ψ is normalised to unity then NC represents the number of
bosons in the classical region.

The basis used to describe Ψ is that of the three-dimensional harmonic
oscillator

Ψ(x, t) =
∑

{l,m,n}∈C
clmn(t)ϕl(x)ϕm(y)ϕn(z), (3.10)

where clmn(t) is the weighting and {ϕn(x)} are the eigenstate solutions of the
one-dimensional harmonic oscillator. These states satisfy

[
− d2

dx2
+

1

4
x2

]
ϕn(x) = εnϕn(x). (3.11)
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Noting, εn = (n + 1
2
) are the eigenvalues, and

C = {l, m, n : εl + εm + εn ≤ Ecut}, (3.12)

the PGPE can be written as

∂clmn

∂t
= −i[(εl + εm + εn)clmn + CNLFlmn(Ψ)]. (3.13)

In deriving this expression, we have made use of the fact that the harmonic
oscillator states are orthogonal. The matrix element of the nonlinear term

Flmn(Ψ) ≡
∫

d3xϕ∗l (x)ϕ∗m(y)ϕ∗n(z)|Ψ(x, t)|2Ψ(x, t), (3.14)

can be evaluated exactly, by selecting an appropriate Gauss-Hermite quadra-
ture.

The PGPE (3.13) is now in a form that can be implemented numerically.
One of the key features of CFS, is that it accounts for fluctuations such as
vortices, which is essential to accurately describe finite temperature 2D gases.

3.4.2 Incoherent Region

Modeling the incoherent region is comparatively simple. Final temperature,
chemical potential µ and density of the classical region nbelow are calculated
before we analyse the incoherent region, and are taken as inputs. Using these
parameters, Hartree-Fock theory is implemented, similar to that used in ref.
[9].

The density of the above region, nabove(x, y), is calculated by the semi-
classical integration of the Bose-Einstein distribution over momentum com-
ponents, px, py,

nabove(x, y) =
1

h2

∫∫

τ
dpxdpy

1

eβ(EHF (x,y,px,py)−µ) − 1
, (3.15)

where,

EHF (x, y, px, py) =
p2

x + p2
y

2m
+Vtrap(x, y, z = 0)+

1

2
~ωz+2

~2

m
g̃ (nbelow(x, y) + nabove(x, y))

(3.16)
is the Hartree-Fock approximation to the energy. Vtrap is the harmonic po-
tential and ωz is the trapping frequency in the tight direction. Interactions
enter this expression via f̄ ,

f̄ = 4πa

∫ ∞

−∞
dz | φ0(z) |4, (3.17)
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a is again the scattering length and φ0(z) is the solution to the harmonic
oscillator wave function, in the z-direction. The region of integration, τ , is
given by

(
τ :

{
p2

x + p2
y

2m
+ Vtrap(x, y, z = 0) +

1

2
~ωz > Ecut

})
, (3.18)

which is the incoherent region. On the right hand side of equation 3.15, the
density of the classical region, nbelow, is calculated from CFS, while that of
the incoherent region, nabove, is originally taken to be zero. The resulting
nabove is iteratively substituted into the right hand side until nabove does not
change. This is known as self-consistent Hartree-Fock theory.

We now know the total density n = nabove = nbelow, and hence the total
number of atoms.

3.5 Simulation Procedure

3.5.1 Macroscopic Parameters

Some macroscopic parameters are conserved under classical field evolution,
while others, not. The constant parameters of interest are, the number of
(classical region) particles and total energy of the classical region, and are
input parameters to the calculations. Other parameters are determined from
the results of a simulation by appropriate averages, e.g. temperature is cal-
culated via a scheme that generalises Rugh’s dynamical definition of temper-
ature [5, 4]. This scheme is nonperturbative and quite accurate. Following
work by Penrose and Onsager [13], the condensation fraction is calculated by
the one-body density matrix

ρC(x,x′) ≡ 〈ψ̂†(x)ψ̂(x′)〉ensemble. (3.19)

This is a measure of phase coherence across space. Greater coherence is
associated with a larger condensation fraction.

3.5.2 Procedure

For the purposes of this project we are only interested in equilibrium states.
The general idea is to choose a random initial state (but of known energy
and nbelow, followed by time evolution until equilibrium is reached. Finally,
the state of the incoherent region is calculated to match the temperature and
chemical potential of the classical region, then we obtain the total density
and number of atoms in the full system.
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Understanding how equilibrium is reached can be gained from the ergodic
hypothesis. First, recall the fundamental assumption of statistical mechanics,
that all accessible microstates of an isolated system, are equally probable. By
definition, the most probable macrostates are equilibrium states. Hence, the
question of reaching equilibrium reduces to the question of whether time
evolution allows the exploration of a large number of microstates. Mode
mixing due to nonlinear interactions, provides the mechanism for exploring
microstates. Thus, under evolution this system appears to be ergodic.

In the classical region, an initial state can be chosen with the desired
constants of motion mentioned in §3.5.1. However, the current scheme does
not allow direct control of temperature, condensate fraction or number of
particles in the incoherent region. Hence, we do not directly control the total
number of particles either.

After reaching equilibrium, the state of the classical region is allowed to
evolve further. Many equilibrium states are then used to obtain averages for
temperature, chemical potential and density distribution. These parameters
are then used to calculate the state of the incoherent region, see §3.4.2.
Combining the classical and incoherent regions, produces the equilibrium
information for the full (i.e. classical + incoherent) harmonically trapped
Bose gas.

3.5.3 Cutoff Energy

An important question to consider is, what values of Ecut are acceptable
for a given system? The least occupied (average occupation) mode of the
classical region, is a parameter of great interest, which we denote as nmin.
Understanding this comes from the Bose-Einstein distribution for average
mode occupation

n̄BE =
1

e(ε−µ)/kT − 1
, (3.20)

thus, mode occupation decreases as mode energy increases. The validity
requirement for CFS is that nmin & 1. Alternatively, if nmin is too large
then this implies highly occupied modes are being described by Hartree-Fock
theory which does not take into account fluctuations such as vortices. The
choice of cutoff energy is determined by the iterative procedure of running
the simulation, evaluating nmin then readjusting Ecut.

3.5.4 Simulation Modes

Comparing the shape of the curves in figure 3.2, shows that interactions cause
spatial spreading of the ground state wavefunction, in this case by a factor of
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Figure 3.2: The solid blue line is a 1D slice of a typical condensate wave-
function produced by CFS. The red dashed line is the gaussian ground state
for the same trap parameters but without interactions. Note, the gaussian is
not normalised
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Figure 3.3: Here is a typical density slice of the incoherent region only,
produced by our simulations.

order 3. This is qualitatively in agreement with the discussion of §3.1. Figure
3.3 shows the combination of all modes in the incoherent region. Note the
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incoherent density is ∼ 10 times less than the condensate.

3.6 CFS Summary

Importantly, the methodology elucidated in this chapter is only applicable
to nonzero temperatures. That is, it applies to systems that have substan-
tial excited state populations. This is due to the requirement of accurately
separating the highly occupied classical region from the sparsely occupied
incoherent region. Also, CFS include the modeling of density fluctuations
such as vortices, which is necessary to model 2D Bose gases. Hence, CFS
provide a very useful tool for theoretically investigating the BKT phase.
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Chapter 4

Phase Results

4.1 Results for Experimental Trap Parame-

ters
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Figure 4.1: The black dots represent the condensation fraction for simulations
of different temperature, while keeping the total number of atoms fixed at
approximately 44000. The solid blue line is the ideal gas prediction calculated
using equation 2.19.

Here we present simulation results for the experimental trap parameters
utilised by the ENS group[12]. The trap confinement frequencies in the x,
y and z directions are 9.4, 125 and 3000 Hz respectively. Rubidium atoms
were used and the dimensionless interaction strength, f̄ , was 0.13.
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Figure 4.2: These are typical position density plots for the classical region.
The position axis are the loose directions, x, y, and are in units of µm. The
density has been integrated over the tight direction, z, and the log10 has been
taken. Red indicates the greatest density and blue represents the least. Each
plot has been labeled a letter which relates to the corresponding letter in
figure 4.1. Vortices of opposite circulations are represented by ¤ and +.

Figure 4.1 shows that the condensation (quasi-condensation) is shifted
downward significantly compared with the ideal gas prediction due to inter-
actions. In figure 4.2 we show typical density profiles at various temperatures.
We note the elongated shape of the gas due to trapping anisotropy in the
loose directions. These plots are of the classical region only, the incoherent
region is less interesting because of the low density. Comparing figures 4.2
and 4.1 we see that from simulation A to D, the temperature increases by
approximately 150 nK and the condensate fraction decreases from 0.46 to
approximately zero. As the temperature rises, vortices encroach deeper into
the trap centre which coincides with the loss of condensate.

Approximately 100 additional simulations were performed beforehand to
find equilibrium states with the required total number of atoms and an ac-
ceptable Ecut, for the wide range of temperatures we have in these plots.
Each simulation in this regime took approximately 24 hours, hence by using
multiple processors, these results took over two months to obtain. Because
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of time restraints, we decided to abandon this regime in favour of a trap
parameters that allowed simulations of duration between 1 and 4 hours and
the remainder of this chapter is concerned with these results.

4.2 Characterisation of BKT Transition

For the interacting 2D trapped regime, it has been claimed[12] that the BKT
transition coincides with,

(1) the onset of biomodality,

(2) the attainment of a critical peak density, nc
peak, that was predicted by

uniform Bose gas Monte Carlo calculations to obey the following,

nc
peakλ

2
db ≈ ln

(
ξ

f̄

)
. (4.1)

The left hand side of this equation is of the same form as the equation 2.28
derived earlier for the interacting homogenous case, however, the right hand
side is a universal form that depends solely on interactions through f̄ . They
claim that by using peak density, the equation also applies to the trapped
system. One of the aims of this chapter is to investigate the validity of
these two claims, the other, is to characterise the behaviour of vortices as we
cross the BKT transition. To better understand the physics we measure the
temperatures where properties (1) and (2) are observed in our simulations.
We define T (1) to be the temperature at which bimodality begins, and T (2)

to be the temperature for which the predicted peak density is reached. We
also introduce a third temperature, T (3), which is an estimate of TBKT from
considering the shape of the condensate fraction versus temperature curve.

4.2.1 Parameters

We explore the BKT transition in four different regimes. All systems have
isotropic loose directions with the trapping frequency 9.4 Hz. Two systems
have tight direction confinement (a), fz = 940 Hz and the other two have (b)
fz = 1880 Hz, these correspond to (a) f̄ = 0.075 and (b) f̄ = 0.107 for 87Rb
atoms. We have taken the mass of 87Rb to be 86.9 atomic mass units and
the scattering length as 5.29 nm. For each of these two trap configurations,
the number of atoms in the classical region is varied, which has the effect
of modifying the temperature at which condensation occurs. The details
of parameters for each regime are listed in table 4.1, CNL is the nonlinear
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Table 4.1:
Regime fz CNL Ecut f̄

A 940 300 80 0.075
B 940 600 95 0.075
C 1880 200 125 0.107
D 1880 300 130 0.107

constant appearing in by equation 3.13, and is proportional to the number
of atoms in the classical region.

All simulations for the four regimes proceeded in a similar manner. First,
a few pilot simulations were performed to find parameters that bound the
region where the condensate fraction varies from .50% down to ∼1%. We
expect the BKT transition will occur in this region. The cutoff energy was
taken into consideration and chosen such that, near the transition point, nmin

remained within the range 4 to 6. Next, while holding all over parameters
constant, the energy was varied such that different points across the BKT
transition were simulated. We note that because energy is the only variable,
the total number of atoms is not constant, and ranged between approxi-
mately 5× 103 and 5× 104. Note: this is because while we keep the classical
region population (i.e. CNL) fixed, as the temperature (energy) increases
the incoherent region is populated with an increasing number of atoms. For
each regime approximately 200 simulations were run. This took more than
3 weeks of computer time on a multiprocessor machine and involved large
amounts of data analysis and organisation.

4.2.2 Bimodality in Momentum Distribution

The first question to address, is how to measure the temperature, T (1), at
which bimodality begins in the momentum distribution. Extensive averaging
is required because we are near a critical point with strong fluctuations, this
is particularly necessary to obtain smooth momentum and position density
distributions. For the results of each simulation, 2 thousand equilibrium
states, and both the x and y directions were used for averaging, which was
possible because of the symmetry of the traps in these directions. A 3D plot
combines the distribution produced by each simulation as a function of the
equilibrium temperature. These distributions were then binned according
to temperature, with each bin containing approximately 4 simulations, for
example see figures 4.3 and 4.4, which summarise our results for 2 parameter
regimes.

Bimodality occurs when the occupation of the condensate/quasi-condensate
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number becomes a significant fraction of the total atom number. The quasi-
condensate density profile, which is almost Gaussian, then becomes a promi-
nent feature of the momentum distribution, amongst the background of many
lowly occupied excited states. Thus, bimodality presents itself as a “bump”
in the momentum distribution.

From these plots, figures 4.3 and 4.4, we note that bimodality has a
gradual onset and identifying the exact point is difficult. The method used
here, is to note the base of the prominent mode, forms an elongated crescent
shape. The elbow of this crescent, which is at the high temperature end, is
taken to be where bimodality begins, and the simulation at this temperature
is drawn with a thick red line. Most error arising from this method, is due
to the possibility of “weak” bimodality at higher temperatures not being
detectable to the eye. For this reason, the error bar extends 3 nK in the cold
direction but 13 nK in the hot direction. Hence, the red line best represents
the lower bound for temperature at the onset of bimodality. The critical
temperatures, T (1), for the onset of bimodality in the different regimes are
summarised in table 4.2. An important observation is, the onset of bimodality
is gradual, though it rapidly accumulates beyound T (1), which would be most
obvious in experiments with limited resolution.
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Figure 4.3: Regime D: The thick red line represents the simulation at the
onset of bimodality. The red line parallel to the temperature axis represents
the error bar for critical temperature T (1). C = 300, fz = 1880 Hz, Ecut = 130

From figures 4.3 and 4.4 we can see that the general shape of these mo-
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Figure 4.4: Regime B: C = 600, fz = 940 Hz,Ecut = 95

Table 4.2:
Regime T (1)(nK)

A 69
B 93
C 53
D 58

mentum distributions are similar. The different values of T (1) are due to the
different strengths of confinement in the tight direction, characterised by fz,
and the different number of atoms in the classical region. We note that the
plot of regime D extends to colder temperatures than regime B.

4.2.3 Peak Density in Position Space

In this section we note the behaviour of the position density of as a function
of T, and importantly address the issue of how to relate the critical density,
discussed in §4.2, to our simulation results.

The position density distribution of regime D (figure 4.5) has a number
of interesting features. From cold to warm, the position distribution spreads
out, as the fraction of atoms in higher energy modes increases. The area
under each curve is proportional to the total number of atoms in that system.
It can be seen that this number does not change significantly from zero
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temperature to about 40 nK, beyond here the number rises sharply. This
region of relatively constant number is due to the population of the classical
region being fixed, and the occupation of the incoherent region modes being
negligible.
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Figure 4.5: Regime D: A typical position distribution as a function of tem-
perature as the BKT transition is crossed. fz = 1880 Hz.

Now we focus on finding the temperature at which the predicted peak
critical density, nc

peak, occurs (equation 4.1). For regime D, f̄ = 0.107, and
nc

peakλ
2
db = 8.18. In figure 4.6, the position values of the distribution (figure

4.5) are multiplied by the deBroglie wavelength (λdb)
2, which is a function of

temperature. Only the peak values, which comprise the central ridge, are of
interest, these are plotted in figure 4.7 for regime D. nλ2

db is a characterisation
of degeneracy. Interestingly, while the peak density does not change much
with T (see figure 4.5), the degeneracy changes much more significantly (see
figure 4.6). As shown, these plots are used to find the temperature, T (2), at
which npeak satisfies 4.1, the results summarising our 4 regimes are displayed
in table 4.3.

4.2.4 Condensation Fraction versus Temperature

Here we bring together the results of the previous subsections by comparing
T (1) and T (2) on plots of condensate fraction versus temperature (figures 4.8,
4.9, 4.10, 4.11). It is important to point out that the numerical method
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Figure 4.6: Regime D: The same data as for figure 4.5, except the points of
each curve have been multiplied by the deBroglie wavelength squared.

Table 4.3:
Regime T (2)(nK)

A 47.3
B 65.3
C 33.4
D 42.2

does not decipher between BEC or BKT, and a finite condensate fraction
can be equally well identified as a quasi-condensate rather than a pure con-
densate. T (1) and T (2) are also compared with T (3), which is calculated by
aligning a tangent to the condensate curve and finding the intercept with the
temperature axis. This is a crude approximation for graphically finding the
degeneracy temperature, and the large error bars indicate the uncertainty of
identifying key features. We were motivated to define this temperature be-
cause of the peculiar condensation fraction versus temperature shape, which
was common to all our results.

We note, the transition temperature for regime A is of order 25 nK cooler
than that for B, even though they have the same trapping parameters. This
difference is due to regime A having, of order, half as many atoms as B,
hence to reach the required degeneracy for condensation, regime A needs to
be cooler. A further examples is illustrated by regime C having a critical
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Figure 4.7: Regime D: The maximum density of each curve of figure 4.6. The
fitted curve is used to aid finding the values of T (2) for a given maximum
density, the error for this step is small as indicated by the red error bar on
the y-axis.

temperature approximately 9 nK cooler than D, where C has of order 50
percent fewer atoms.

However, the most important features of figures 4.8, 4.9, 4.10 and 4.11
is the relationship between T (1), T (2) and T (3) within each graph alone. In
each regime, the temperature at the onset of bimodality, T (1), occurs when
the condensation fraction reaches between 0.2 and 2.5 percent. The method
we use for detecting bimodality should only be sensitive to a difference at
least of order 1 percent. This implies the onset of bimodality and conden-
sate/quasicondensate occur at the same temperature.

Now, consider the temperature at the critical maximum density, T (2),
predicted by equation 4.1. These all occur at similar positions relative to
the shape of the condensation curves (where the condensate fraction begins
to increase rapidly), which is reflected by the agreement of T (2) with T (3),
to within at least 6 nK. This is remarkable when taking into account the
parameter differences between regimes. The total number of particles, tight
direction trapping potential and critical temperature vary by a factor of order
2 between the different regimes, yet still T (2) provides a relatively consistent
prediction of the critical temperature.
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Figure 4.8: Regime A: This curve shows how the condensation fraction be-
haves as a function of temperature. The slanted line is the tangent of the
curve when the condensation fraction is 0.2, this is our method for estimating
T (3). T (1), T (2) and T (3) are represented by vertical lines with corresponding
error bars drawn at the centre. fz = 940 Hz.
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Figure 4.9: Regime B: fz = 940 Hz.
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Figure 4.10: Regime C: fz = 1880 Hz.
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Figure 4.11: Regime D: fz = 1880 Hz.

When comparing T (1) with T (2), these results consistently show that the
onset of bimodality occurs at higher temperatures than the transition temper-
ature predicted by equation 4.1, to well within our errors. More specifically,
bimodality begins, on average, 21 nK warmer than T (2). Effectively for these
results, this is a lower bound to the discrepancy, since bimodality may begin
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at warmer temperatures where it is difficult to detect by our method. The
consistent discrepancy between T (1), T (2) is in disagreement with the claim
proposed by reference [12], which are suggesting both are the same. To find
where the BKT transition occurs relative to the temperatures defined in this
sections requires further investigation, and a direct measure of superfluidity
which we do not have.

4.2.5 Phase Diagrams

Here we propose combining the results of the last subsections into thermal
N -T , phase diagrams (figures 4.12, 4.13). The red curves represent the phase
boundaries, these we predict to pass through zero since the critical tempera-
ture must decrease with total number to preserve the required critical density
of equation 4.1. The shape of these phase boundaries is not intended to be
an accurate description, since there are only 2 data points per curve. More
regimes for a fixed value of f̄ , must be investigated for a precise description
of shape.

These phase diagrams give a picture of the normal phase, and the band of
quasi-condensate joining onto the BKT phase. The BKT phase is likely fur-
ther divided into a BEC phase at low temperature, but we have not identified
this phase here. The BKT transition is a well-known “higher order” transi-
tion, surrounded by a large fluctuation region. The T (1) - quasi-condensate
transition signifies the onset of this fluctuating region leading up to the BKT
transition.

4.2.6 Vortices in Position Space

In the following figures 4.14 to 4.17 we show typical instantaneous density
plots for regime D as the temperatures is varied, such that the condensate
fraction decreases from 0.59 to 0.008. Vortices are shown by ¤ and +, with
the different symbols indicating opposite circulations. Figure 4.14 shows the
spatial distribution well below T (2), the condensate is quite stable and is
confined to the trap centre (shown red), with vortices banished to the outer
edges. Figure 4.15 shows a gas with T < T (2), the vortices are paired but
suppressed from the centre. Figure 4.16 is for a region with T (2) < T < T (1),
vortices exist throughout but appear to be paired (i.e. ¤ and + are close to
each other). Finally, figure 4.17 represents a region with T > T (1), there are
many vortices throughout the trap and paring is no longer clear. It appears
that there are many broken pairs or at least well separated pairs.

We have further observed there is a tendency for vortex pairs to align
with each other, analogous to the behaviour of electric dipoles.
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Figure 4.12: Phase diagram showing BKT, quasi-condensate and normal
(thermal) (note: BEC not considered). The upper blue curve represents
regime B and the lower represents regime A. The red lines cross these curves
at points T (1) and T (2). fz = 940 Hz.
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Figure 4.13: Regime C and D: fz = 1880 Hz.

We note that to some degree, the proximity of ¤ and + is due to the
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vortex creation mechanism which conserves angular momentum. In the next
subsection we present findings that show pairing is promoted by at least
another mechanism.
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Figure 4.14: Regime D: T = 14.5 nK, condensate fraction = 0.59
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Figure 4.15: Regime D: T = 35 nK, condensate fraction = 0.19

41



Log
10

 position density

x (µm)

y 
(µ

m
)

−10 −5 0 5 10

−10

−5

0

5

10

Figure 4.16: Regime D: T = 50 nK, condensate fraction = 0.03
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Figure 4.17: Regime D: T = 70 nK, condensate fraction = 0.008

4.3 Vortex Pair Dynamics in BKT Regime

Here we briefly present findings displaying the behaviour of vortex pairs in
the BKT regime (T < T (2)). Figures 4.18 to 4.22 are 5 consecutive frames
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Figure 4.18: Regime D: Frame 1, T = 35 nK. The black arrow indicates the
vortex pair discussed in the text
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Figure 4.19: Regime D: Frame 2,T = 35 nK.

showing an example of a vortex pair traversing through the the condensate
centre, the lifespan of this particular pair was 8.5 ms. This phenomenon,
of clearly seeing vortex pairing, is common in our simulations and provides
evidence that pairs for T < T (2) are long lived and are fundamental entities
of this phase.
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Figure 4.20: Regime D: Frame 3, T = 35 nK.
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Figure 4.21: Regime D: Frame 4, T = 35 nK.
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Figure 4.22: Regime D: Frame 5, T = 35 nK.
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Chapter 5

Conclusions

This dissertation begun with the introduction of 2D systems in general. We
looked at known results for the ideal cases and the interacting homogenous
case, then posed the question of how the interacting trapped 2D system
behaves. Very little is known about these particular systems. This regime
can be tested both experimentally and theoretically in the context of the
ultra-cold Bose gas. Our principle aim was to investigate numerically, the
behaviour of the proposed BKT transition.

We have demonstrated the pairing of vortices is a prominent feature of
the BKT phase. We have also found a consistent difference between the
temperature predicted for the BKT transition T (2) and the temperature at
the onset of bimodality T (1), which is in disagreement with the Dalibard
group[12].

Our results have been central to discussions with the experimental group
of Nobel Prize winner W. D. Phillips. Their group has (unpublished) ex-
perimental results with a 2D system (However, they use sodium atoms at
f̄ ' 0.03). Their results also indicate a difference between T (1) and T (2).
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Chapter 6

Appendix

Here we briefly outline work and present results of investigations concerning
the choosing of the cutoff energy Ecut. Recall, from §3.5.3 that it is important
to choose an appropriate Ecut such that we avoid ultraviolet divergence while
still including vortices in our model, in the dense region.

The trap parameters have an isotropic loose direction trapping frequency
of 9.4 Hz and a tight direction frequency of 940 Hz.

6.1 Cutoff Predictions

Here we use statistical mechanical arguments to predict how to adjust CNL

and E to maintain the same regime, whilst adjusting Ecut. The general idea
is to approximately count the number of states between the original and
new values of Ecut, then using the given values of E and nmin at the cutoff
(from the original simulation), the required change in energy and number of
particles is calculated to fill the newly included/excluded states. This is an
approximation because we do not know the density of states or the average
occupation for states distant from Ecut.

The results of this work are displayed in figure 6.1. Temperature is used
as a measure of how much the system varies as different parameters are
adjusted. The different curves represent the scenario resulting from different
combinations of corrections CNL and E. It was found that only the correction
to energy was useful, and this method was used extensively in the following
section.
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6.2 Cutoff Dependence

Here, we investigate the response of a system to the variation of Ecut while
keeping the temperature and total number of particles constant. To achieve
these constants, CNL and E had to be readjusted for each value of Ecut.
This process of readjustment required many pilot simulations, and the code
developed in §6.1 was used extensively to aid in the finding of appropriate
initial conditions.

The response of the system to a change in Ecut was measured by the
change in condensate fraction. It can be seen (figure 6.2) that the condensate
fraction decreases gradually but steadily as the Ecut is increased. This is
expected, since the rise in Ecut results in more of the high energy states
being described classically, hence some divergence occurs which causes an
increase in occupation of these high energy states, which draws atoms out of
the condensate because the total number of atoms is fixed. We note that for
the range of our prior results §4.2 (nmin = 4 to 6) the condensate fraction
does not change significantly, we also think that these values of nmin are
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within the optimum range for CFS.
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