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Abstract

In this thesis we develop a direct simulation Monte Carlo (DSMC) method for

simulating highly nonequilibrium dynamics of nondegenerate ultra cold gases.

We show that our method can simulate the high-energy collision of two thermal

clouds in the regime observed in experiments [Thomas et al. Phys. Rev. Lett. 93,

173201 (2004)], which requires the inclusion of beyond s-wave scattering. We

also consider the long-time dynamics of this system, demonstrating that this

would be a practical experimental scenario for testing the Boltzmann equation

and studying rethermalization. A quantum DSMC algorithm is also discussed.
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Abbreviations and Notation

Here, we give tables of the notation and the abbreviations used in this thesis. We do not
include commonly used notation, e.g., r as the position vector or T as temperature, and
notation that is not used in more than one section. The reference gives the page in which
they are first introduced.

Table 1: Abbreviations.
Abbreviation Description Reference
BE Boltzmann equation. 1
ZNG Zaremba-Nikuni-Griffin. 1
DSMC Direct simulation Monte Carlo. 2
LATS Locally adaptive time step. 3
LAC Locally adaptive cell. 3
Kn Knudsen number. 13
NNC Nearest neighbor collision. 15
TASC Transient adaptive subcell. 21
LSD Locally sampled density. 79
FFT Fast Fourier Transform. 85

Table 2: Notation.
Notation Description Reference
Tcoll Collision energy. 2
vr Magnitude of the relative velocity. 2
f ≡ f (p, r, t) Semiclassically phase-space distribution function. 7
n (r, t) Position space density. 7
U (r, t) Potential. 7
asc s-wave scattering length. 8
dσ
dΩ

Differential cross section. 8
P Total momentum. 8
pr Relative momentum. 8
fsc (θ) Scattering function. 10
δl Phase shift associated with partial wave l. 10
θ Centre-of-mass scattering angle. 10
σ (vr) Total collision energy dependent cross-section. 11
α Ratio of physical atoms to test particles. 14
NP Number of physical atoms. 14
NT Number of test particles. 14
∆t Simulation time step. 14
Nc Number of test particles within cell c. 18
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Abbreviations and Notation

Table 3: Notation: continued.
Notation Description Reference
Nth Test particle threshold for the LAC subdivision. 18
∆Vc Volume of cell c. 20
Pij Collision probability for a pair of test particles i and j. 20
Mc Number of tested collisions in cell c. 20
Λ Collision rescaling factor. 21
P̃ij Rescaled collision probability. 21
M̃c Rescaled number of tested collisions. 21
nc Average density of cell c. 21
τ coll
c Mean-collision time of cell c. 27
τmax
c Max collision time of cell c. 27
τ tr
c Mean transit time of cell c. 27

∆x Master cell width. 27
∆xc x (y or z) width of cell c. 27
ωx Trap frequency in the x (y or z) direction. 33
feq (p, r) Maxwell-Boltzmann equilibrium distribution function. 39
N i

P Number of physical atoms in cloud i. 39
ξixy and ξiz Fitted standard deviations of cloud i. 39
R Total collision rate. 41
p0 Momentum offset. 41
σ0 Constant (velocity independent) total cross section. 41
γ Bin parameter. 42
Nsc Number of scattered atoms from a cloud. 45
P (θ) Angular scattering probability. 57
Pexpt (θi) Angular scattering probability for the experiment. 60
Psim (θi) Angular scattering probability for the DSMC simulation. 60
σeff Effective total cross section. 79
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Chapter 1

Introduction

Within ultra-cold-atom research, there are a range of problems requiring the understanding

of the dynamics of a normal gas. For example, studies of collective modes of Bose [1] and

Fermi [2] gases (also see Refs. [3, 4]), spin waves [5, 6], hydrodynamic expansion of a Bose

gas near the critical temperature [7], and more recently, the dynamics and thermalization of

a nearly degenerate gas of polar molecules [8]. These are all regimes in which the Boltz-

mann equation (BE) is thought to provide an accurate description. In many of these cases,

the system is only weakly disturbed from equilibrium, and some approximate solution can

be provided using a relaxation approximation for the collision integral and some form of

linearization [9], scaling [10, 11], or variational [12] ansatz. For more strongly dynami-

cal situations, these approaches are insufficient, however, the direct solution of the BE for

the six-dimensional distribution function is generally considered intractable and is normally

tackled using some form of stochastic particle simulation. Some applications of such cal-

culations include the work of Wu and co-workers [13, 14, 15] on evaporative cooling and

expansion dynamics, Jackson and co-workers [16, 17, 18, 19, 20] on bosonic collective-

mode dynamics (coupled to a superfluid by the Zaremba-Nikuni-Griffin (ZNG) formalism

[21]), the work of Urban and Schuck [22], Urban [23, 24], and Lepers et al. [25] in formulat-

ing fermion dynamics (see also Refs. [26, 27, 28, 29]), and Barletta et al. [30] and Barletta

[31] in describing sympathetically cooled molecular gases.

Here, we develop an algorithm for simulating the BE that is significantly more accu-

rate and efficient than these previous methods and is applicable to more extreme regimes of

dynamics. Indeed, our main motivation was to develop a theory capable of describing the

ultra-cold-atom collider developed by the Otago group [32, 33, 34]. In those experiments

(nonquantum degenerate), clouds of bosonic atoms at a temperature of ∼ 200 nK were ac-

celerated and were collided at an energy of ∼ 200 µK (see Fig. 1.1). Several features of
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Figure 1.1: Ultra-cold-atom collider: (a) schematic of the precollision ar-

rangement of two clouds at ∼ 200 nK approaching at a collision energy

of ∼ 200µK; (b) schematic of a postcollision system. (c) and (d) experi-

mental images, presented by Thomas et al. [32], of post scattering density

for two collision energies spanning the d-wave shape resonance. (e) and

(f) show our theoretical calculations matching the experimental results us-

ing the direct simulation Monte Carlo (DSMC) method developed in this

thesis. Following the terminology established in experiments, we char-

acterize the collider kinetic energy in temperature units by the parameter

Tcoll ≡ µv2
r /2kB, where µ = m/2 is the reduced mass, and vr is the

magnitude of the relative velocity.
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these experiments make the numerical simulation difficult:

(i) The system is far from equilibrium and accesses a large volume of phase space. A

good representation of each cloud before the collision requires nano-Kelvin energy

resolution, however, during the collision, atoms are scattered over states on the colli-

sion sphere with an energy spread on the order of a milli-Kelvin.

(ii) The collision energies are sufficiently large that an appreciable amount of higher-order

(i.e. beyond s-wave) scattering occurs. In particular, in experiments p-wave scattering

[34] and a d-wave [32] shape resonance have been explored (see Fig. 1.2).

The algorithm we develop is suitable for this regime, and, as shown in Figs. 1.1(c)-1.1(f), it

can provide a quantitative model for the experimental data in Ref. [32]. Feature (i) discussed

above presents a great challenge, and using the traditional Boltzmann techniques employed

to date in ultra-cold-atom research, this would require super computer resources. We show

how to make use of an adaptive algorithm (that adapts both the spatial grid and the times

steps to place resources where needed) to accurately simulate an ultra-cold-atom collider on

commodity personal computer hardware.

We note that, in addition to collider experiments, a capable BE solver would allow the-

oretical studies in a range of areas of emerging interest, such as the turbulence and flow in-

stabilities in the normal phase of a quantum gas. Here, we will focus mostly on the classical

regime where the phase-space density is small compared to unity such that the many-body

effects of Bose-stimulated or Pauli-blocked scatterings are negligible. However, the systems

we consider will be in the quantum collision regime, whereby the thermal de Broglie wave-

length is larger than the typical range of the interatomic potential. Notably, in this regime, the

scattering is wave like, and quantum statistics on the two-body level gives rise to profound

effects in the individual collision processes, even though many-body quantum statistics is

unimportant.

All of the Boltzmann simulations appearing in the ultra-cold-atom literature have been

based on DSMC-like methods, typically employing the algorithm described in Bird’s 1994

monograph [35]. However, a challenging feature of ultracold gases is that the local properties

(e.g., the density) can vary by orders of magnitude across the system, and no single global

choice of parameters for the DSMC can provide a good description across this entire range.

For this reason, we introduce the use of two locally adaptive schemes to allow the system to

refine the description and to allocate more computational resources to regions of high density.

These schemes are as follows: locally adaptive time steps (LATSs) and locally adaptive cells

(LACs). We discuss these, as well as the overall DSMC method, in Chapter 3.

3



Chapter 1. Introduction

Figure 1.2: The experimental results of Thomas et al. Ref. [32], which

shows as Tcoll increases, the collisions are initially s-wave dominated

(Tcoll = 87µK), then, interference between the s- and d-waves occurs,

as a d-wave shape resonance is reached.
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In Chapter 4, we establish how to solve the problem of the ultra-cold-atom collider,

and we validate our algorithm using a variety of tests to demonstrate its applicability and

performance. Then, we apply it to the regime of the ultra-cold-atom collider experiments

[32]. Following this, in Chapter 5, we perform a quantitative study of the ultra-cold-atom

collider. Finally, in Chapter 6, we discuss extending the DSMC algorithm to include quantum

many-body statistics.

The work of Chapters 3 and 4 has been published in Physical Review A [36], and, for the

work of Chapter 5, there is a paper in preparation.
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Chapter 2

Background Theory

Here, we describe the Boltzmann equation and the quantum Boltzmann equation, as well

as, the partial-wave description of the differential cross section. Useful references for the

BE are the books by Huang [37] and Kardar [38], and for the quantum BE and partial-wave

description, the book by Pethick and Smith [39].

2.1 The Classical and Quantum Boltzmann Equations

The quantum BE appears in many fields, and has been labelled with many names, for exam-

ple, the Boltzmann-Uehling-Uhlenbeck, Vlasov-Uehling-Uhlenbeck, Boltzmann-Nordheim,

and Landau-Vlasov equation. Here, we choose to refer to this equation, as the quantum

Boltzmann equation.

The system of interest is a dilute gas of identical atoms, and is described semiclas-

sically by the phase-space distribution function f ≡ f (p, r, t), where f (p, r, t) d3pd3x

is the mean number of atoms in the phase-space volume p → p + (dpx, dpz, dpz) and

r → r + (dx, dy, dz). The quantum BE gives the evolution of the distribution function

[39] [
∂

∂t
+

p

m
· ∇r −∇rU (r, t) · ∇p

]
f = I [f ] , (2.1)

where the position-space density of the atoms n (r, t) is given by

n (r, t) =

∫
d3p

h3
f (p, r, t) . (2.2)

The left-hand side of Eq. (2.1) describes the evolution of atoms under the potential U (r, t).

In general, U (r, t) may contain a mean-field term, e.g.,

UMF (r, t) = 2gn (r, t) , (2.3)

7



Chapter 2. Background Theory

where g = 4π~2asc/m, with asc as the s-wave scattering length, which discussed further in

the next section. However, for our analysis presented here, we only consider the case where

U (r, t) is an external trapping potential.

The collision integral I [f ], accounts for the collisions between atoms, and is given by

I [f ] =
1

m

∫
d3p1

h3

∫
dΩ

dσ

dΩ
|p1 − p| [ f ′f ′1 (1± f) (1± f1)︸ ︷︷ ︸

Incoming

− ff1 (1± f ′) (1± f ′1)︸ ︷︷ ︸
Outgoing

],

(2.4)

where dσ
dΩ

is the differential cross section, and f1 ≡ f (p1, r, t), f ′ ≡ f (p′, r, t), etc.

When considering the flow of atoms through phase space due to collisions, I [f ] has

a simple interpretation. The outgoing term in Eq. (2.4) containing ff1 describes binary

collisions of point-like atoms, where the atoms are initially at the phase-space points (p, r)

and (p1, r), and have final states (p′, r) and (p′1, r). During such a collision, total and relative

momenta

P =
p + p1

2
, P′ =

p′ + p′1
2

, (2.5a)

pr = p1 − p, p′r = p′1 − p′, (2.5b)

respectively, are constrained by

P = P′, (2.6a)

|pr| = |p′r| , (2.6b)

to ensure conservation of momentum and energy (a geometrical representation of the colli-

sion can be seen in Fig. 2.1). The atomic interactions we wish to describe are contained in

the differential cross section, which describes the angular distribution for scattering events

between pairs of atoms as a function of their relative speed, and Ω is the solid angle formed

by the incoming and outgoing relative momenta.

The incoming term of Eq. (2.4) describes the opposite process where atoms scatter from

(p′, r) and (p′1, r) to (p, r) and (p1, r). The quantum statistics of the atoms is included by the

(1± f ′) (1± f ′1) terms, which account for Bose-stimulated scattering (+) or Pauli blocking

(−).

Neglecting Bose-stimulated scattering, or Pauli blocking, gives the BE, which is appro-

priate for nondegenerate regimes where f � 1. In detail, the BE reads
[
∂

∂t
+

p

m
· ∇r −∇rU (r, t) · ∇p

]
f =

1

m

∫
d3p1

h3

∫
dΩ

dσ

dΩ
|p1 − p| [f ′f ′1 − ff1] , (2.7)

and is the main focus of this thesis, except for the extensions of the DSMC algorithm dis-

cussed in Chapter 6 to describe the quantum BE [Eqs. (2.1) and Eq. (2.4)].

8
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P� = P

p1

p

p�
1

p�

pr

p�
r

Figure 2.1: Geometrical representation of a binary collision of point-like

particles. During the collision, the total energy and the total momentum of

the pair are conserved. Only the momenta are changed by keeping the total

momentum constant, and rotating the relative momentum vector about its

center [37]. The initial states of the two particles are shown in black, while

the final states are shown in red, while the axes give the momenta in x, y,

and z directions.
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Chapter 2. Background Theory

2.2 Partial-Wave Treatment of Collisions

While our main interest here is in ultracold gases with sufficiently low phase-space density to

neglect many-body quantum statistics, the two-body collisions themselves are in the quantum

collision regime and are conveniently characterized in terms of a partial-wave expansion

[39]. The differential cross section for identical bosons (+) or fermions (−) in the same

internal state is
dσ

dΩ
= |fsc (θ)± fsc (π − θ)|2 , (2.8)

where

fsc (θ) =
~

imvr

∞∑

l=0

(2l + 1)
(
e2iδl − 1

)
Pl (cos θ) , (2.9)

is the scattering function, δl is the phase shift associated with partial wave l, Pl (cos θ) is the

lth Legendre polynomial and θ is the centre-of-mass scattering angle. In general, the phase

shifts have a collision energy dependence (vr), which is a nontrivial task to calculate. For

bosons (fermions), the total wave function is required to be symmetric (antisymmetric), and

hence, only the even (odd) l terms in Eq. (2.9) contribute to the differential cross section.

In the low collision energy limit, only s-wave scattering will occur. Taking the limit

vr → 0, Eq. (2.9) approaches a constant,

lim
vr→0

fsc (θ) = lim
vr→0

2~
mvr

1

cot δ0 − i
= −asc, (2.10)

which is called the s-wave scattering length. A curious observation, is that, identical fermions

require their wave function to be antisymmetric, thus, their lowest energy interactions are the

p-wave interactions l = 1. As a system of identical fermions cools, at some point the p-wave

interactions freeze out, rendering the system noninteracting. As the evaporative cooling

technique requires interactions for the system to rethermalize, reaching Fermi degeneracy

for trapped fermions was achieved by sympathetic cooling. This is where a Fermi-Fermi

mixture [40] or Bose-Fermi mixture [41] is used, since two species are distinguishable, and

do have s-wave interactions between each other, hence, giving the fermions a pathway to

rethermalize.

The low collision energy limit gives the angle-independent differential cross section for

identical bosons
dσ

dΩ
= 8πa2

sc, (2.11)

and this limit is where the majority of cold atom theory is applied. Most famously seen in

the Gross-Pitaevskii equation [42], which uses the Fermi pseudo potential,

U (r′ − r) =
4π~2asc

m
δ (r′ − r) = gδ (r′ − r) , (2.12)

10



2.2. Partial-Wave Treatment of Collisions

for the atom-atom interactions, where δ (r′ − r) is the Dirac delta-function. Here, we will

use this low energy limit for simple tests in Chapter 4.

The total cross section σ (vr), is obtained by integrating over only half the total solid

angle, to avoid double counting, and is given by the sum of the total cross sections for each

partial-wave,

σ (vr) =
∞∑

l=0

σl (vr) , (2.13)

where

σl (vr) = 32π (2l + 1)

(
~ sin δl
mvr

)2

. (2.14)

11





Chapter 3

Direct Simulation Monte Carlo Method

The DSMC method has a very strong following outside of ultra-cold-atom research, and

is actively developed. We give a background to the DSMC method, and discuss general

considerations, before presenting our DSMC algorithm.

3.1 Background to DSMC

The DSMC method is the most widely used tool for modeling fluid flow on the subcontin-

uum scale and has found itself successfully applied to a huge range of physics from shock

waves [35] and Rayleigh-Bénard flow [43] to aerodynamics of spacecraft [44], chemical re-

actions [45], microfluidics [46], acoustics on Earth, Mars, and Titan [47], volcanic plumes

on Jupiter’s moon Io [48], and much more.

These situations are characterized by being dilute (two-body collisions) and having a

high Knudsen number (Kn), which is given by the ratio of the mean-free path λ, to the

representative length scale of the system L, i.e.,

Kn =
λ

L
. (3.1)

For Kn & 0.1, a microscopic kinetic theory is necessary, while for Kn . 0.1, the system tends

to be sufficiently hydrodynamic for a continuum approach to be applicable for understanding

coarse-grained dynamics.12 This is not to say that DSMC is inapplicable or is inefficient in

this regime; indeed, recently, Bird has shown that, in nonequilibrium situations with Kn ∼
0.01, the DSMC algorithm (employing many of the techniques we introduce for cold atoms

1In the cold-atom community, it is more common to specify these regimes as ωτ , where ω is the excitation

frequency and τ is the collision time.
2For a detailed discussion on which regimes the various methods are traditionally used, see Ref. [44].
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here) can be more accurate and efficient than Navier-Stokes methods, while also providing

details of the microscopic (subcontinuum) dynamics [49]. We also note that the consistent

Boltzmann algorithm [50] was developed by making an adjustment to the DSMC algorithm,

where the positional shifts of the atoms due to collisions are taken into account, thus, giving

the correct hard-sphere virial. This allows for exploration into even lower Kn and has been

explored in the context of quantum nuclear flows [51, 52].

For reference, cold-atom experiments often operate in the collisionless regime (Kn >

1), however, values of Kn ∼ 0.01 have been explored, e.g., the above-critical temperature

collective modes of a 23Na gas studied by Stamper-Kurn et al. [4] had Kn ∼ 0.1; Shvarchuck

et al. [1] studied the hydrodynamical behavior of a normal 87Rb gas in which Kn ∼ 0.02−0.5.

3.2 Overview of Formalism and General Considerations

In the DSMC method, the distribution function is represented by a swarm of test particles,

f (p, r, t) ≈ αh3

NT∑

i=1

δ [p− pi (t)] δ [r− ri (t)] , (3.2)

where α = NP/NT is the ratio of physical atoms (NP) to test particles (NT). These test

particles are evolved in time in such a manner that f (p, r, t) evolves according to the BE.

The basic assumption of DSMC is that the motion of atoms can be decoupled from colli-

sions on time scales much smaller than the mean-collision time. In practice, this means that

a simulation is split up into discrete time steps ∆t, during which, the test particles undergo a

collisionless evolution, then, collisions between test particles are calculated.

The relation of the test particles to physical atoms is apparent in Eq. (3.2) when α = 1,

but, in general, they are simply a computational device for solving the BE. In many con-

ventional applications of DSMC, good accuracy can be obtained with α � 1 (i.e., each is

a super particle representing a larger number of physical atoms), however, in our applica-

tions to the nonequilibrium dynamics of ultracold gases, we often require α� 1. Increasing

the number of particles improves both the accuracy and the statistics of the simulation, and

in highly nonequilibrium situations, it can be essential to have a large number of particles.

The DSMC algorithm is designed so that the number of computational operations per time

step scales linearly with the number of particles, i.e., O (NT). The recent work of Lepers et

al. [25] departs from DSMC by using a stochastic particle method similar to that developed

in nuclear physics for the simulation of heavy-ion collisions [53, 54], which tests if two par-

ticles are at their closest approach in the present time step, causing the algorithm to scale as

14



3.2. Overview of Formalism and General Considerations

O (N 2
T). These methods have been reformulated in terms of DSMC by Lang et al. [55]. We

typically use NT = 105 − 107 test particles, and, by the various improvements we describe

below, in most cases we consider here, we can obtain accuracy to within 1%.

As pointed out in Sec. 2.1, the BE has a simple interpretation in terms of the flow of atoms

through phase space. Hence, the collisionless evolution of the test particles is performed by

solving Newton’s laws for the potential U (r, t), and collisions are governed by the collision

integral [Eq. (2.7)]. The collisions are implemented probabilistically (see Sec. 3.3.3) using

a scheme that requires the particles to be binned into a grid of cells in position space. This

serves two purposes: (i) It allows for the sampling of the distribution function, and (ii) it

establishes a computationally convenient mechanism for determining which particles are in

close proximity. Thus, the accuracy of DSMC depends on the discretization of the problem,

the cell size, the time step, and NT. It has been shown to converge to the exact solution of

the BE in the limit of infinite test particles, vanishing cell size, and vanishing time step [56].

In the original DSMC algorithm [35], a test particle may collide with any other particle

within the cell. This coarse grains position and momentum correlations, such as vorticity, to

be the length scale of the cells, as observed by Meiburg [57]. If the cells are not small enough,

this transfer of information across a cell could lead to nonphysical behavior. To combat this,

we have employed a nearest neighbor collision (NNC) scheme [58] outlined in Sec. 3.3.3,

where the collision partner of a particle must be chosen from the nearest neighbors. Although

a NNC scheme alleviates this problem, the cell sizes still must be small in comparison to the

local mean-free path and the length scale over which the density varies for accurate sampling.

The time step of the simulation must also be small in comparison to the smallest local

mean-collision time to ensure the validity of the basic assumption of DSMC and that physical

atoms do not propagate further than the local mean free path before colliding. To ensure this

(and for added efficiency), we implement LATSs [58] where, instead of a single global time

step, the time step can vary over the whole system, adapting to the local environment.

Finally, we note that the most useful choice of computational units (for the harmonic

potential) for length, time, and energy, are respectively given by

x0 =

√
~
mω

, t0 =
1

ω
, ε0 = ~ω, (3.3)

where ω is chosen to be ωx, ωy, or ωz.

15



Chapter 3. Direct Simulation Monte Carlo Method

3.3 Implementation of DSMC

Here, we consider the basic implementation of DSMC; a collisionless evolution followed

by a collision step where test particles are binned in position space and collisions between

them are implemented stochastically via a collision probability. We also discuss the various

adaptive schemes we employ for better accuracy and efficiency, while retaining the desired

linear scaling of the computational complexity with test particle number.

3.3.1 Collisionless Evolution

The collisionless evolution is performed by a second-order symplectic integrator [59, 18],

which updates the phase-space variables of the ith test particle in three steps:

qi = ri (t) +
∆t

2m
pi (t) , (3.4a)

pi (t+ ∆t) = pi (t)−∆t∇qi
U (qi, t) , (3.4b)

ri (t+ ∆t) = qi +
∆t

2m
pi (t+ ∆t) . (3.4c)

Symplectic integrators have the properties of conserving energy and phase-space volume

over long periods of time. The conservation of phase-space volume is particularly desirable

for fermionic simulations, since it assists in ensuring the Pauli exclusion principle is not

violated during the collisionless evolution.

3.3.2 Master Grid and Locally Adaptive Cells

To perform collisions, we must first bin the test particles into a grid of cells according to their

position. Collision partners are then selected from within each cell. In general, the binning

occurs in up to two levels: (i) the master grid on which each master cell is a rectangular

cuboid of equal size [see Fig. 3.1(a)] and (ii) the adaptive subdivision of the master cells into

smaller LAC subcells dependent on the number of particles in the parent master cell [see

Fig. 3.1(b)], which is an optional refinement. The use of several LAC schemes in DSMC

is discussed in Ref. [35]. It is a useful refinement to the algorithm for applications to cold-

atom systems, because these typically have large variations in density (such a scheme has

been employed in Ref. [60] to account for the large change in density during evaporative

cooling of a cloud of cesium atoms). We now discuss these levels in further detail.

At the beginning of the collision step, the grid of master cells is chosen to ensure all

particles are held within its boundaries [see Fig. 3.1(a)]. We choose to keep the size of the

master cells in each direction constant in time so that if the particles spread out further in
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(a)

master cells

∆x

∆y

∆x

∆y

(b)

adaptive subdivision
of master cells

Figure 3.1: A two-dimensional schematic of the cells used for a swarm of

test particles. (a) The rectangular master cells are all of the same size and

are chosen to ensure all particles lie within the boundaries of this grid. Cell

boundaries are indicated by lines, and particles are indicated by dots. (b)

An enlargement of two master cells showing their adaptive subdivisions

into smaller LAC subcells. The number of LAC subcells is determined by

the number of particles within the master cell.
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space during the simulation, we add extra cells rather than changing the size of the cells. The

particles are then binned into these master cells, and the number of particles in each cell Nc

is stored.

For adaptive subdivision, each master cell is considered in turn, and the particles are

binned further into a grid of smaller LAC subcells according toNc [see Fig. 3.1(b)]. Because

the number of collisions within a cell increases with density (i.e., number of particles), the

subdivision of highly occupied master cells gives a finer resolution of spatial regions where

the local collision rate is highest and, hence, more accurate simulations.

Our subdivision procedure aims to produce cells in which the average number of particles

is close to some threshold value Nth for which the choice of is discussed in Sec. 4.2.2. In

our algorithm, we do this by finding the integer l such that Nc/2
l is closest to, but not less

than, Nth. The master cell is then subdivided into 2l subcells, while giving no preference

to any direction in this subdivision. We choose this division scheme over more complicated

schemes, as when additionally implementing LATSs, the protocol for dynamically changing

grids becomes simpler.

We have adopted the notation of specifying quantities pertaining to a particular cell by

a subscript c. In what follows, when referring to cells, we will mean finest level of cells,

i.e., the LAC subcells or master cells otherwise. We do not explicitly label the cells, indeed,

this is to partly emphasize that the calculations performed in each cell are independent of

other cells. Thus, the algorithm is intrinsically parallel and is suitable for implementation on

parallel platforms (e.g., see Ref. [46]).

3.3.3 Collisions

Number of Tested Collisions

The BE describes the evolution of the continuous distribution f (p, r, t). However, the re-

placement of f (p, r, t) with a swarm of test particles introduces fluctuations that do not

correspond to physical fluctuations when NP 6= NT. As a result, hydrodynamic quantities

are required to be obtained from the averages of mechanical variables, not the average of

their instantaneous values [61].

In these stochastic particle methods, the collisions of test particles inherently average the

instantaneous values of the collision rate. This leads to a biasing of the total collision rate

when cells have low occupation numbers (see Fig. 3.2).

The probability distribution of the Nc test particles within a cell is well approximated by
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Figure 3.2: Relative error of the numerical total collision rate in the case

of the equilibrium distribution [Eq. (4.7)] for the choices of Mc, where the

error bars indicate the standard deviations of 500 averages. Here, the orig-

inal DSMC algorithm is implemented with NT = 107 and bin parameter

[Eq. (4.16)] γ = 0.2. The choice Ma
c is seen to diverge for low NT as Nc

in Eq. (3.8) becomes appreciable, which agrees well with the theoretically

calculated error (Ma
c theory) using Eq. (3.8). Using M b

c removes this di-

vergence, and the error is seen to agree well with the expected error for this

discretization (M b
c theory). The final data set (M b

c no fix) demonstrates the

error that arises when M̃c having non integer values after rescaling, is not

accounted for [i.e., not including the ceiling function in Eq. (3.14)]. The

system parameters are given in Fig. 4.7. [See Sec. 4.2 for the details of the

DSMC simulation].
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the Poisson distribution [62] of which the variance is equal to the mean, i.e.,

δN2
c = N2

c −Nc
2

= Nc, (3.5)

where δNc = Nc−Nc. Note that, formally, the correct number of collisions to test (given by

elementary scattering theory and the derivation of the collision probability from the collision

integral (2.7) via the Monte Carlo integration [18]) is

Ma
c =

N2
c

2
. (3.6)

However, with Poissonian fluctuations in Nc, we find that the mean collision rate is R ∝
Mc ∼ Nc

2
+Nc (but should be∝ Nc

2
). Thus, Poissonian fluctuations can become important

when the number of test particles per cell is small. However, the effect of fluctuations from

the finite-test particle number can be bypassed (e.g., see Ref. [49]) by instead using the

number of possible pairs of test particles,

M b
c =

Nc (Nc − 1)

2
, (3.7)

which we have employed in this work.

To understand the difference in detail, we note that the average calculated by the DSMC

simulation (denoted by the asterisks) for Eq. (3.6) is

N2
c

∗
= Nc

2
+Nc − P1, (3.8)

where P1 is the probability ofNc = 1 (as the simulation ignores cells withNc = 1, for which

no collisions occur, and this must be subtracted from the average). While, for expression

(3.7),

Nc (Nc − 1)
∗

= Nc
2
, (3.9)

which gives the correct total collision rate for the physical system as seen in Fig. 3.2.

Collision Probability and Scaling

The collision probability for a pair of test particles i and j in a cell of volume ∆Vc is given

by

Pij = α
∆t

∆Vc
vrσ (vr) . (3.10)

This collision probability can be derived from the collision integral (2.7) via the Monte Carlo

integration [18] (see also Sec. 6.1), the kinetic arguments [35], or the elementary scattering

theory [54]. The correct collision rate is established by testing

Mc =
Nc (Nc − 1)

2
(3.11)
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collisions in the cell. This is inefficient as the number of operations scales as N 2
T, and the

collision probability may be far less than 1. However, within a cell, the collision probabilities

and the number of tested collisions can be rescaled by a single parameter Λ such that the

number of operations scales as NT [35],

Pij → P̃ij =
Pij
Λ
, (3.12a)

Mc → M̃c = McΛ, (3.12b)

and still converge to the same BE evolution. Here, Λ is chosen to be

Λ =

⌈
Mcα

∆t
∆Vc

[vrσ (vr)]max

⌉

Mc

, (3.13)

where [vrσ (vr)]max is the maximum of this quantity over all pairs of particles in the cell

and dxe denotes the ceiling function. This corresponds to Bird’s proposal of using Λ =

max {Pij} [35], while we ensure that Mc is an integer and at least one collision is tested

(Fig. 3.2 demonstrates the reduction in collision rate, if this is not taken into account). With

this choice of scaling, the maximum collision probability within the cell is less than or equal

to 1, but is expected to be close to 1, and the number of collisions that need to be tested is

reduced to

M̃c =

⌈
Nc − 1

2
nc∆t [vrσ (vr)]max

⌉
, (3.14)

where

nc = αNc/∆Vc, (3.15)

is the average density in the cell.

This enhancement of efficiency is often missed by other stochastic particle methods, or

the collisions are adjusted in some other manner. For example, Tosi et al. [27] introduced

a scheme for fermions where collision pairs with small classical collision probability were

neglected.

Nearest Neighbor Selection of Collision Partners

We employ a NNC scheme to combat discretization effects from finite cell sizes, in particular,

the so-called transient adaptive subcell (TASC) scheme [58]. Simple sorting of the test

particles for the nearest neighbors scales quadratically with the particle number. The TASC

sorting scheme retains linear scaling, but it does not guarantee the exact nearest neighbor.

The basic TASC scheme is to further bin the particles into subcells within the cell [see

Figs. 3.3(a) and 3.3(b)], the number of which is roughly equal to Nc. In our case, the number
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collision pair

(a)

transient sub-cells

(b)
central sub-cell

layer 1layer 2layer 3

collision pair

Figure 3.3: A two-dimensional schematic of how collisions are performed

within the TASC scheme. A single cell (outer boundary line) and the

distribution of test particles (black dots) are shown in (a) and (b) for two

different random collisions. The finer grid of internal lines represents the

boundaries of the TASC subcells. The first particle of the collision pair

is selected at random from all the particles in the cell. In (a), the first

particle occupies a TASC subcell that contains other particles, and the

second participant in the collision is chosen at random from these other

particles. In (b), the first particle (which occupies the central subcell) is

the sole occupant of a TASC subcell. In this case, we check to see if there

are any particles in layer 1, and if so, the collision partner is chosen at

random from these other particles. If there were no particles in layer 1, we

would then check layer 2, and so on.
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of subcells in each direction is equal and is given by b 3
√
Ncc (with bxc as the floor function).

When a particle is randomly picked for a collision, its collision partner is established by

looking within the immediate TASC subcell [Fig. 3.3(a)], and if not found [Fig. 3.3(b)], each

layer starting closest to the particle is searched for other particles. If a layer contains more

than one particle, the collision partner is randomly chosen from that set to avoid any biasing.

This reduces the distance between colliding pairs significantly and may be decreased even

more by increasing NT.

We use this procedure to select each of the M̃c pairs of particles for testing if a collision

occurs. We also ensure a particle does not undergo a second collision in the same time step.

Testing and Implementation of Collisions

For each of the pairs, the collision goes ahead if R < P̃ij , where R is a random number

uniformly distributed between 0 and 1. As the BE describes binary collisions of point-

like atoms that conserve total energy and momentum, only the momenta are changed by

keeping the total momentum constant, and the relative momentum vector is rotated about its

centre (see Fig. 2.1 or Fig. 3.4). The scattering angles φ and θ, are determined by using an

acceptance-rejection Monte Carlo algorithm for the differential cross section.

The final momenta of the test particles are given by

p′ = P +
p′r
2
, (3.16a)

p′1 = P− p′r
2
, (3.16b)

hence, we need to determine p′r in the reference frame of the simulation.

In the centre-of-mass reference frame shown in Fig. 3.4, p′r is given by a rotation about

origin (centre of the relative momentum),

{p′r}com = pr




sin θ cosφ

sin θ sinφ

cos θ


 . (3.17)

To transform to the reference frame of the simulation, two rotations are required, which

are defined by the angles φ′ and θ′. We take θ′ to be the angle between pr and the pz axis

in the simulation reference frame, and φ′ to be the azimuthal angle (i.e., how φ and θ are

defined in the centre-of-mass frame Fig. 3.4). Thus, p′r is rotated about the px axis, then,

about the pz axis by RzRx, where

23



Chapter 3. Direct Simulation Monte Carlo Method

θ

φ

pz

py

px

p�
r

Figure 3.4: In the centre-of-mass reference frame, where the relative mo-

menta initially points along the pz axis, the collision causes the relative

momenta to be rotated about its centre to the new relative momenta p′r.

Rx =




1 0 0

0 cos θ′ sin θ′

0 − sin θ′ cos θ′


 , Rz =




sinφ′ cosφ′ 0

− cosφ′ sinφ′ 0

0 0 1


 . (3.18)

In terms of the components of pr = (pa, pb, pc), this gives

RzRx =
1

prpd




prpb papc pdpa

−prpa pbpc pdpb

0 −p2
d pdpc


 , (3.19)

where p2
d = p2

a + p2
b .

3 Thus, in the simulation reference frame,

p′r =
1

pd




sin θ (prpb cosφ+ papc sinφ) + pdpa cos θ

sin θ (pbpc sinφ− prpa cosφ) + pdpb cos θ

pd (pc cos θ − pd sin θ sinφ)


 . (3.20)

3In the special case where θ′ = 0, we take Eq. (3.19) to be the identity, i.e., φ′ = π/2. In simulations, the

identity is used when pd ≤ eps, where eps is the numerical precision.
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3.3.4 Locally Adaptive Time Steps

All of the preceding aspects of our implementation of DSMC can be performed with the

single global time step ∆t for all cells such that the evolution of the system is simulated at

the times tk = k∆t, with k as an integer. At each of these steps, the collisionless evolution is

performed, then, is followed by the collision step [see Fig. 3.5(a)]. However, if there is large

variation in the properties over the system, the use of a single time step can be inefficient,

as it may be much smaller than required for low-velocity or low-density regions. This has

been addressed by a recent improvement to the DSMC algorithm [58], where a local time

step was introduced for the collision step. Performing the collision step is computationally

expensive, so this improvement can lead to a great increase in the efficiency of calculations.

With the use of LATSs, there are two time steps of importance for each cell: (i) The

global time step δti, which is the fundamental increment of time in all cells of the system.

The global time after k steps is specified as

tg =
k∑

i=1

δti, (3.21)

and during each increment of δti, collisionless evolution is performed [i.e., Eqs. (3.4a)−(3.4c)

with ∆t→ δti]. (ii) The local time step for the cell δtc, which is the desirable time scale for

performing collisions in this particular cell. Note δti = min{δtc}, i.e., we choose the global

time step to be the smallest value of δtc over all cells in the system at the end of each step.4

A collision step is performed at the global time step when, at least, a time of δtc has

passed since the last collision step for the cell under consideration [see Fig. 3.5(b)]. To

implement this, we introduce a cell timer tc, indicating the time up to which collisions have

been accounted for in the cell. In general, tc < tg and is incremented by δtc during each

collision step. Performing collisions in this way ensures that tc is within δtc of tg at all

times,5 and at the end of the simulation, all tc are updated to the final time by performing

collisions with δtc = tg − tc.
In our simulations, δtc is chosen to be small compared to the relevant collision and transit

4If δti is sufficiently large that the accuracy of the collisionless evolution is compromised, δti is split into

smaller increments for this evolution.
5If a cell becomes unpopulated (Nc = 0), tc may not have been updated such that tc = tg before the

test particles leave the cell, which decreases the collision rate. However, δtc is chosen such that this effect is

negligible.
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Figure 3.5: An example of the sequence of steps in a DSMC evolution. (a)

A simple DSMC scheme where the whole system evolves according to a

single global time step ∆t. (b) An example of a cell using a LATS. In this

example, the global time step (δt) is held constant, while the local time

step (δtc) is shown to vary. Collisionless evolution occurs at each global

time step. A collision step is performed at the global step when, at least,

δtc has passed since the last collision step. At global time t3, we show a

collision step, at which the local time counter (tc) is updated and a new

local time step (δt′′c ) is established. Here, the local time step decreases,

showing two further collision steps that follow shortly after the first.
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times of the cell. In detail, these time scales,

τ coll
c =

[
ncvrσ (vr)

]−1

, (3.22a)

τmax
c = {nc [vrσ (vr)]max}

−1 , (3.22b)

τ tr
c = min

{
∆xc
vx

,
∆yc
vy

,
∆zc
vz

}
, (3.22c)

are the mean-collision time, the maximum collision time, and the mean transit times of the

cell, respectively. These expressions are evaluated at the end of each collision step, and the

mean speeds (vx, vy, vz) are given by averaging over all the test particles within the cell,

while vrσ (vr) is the average of vrσ (vr) over the particles tested for collisions. The cell

widths (∆xc,∆yc,∆zc) correspond to the cell under consideration [e.g., ∆xc is the LAC

subcell x width, and the master bin width (∆x) otherwise].

In terms of these time scales, we take

δtc = min
{
ηcollτ

coll
c , ηmaxτ

max
c , ηtrτ

tr
c

}
, (3.23)

where ηcoll, ηmax, and ηtr are constants less than unity. At the end of each collision step, δtc
is reset by Eq. (3.23). Whenever δtc is established without performing a collision step, i.e.,

beginning of the simulation or when the LAC subcells are collapsed or expanded, we take it

to be

δtc = min
{
ηmaxτ

max
c , ηtrτ

tr
c

}
. (3.24)

For the accurate simulation of dynamics, it is required that δtc � τ coll
c as well as δtc �

τ tr
c . We also require that it is unlikely for an atom to undergo multiple collisions in a collision

step (accounted for by τmax
c ). These requirements are ensured by the constants ηcoll, ηmax,

and ηtr, which are optimized for the desired accuracy.

Care has to be taken when the LATS scheme is implemented in conjunction with the

LAC scheme, as the cells can change dynamically during the evolution (cells can be resized,

can be added or can be removed). Our procedure for dealing with dynamically changing

LAC subcells is as follows: As each master cell is considered in turn, if the number of

LAC subcells changes, a new layout of LAC subcells must be established. If the number

of these subcells increases, then each of these new cells inherits the tc of the original cell.

Alternatively, if the number of subcells decreases, then the new cells are formed by merging

old cells. In general, the values of tc for each of the cells to be merged are different, and

we take the new value of tc to be the largest of these. This requires tc of the old cells to be

updated to the new tc, thus, collision steps are performed within the old cells before merging,

using the time difference.
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When the LAC scheme is implemented with small threshold numbers (e.g., Nth < 5)

and the number of test particles is large (NT > 106), it can become inefficient to implement

LATSs in conjunction with the LAC subcells. In such regimes, very dense grids of LAC

subcells typically arise, for which the computational intensity of the LATS and memory

requirements become too great. Furthermore, small cell sizes lead to excessively small time

steps (e.g., τ tr
c is proportional to the cell size), which further reduces the algorithm efficiency.

In these cases, it is more efficient to implement the LATS scheme for the master cells (i.e.,

only the master cells have a time counter and desired time step) and implement collisions in

all the LAC subcells using that same desired time step.

3.4 Algorithm and Code Development

The algorithm and code to perform these DSMC calculations was developed over the course

of a year. In that time, our initial algorithm, based on the work of Jackson and Zaremba

[18] was converted from MATLAB to C programming language, and parallelized. Many

problems with the Jackson and Zaremba algorithm were identified, understood, and solved,

by experimentation and finding relevant literature. Most problems were in relation to sim-

ulating far from equilibrium systems, which the Jackson and Zaremba algorithm was not

developed with this in mind. However, there were two crucial problems: the choice of the

number of tested collisions (see Sec. 3.3.3), and a problem in relation to implementing quan-

tum many-body statistics that we discuss in detail in Chapter 6. Both of these problems, can

significantly damage the quality of the simulation.

The final DSMC algorithm, which we presented in this chapter, evolved after testing

many different possible routines and subroutines, taking into consideration speed and mem-

ory constraints. We now briefly outline our implementation of this DSMC algorithm in C

language. While, a significant amount of work has been simultaneously undertaken on a

quantum DSMC implementation, we only seek to outline an algorithm in Chapter 6, as we

have discovered, such an algorithm merits a significant study in its own right.

The main routine is split into three elements that are required to be executed in serial,

and are repeated for each time step of the simulation,

(i) Collisionless evolution.

(ii) Establishing the master grid and binning test particles into it.

(iii) Performing collisions.

Element (i) is the implementation of Eqs. (3.4a)−(3.4c), which is easily parallelized, and is
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fast. As for element (ii), the master grid from the previous time step must be expanded if the

test particles have evolved outside its boundaries. The master grid holds all the information

about the LAC subcells within each master cell (or itself, if the LAC scheme is not imple-

mented), i.e., how many in each direction, cell time steps, cell time counters, etc. It also

holds the information of which test particles are within each master cell. This has to be es-

tablished each time step, where the cell position of each test particle is established, and they

are sorted into the cells. Components of this routine are not parallelizable, and in element

(ii), there can be large manipulation of memory, causing it to take as long as element (iii).

The last element is the most difficult and intricate, and is usually the most computa-

tionally intensive. Thankfully, performing collisions in each master cell is independent of

the other master cells. Thus, parallelizing this element is straightforward, by passing each

thread a proportion of the master cells. As each master cell is considered, it must be deter-

mined if the layout of LAC subcells needs to be changed. If it does, then, the cells must be

merged or subdivided, where the most difficult part is dealing with redistributing the time

counters and time steps of each LAC subcell (see Sec. 3.3.4). Then, test particles are binned

into the LAC subcells, using the routines for the master cell binning. From here, each LAC

subcell is considered in turn, and the collisions are finally calculated if the time counter of

the cell has fallen behind the global time by its time step. If it has, collisions are calculated,

where the number of collisions and collision probabilities are given by Eqs. (3.12). This

requires establishing the TASC subcells, where the test particles are binned into a grid of

TASC subcells using the routines for the master cell binning. From this grid, the nearest

neighbors are selected. If the collision goes ahead, the momenta of the colliding particles are

adjusted according to Eqs. (3.16), and Eq. (3.20).
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Initial Investigation

Before we can perform DSMC simulations, the problem must be established by choosing

inputs that suitably describe the ultra-cold-atom collider experiment [32], and justifying the

neglect of the effect quantum statistics on scattering (Bose-stimulated scattering or Pauli-

blocking). This is the purpose of the first section of this chapter.

In the ultracold gas community, with only a few exceptions, careful studies on the per-

formance of DSMC, and other stochastic particle methods, are not presented along side the

studies employing these methods. One of the purposes of this work was to establish the

accuracy of DSMC, and, as noted in Sec. 3.3.3, a poor implementation of DSMC will result

in significant error. To quantify the accuracy of the DSMC simulations, the second section

develops tests relevant to ultracold systems, and for the particular case of colliding clouds,

our DSMC algorithm is compared to highly accurate pseudo-spectral methods in a simplified

case, finding excellent agreement.

Finally, we demonstrate the simulation of the ultra-cold-atom collider with the full energy

and angular-dependent-scattering cross section, and consider the long-time dynamics of the

collider. In particular, we investigate the delicate problem of rethermalization, and revisit

fluctuations in relation to this.

4.1 Establishing the Problem

To describe the ultra-cold-atom collider, the BE requires a differential cross-section, a po-

tential, and initial conditions, all of which must reflect the experiment. We now discuss

the choices of these in detail, and we justify neglecting the effect quantum statistics on the

collisions (Bose-stimulated scattering or Pauli-blocking).
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4.1.1 Collisional Cross-Section

The ultra-cold-atom collider experiment [32] was conducted with 87Rb, which is bosonic,

prepared in a single hyperfine spin state (F = 2,mF = 2). The wave function for two

such colliding atoms is required to be symmetric, hence, only the even partial-wave terms in

Eq. (2.9) contribute to the differential cross section. At the collision energies of the experi-

ment, only the first two even terms contribute, l = 0 and l = 2 (s- and d-wave). Thus, the

differential cross section reduces to

dσ

dΩ
=

4~2

m2v2
r




s wave︷ ︸︸ ︷
4 sin2 δ0 +

d wave︷ ︸︸ ︷
25 sin2 δ2

(
3 cos2 θ − 1

)2

+ 20 cos (δ0 − δ2) sin δ0 sin δ2

(
3 cos2 θ − 1

)
︸ ︷︷ ︸

s- and d-wave interference


 , (4.1)

and the total cross section is given by the sum of the individual s- and d-wave cross sections,

σ (vr) =
32π~2

m2v2
r

(
sin2 δ0 + 5 sin2 δ2

)
. (4.2)

Calculation of the collision energy dependence of the phase shifts δ0 and δ2 is a nontrivial

task. The values that we use in our simulations [Fig. 4.1(a)] are those calculated by Thomas

et al. and reported in Ref. [32]. Over the range of collision energies shown in Fig. 4.1, the

interference between s- and d-wave scatterings can be important, and a d-wave resonance

also occurs. The d-wave resonance can be seen in Fig. 4.1(b) as the peak of the total cross

section, attributed to the large d-wave cross section.

4.1.2 Potential and Initial Conditions

Here, we discuss an ab initio description of the system and find such a description not pos-

sible due to the magnetic fields being insufficiently characterized. Hence, we resort to a

simplified description, which we discuss in the last portion of this section.

Ab initio model of the collider

The collisions of the clouds were performed as follows: the atoms were magnetically trapped

in a single-well configuration (quadrupole-Ioffe-configuration trap) [63], then, the trap was

adiabatically transformed into a double-well configuration [64] [Fig. 4.2(a)]. This spatially

separates two segments of the initial cloud, and the separation distance is a controllable

parameter, on which, Tcoll depends. The collision is initiated by rapidly transforming back
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Figure 4.1: (a) Numerically calculated s-wave (dotted line) and d-wave

(dashed line) phase shifts of Ref. [32]. (b) s-wave (dotted line), d-wave

(dashed line), and total (solid line) cross sections.

to the single-well configuration [Fig. 4.2(b)], accelerating the clouds towards each other,

causing them to collide near the minimum of the potential [Fig. 4.2(c)].

In the single-well configuration, the potential is approximately harmonic near the trap

minima,

U(r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (4.3)

and cylindrically symmetric about the collision axis (z axis), i.e., ωx = ωy. The experimen-

taly measured trapping frequencies are

ωx = ωy = 2π × 155 Hz, (4.4a)

ωz = 2π × 12 Hz. (4.4b)

After the collision, the scattered atoms, and remaining unscattered atoms, evolved in the

trap for quarter of the radial trap period π/4ωx, then, the system was imaged using absorption

imaging techniques. In allowing the atoms to propagate for this time, the bulk of the scattered
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(a) (b) (c)

Figure 4.2: A schematic of the collision process. A qualitative potential

along the collision axis is indicated by the sold black line, while the atoms

are indicated by the red clouds. (a) shows two spatially separated clouds,

while the potential is in the double-well configuration. The potential is

rapidly transformed to the single-well configuration (b), and the clouds

accelerate towards each other. The clouds collide away from the trap cen-

ter (c), due to the asymmetric nature of the trapping potential.

atoms reach their maximal extent in the radial direction while in the trap, thus, giving the

best resolution possible.

The single-well and double-well configurations are generated by three coils (shown in

Fig. 4.3) and a rotating bias field that is used to avoid trap losses due to Majorana spin flips.

The double-well configuration was established by increasing the current (initially 27 A) to

the quadrupole coils, and after cooling, the amplitude of the rotating bias field was 0.2 mT.

The potential generated by these coils is asymmetric along the collision axis of the clouds

(Ioffe coil axis), which results in the clouds being asymmetric with respect to each other (e.g.,

see the results of Ref. [32] in Fig. 1.2). Hence, it would be desirable to model the collision

ab initio with an analytic form of the potential. Assuming that the ramp from the double-

well to the single-well configuration is fast compared to the timescales of the system, and

does not cause large fluctuations in the magnetic fields, we may use the double-well potential

and measured temperature of the atoms for the initial conditions, and then, the single-well

potential for dynamics.

The potential the atoms experience from the magnetic field is given by

U (r) = −µ ·B = gFmFµBB, (4.5)

where µ is the magnetic moment of the atoms, hence, gF is the Landé g-factor, and µB is

the Bohr magneton. Equations for the magnetic fields in the single-well configuration about
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Figure 5.9: Layout of turns and formers for the Mark II Ioffe-Pritchard trap, where the drawing is
a cross-section in the plane including the symmetry axes of all the coils. Each coil is wound around
a former (light grey) with the current direction for each turn either into or out of the page (× and
• respectively). A metal band (medium grey) is used to help cool the outer parts of the coils. The
quadrupole coils also have internal structure (dark grey) to ensure good water circulation in the
directions marked (large × and •). The outline extending from the right is the connection to the
vacuum system and glass cell. The position of the MOT (∗) and magnetic trap (#) are shown with
large markers, and the position (z, y) = (0,0) corresponds to the previous position of the MOT. The
probe laser beam travels perpendicularly out of the page.
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Figure 4.3: A schematic of the coils used for the experiment [32], which

was presented in Ref. [65]. Each coil is wound around a former (light

grey) with the current direction for each turn either into or out of the page

(× and • respectively). The Ioffe coil (left coil) has 135 turns, while the

quadrupole coils (upper and lower coils) have 100 turns each. The opera-

tional current for the coils is given to be 27 A. For our modeled potential,

the origin is the center of the two quadrupole coils, and is indicated by the

overlaid axes. The x direction points out of the page, y up the page, and

the z direction is along the Ioffe coil axis.
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the trap center are given in Ref. [65]. However, we require analytic equations that extend

over the entire range that the atoms occupy during the course of the collision, for the initial

conditions, as well as, implementing the collisionless evolution of the test particles in the

DSMC algorithm [Eqs. (3.4a)−(3.4c)]. To do this, we extend the methods of Ref. [65],

by treating the coils in Fig. 4.3 as current densities, and using the Biot-Savart law. This

requires an expansion about the center of the quadrupole coils (see Fig. 4.3), and the resulting

magnetic field magnitude must be time averaged, since the total magnetic field includes the

rotating bias field. The potential is well approximated by a harmonic potential in the x and

y dimensions, however, along the collision axis (z axis), the potential is asymmetric and

requires z terms to be kept to tenth order. This causes the clouds to collide away from

the single-well minima, and have different velocities. Furthermore, the harmonic trapping

frequencies in the x and y directions vary along the collision axis, which leads to the clouds

having different initial shapes and undergoing different shape oscillations as they accelerate

towards the trap center.

About the single-well minima, the trapping frequencies determined by our model are

ωx = ωy = 2π × 122 Hz, (4.6a)

ωz = 2π × 15 Hz, (4.6b)

which is a different from the experimentally measured frequencies Eqs. (4.4). Thus, the mod-

eled potential is not sufficiently accurate for a quantitative ab initio comparison.1 However,

we qualitatively observe the dynamics of the experimental setup.

Figure 4.4 shows the evolution of the system for one trap cycle along the collision axis,

as seen in experiment, and by our simulation. One obvious manifestation of the asymmetric

potential, is that, the oscillation of the mother clouds is not symmetric about some center. The

asymmetric effects are most readily seen in Fig. 4.5, where we focus on the second collision

of the clouds. Before and after the second collision, the scattered atoms between the two

mother clouds undergo a "mexican wave" like oscillation. That is, parts of the distribution

of scattered atoms expand, while other parts collapse, in such a way, that a wave travels

between the two mother clouds. This is a result of the trapping frequencies perpendicular to

the collision axis, vary along the collision axis. In a harmonic trap, these outscattered atoms

would expand and contract along the collision axis in a synchronized fashion. At the time

of the collision, the oscillations of outscattered atoms are out of sync with the oscillations of

the mother clouds, causing column densities to look like jet planes.
1This theoretical work was undertaken long after the experiment was decommissioned. Hence, it was not

possible to better understand the source of the discrepancy. However, our results are sufficiently close, that,
seeking quantitative agreement in future experiments seems possible.
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Figure 6.4: The dynamics of the two clouds after the ramp to the single-well trap

is initiated. The images are taken at times between tdelay = 3 ms and tdelay = 69 ms

in steps of 1 ms. The clouds first collide at tdelay ≈ 24 ms and a second collision

occurs at tdelay ≈ 58 ms.

(a) (b)

Figure 4.4: Column densities showing a comparison between the dynam-

ics (a) reported in Ref. [33] and the dynamics (b) of a DSMC simulation

using the modeled potential. Time increases in the downwards direction,

and the time scale is approximately one full oscillation along the collision

axis.
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Figure 6.4: The dynamics of the two clouds after the ramp to the single-well trap

is initiated. The images are taken at times between tdelay = 3 ms and tdelay = 69 ms

in steps of 1 ms. The clouds first collide at tdelay ≈ 24 ms and a second collision

occurs at tdelay ≈ 58 ms.
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Figure 4.5: Column densities showing a comparison between the dynam-

ics (a) reported in Ref. [33] and the dynamics (b) of a DSMC simulation

using the modeled potential. Time increases in the downwards direction,

and we focus on the second collision of the clouds in Fig. 4.4.
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Simplified potential and initial conditions

Being restricted by the lack of a quantitative description of the potential, the problem is sim-

plified by taking the potential to be the harmonic form given in Eq. (4.3) with the measured

trapping frequencies Eqs. (4.4).

In this chapter, it is sufficient to use the equilibrium (Maxwell-Boltzmann) distribution

function of a nondegenerate harmonically trapped gas as the initial conditions

feq (p, r) ≡ NP (β~ω)3 exp

{
−β
[
p2

2m
+ U(r)

]}
, (4.7)

where β = 1/kBT , and ω = (ωxωyωz)
1
3 . However, in Chapter 5, we seek a quantitative

description for the experiment. To do this, the initial conditions are given by fitting the

experimental images with gaussian distributions and assuming the momentum distributions

are given by the Maxwell-Boltzmann distribution;

f iexpt (p, r) =
N i

P(
ξixy
)2
ξiz

(
~2β

m

) 3
2

exp

{
−1

2

[
β
p2

m
+
x2 + y2

(
ξixy
)2 +

z2

(ξiz)
2

]}
, (4.8)

where i indicates which cloud (i.e., cloud 1 or cloud 2),N i
P is the number of physical atoms,

and ξixy and ξiz are the fitted standard deviations of the density.

The temperature used for the momentum distribution (T = 225 nK) and the total number

of atoms in the system (NP = 4 × 105) are those of which are reported in Ref. [32]. The

choices of N i
P, ξixy, and ξiz are given in Sec. 5.4.1, where, to justify the description being

quantitative, the initial conditions are discussed in detail.

4.1.3 Justification for Using the Classical Boltzmann Eqaution

The effect quantum statistics on collisions (Bose-stimulated or Pauli-blocked scattering) are

negligible when f � 1. This is the case for this chapter, however, in Chapter 5, we will

be considering distributions where f (p, r, t) ∼ 1/4. This leads to an increase of ∼ 5% to

the total collision rate for collisions within a cloud. Although a small contribution already,

the effects are insignificant, since the dynamics treated in Chapter 5 are of time scales, such

that, less than 0.03 collisions per atom occur within the cloud. Thus, the intracollisions (i.e.,

collisions between atoms in the same cloud) can be treated classically.

For the scattering of atoms between the colliding clouds, many intercollisions occur.

Therefore, we compare the phase-space density of one of the colliding clouds fcloud to that

of the scattered atoms fscat. To obtain an upper bound, we assume that all atoms are scat-

tered, and thus, they have density twice that of the density of the colliding cloud. In this
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case, fcloud/fscat ≈ 2∆Pscat/∆Pcloud, where ∆Pcloud and ∆Pscat are the momentum-space

volumes which the cloud and the scattered atoms occupy, respectively. Figure 4.6 shows a

qualitative depiction of the initial clouds and scattered atoms: the momentum widths of the

cloud can be approximated by h/λth, where λth is the thermal de Broglie wavelength. The

momentum-space volume of the scattered atoms can be approximated by πp2
collh/λth, where

p2
coll = 4mkBTcoll is the relative momentum of the clouds (πp2

coll is the surface area of the

collision sphere). Thus, in terms of temperatures, f iexpt/fscat = 4Tcoll/T . For the collisions

we consider here, Tcoll ≈ 1000T , giving fscat to be three orders of magnitude smaller than

f iexpt, hence, the intercollisions can also be treated classically.

py

pz

pcoll

h
λth

Figure 4.6: A qualitative depiction of the initial clouds (blue) and the

scattered atoms (red) in the (py, pz) plane.

4.2 Tests and Optimal Parameters for DSMC

In this section, we develop tests relevant to ultracold systems that we use to validate and to

explore how to optimize the performance of the DSMC algorithm by quantifying the effects

of the adaptive enhancements. Primarily, we are interested in the quality of the represen-
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tation of the phase-space distribution, since this is of fundamental importance for accurate

Boltzmann evolution. In particular, we address the effects of increasing the number of test

particles, and refining the grid, on collision rates as compared to exact results.

4.2.1 Analytic Results

We develop benchmark analytic results to calibrate the algorithm against. To do this we con-

sider the equilibrium (Maxwell-Boltzmann) distribution function for a harmonically trapped

gas Eq. (4.7).

The total collision rate is given by

R =
σ0

m

∫
d3p

h3

∫
d3p1

h3

∫
d3r |p1 − p| ff1. (4.9)

Here, we have taken the differential cross section to be velocity independent to give a total

cross section of σ0. Evaluating this expression for the equilibrium cloud, Eq. (4.7), we obtain

Req =
N 2

P

2π2
mβω3σ0. (4.10)

As we are concerned with simulating the collisions of equilibrium clouds, it will be useful

to consider the instantaneous distribution,

fcoll (p, r) = feq (p + p0ẑ, r) + feq (p− p0ẑ, r) , (4.11)

which corresponds to two spatially overlapping clouds with equilibrium shapes that are trav-

eling with opposite momenta ±p0 along the z direction. The total collision rate for this case

is

Rcoll =
N 2

P

2π2
mβω3σ0

[
2 + exp

(
−p2

0

β

m

)

+
1

2p0

√
πm

β

(
1 + 2p2

0

β

m

)
erf

(
p0

√
β

m

)]
. (4.12)

For small p0, the term in the square brackets scales as 4 + 2
3
βp2

0/m + O (p4
0), showing that,

for p0 = 0, Eq. (4.12) reduces to Eq. (4.10) with NP → 2NP, as expected. While for large

p0, it scales as 2 +
√
βπ/mp0 + O

(
p−1

0

)
. The first term corresponds to the intra cloud

collisions, while the linear term is obtained for the case of Dirac delta-function momentum

distributions, δ (p± p0ẑ).
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4.2.2 Grid Parameters and Test Particle Number

To investigate the accuracy with which collisions are treated, we compare the numerical

collision rate to the exact values in Eqs. (4.10) and (4.12). To do this, we calculate the

relative error of the numerical collision rate and examine its dependence on the number of

test particles and grid refinement.2

Numerical Collision Rate

For the purpose of comparison, we need to extract a collision rate from the DSMC represen-

tation of f (p, r, t). To do this, we evaluate the mean number of collisions in each cell over

some time δtc. Hence, in each cell, the mean collision rate per unit volume is

Rc ≈ 2α
M̃c∑

(ij)

P̃ij
∆Vcδtc

, (4.13)

where (ij) indicates the indices of the M̃c selected collision pairs in the cell. Thus, the total

collision rate for the system is

R =
∑

cells

Rc∆Vc. (4.14)

By calculating the collision rate in this way, we are, in effect, directly performing a Monte

Carlo integration for the integral (4.9), which is the basis of the derivation of the collision

probability in Ref. [18] (also see Sec. 6.1). The time step for the cell δtc is somewhat arbi-

trary, and we choose it to give M̃c = bNc/2c collision pairs.

A convenient length scale for the trapped system is given by the thermal widths

Wi =
√

2kBT/mω2
i , (4.15)

for the ith dimension, and we choose the master cell widths such that the resolution in each

direction (relative to these widths) are the same, i.e.,

γ =
∆x

Wx

=
∆y

Wy

=
∆z

Wz

. (4.16)

In what follows, γ will serve as an important parameter to specify the fineness of the spatial

resolution.

2The relative error in the collision rate is independent of NP and σ0.
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Accuracy

To increase the accuracy of our numerical calculation of the total collision rate, we must

improve the accuracy of our representation of continuous distribution f (p, r, t) or take more

samples. In the DSMC algorithm, f (p, r, t) is represented in two ways: (i) the test-particle

swarm, (ii) the grid of cells that sample the test-particle swarm. In Sec. 3.3.3, the discussion

for the number of tested collisions shows that, without cell adaption [i.e., LACs or LATSs],

(i) and (ii) are largely decoupled. However, simply decreasing the size of the master cells

can cause large statistical fluctuations in the number of collisions, as single occupation of a

cell becomes more common, hence, requiring a larger number of samples.

Our LAC scheme essentially establishes a local maximum size of the cells (i.e., maxi-

mum error), which is set byNT, Nth, and n (r, t). In our results, this is seen for the collision

rate of the equilibrium cloud given in Fig. 4.7. These results show that the magnitude of the

relative error does not continue to increase with increasing γ (as it does in the unadapted

case), but tends to a constant dependent on Nth. With decreasing Nth, smaller cell sizes

are achieved, hence, lower error.3 However, we restrict ourselves to Nth ≥ 2 to avoid the

increasingly large statistical fluctuations mentioned earlier. The results in Fig. 4.7 remain

qualitatively similar for different values of NT, however, the fluctuations (i.e., error bars

Fig. 4.7) increase with decreasing test-particle number.

It is worth noting that systems with identical density distributions are coarse grained

in the same fashion (provided NT is the same when using the LAC scheme), hence, they

have the same accuracy. For example, the equilibrium (4.7) and collision (4.11) distributions

have identical relative error profiles as seen in Fig. 4.7. However, if a system is dynami-

cally changing and no adaption was employed, evolving to a more dilute system would de-

crease the magnitude of the relative error, while increasing if becoming denser. For adaptive

schemes, this is not an issue, as the cell sizes automatically adjust to this change.

Performance Considerations

The results in Fig. 4.7 show that the following cases approximately have the same relative

error in collision rate:

(i) SIM1: An unadaptive simulation with γ = 0.02.

3Care needs to be taken with other adaptive schemes, since the approach outlined in Sec. 3.3.3, to remove

statistical biasing, neglects to take into account statistical fluctuations from other sources (e.g., cell volume),

which may become important [66].
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Figure 4.7: The relative error of the total collision rate, Eq. (4.10), for the

equilibrium distribution feq (p, r) against γ with NT = 107 is shown for

the cases without (solid line) and with cell adaption whereNth = 2 (dotted

line), 150 (dashed-dotted line), and 500 (dashed line). The results shown

here are averaged over 200 initial conditions, while the error bars give the

standard deviation. Without adaption, the error increases with increasing

γ, since feq (p, r) becomes more coarsely grained. However, with the in-

clusion of adaption, this behavior is combatted as the LAC subcells adapt

accordingly. We obtain the initial conditions for the test particles from

feq (p, r) using the Monte Carlo acceptance-rejection method. System

parameters: The harmonic potential is chosen to be the same as that used

in the ultra cold collider experiment with ωx = ωy = 2π × 155 Hz and

ωz = 2π × 12 Hz, NP = 2× 105 and T = 600 nK.
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(ii) SIM2: A LAC simulation with Nth = 2 and γ = 0.2, which we also include LATSs

for dynamics.

A fuller picture of the merits of using either of these approaches for a simulation requires us

to understand their resource requirements.

Speed: We find that, with our code SIM2 is approximately five times faster than SIM1 for

near-equilibrium evolution. Note, we only use the LATS scheme in SIM2 for the master

cells (as discussed at the end of Sec. 3.3.4). It should also be noted that this performance

indicator is dependent on the code implementation and physical problem under consideration

(i.e., equilibrium cloud versus highly nonequilibrium situation).

Storage: SIM1 requires ∼ 5× 107 master cells, while SIM2 requires∼ 5× 104 master cells

with a maximum of 4096 LAC subcells within a master cell (typically requiring a total of

∼ 7× 106 LAC subcells).

4.2.3 Collisions Between Clouds: Comparison to Simple Methods

In this subsection, we consider the collision of two equilibrium clouds in a harmonic trap,

feq (p± p0ẑ, r∓ r0ẑ), shown schematically in Fig. 4.8. We study this collision using our

DSMC algorithm and compare its results to a simplified model that has been used previously

to analyze this problem. Initially, the two clouds are centered at locations separated by

a distance of 2r0 along the z direction, chosen to ensure that (initially) the clouds do not

overlap. The clouds approach each other, moving at a relative momentum of 2p0, and when

they overlap, collisions scatter atoms out of the clouds. Here, our main interest is the total

number of such scattered atoms Nsc, after the two clouds have completed passing through

each other.

The simple model we consider was used in Ref. [32] (see also, Ref. [67]) and was derived

from the BE description of the colliding clouds by making the following approximations:

(a1) The harmonic potential is ignored (collision taken to be in free space).

(a2) The momentum distribution of each cloud is replaced by δ (p± p0ẑ).

(a3) The dynamics of scattered atoms are neglected.

These approximations lead to equations for the densities ni (r, t) of cloud i = a, b,
(
∂

∂t
± vr

2

∂

∂z

)
ni (r, t) = −vrσ0na (r, t)nb (r, t) , (4.17)

where vr = 2p0/m. We can solve these equations directly using a pseudo-spectral method.
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Figure 4.8: A schematic of the ultra-cold-atom collider used in Sec. 4.3.

Two clouds initially separated by a distance of 2r0 collide at a relative

momentum of 2p0. The number of atoms that have scattered out of the

clouds, after they have passed through each other, is referred to as Nsc.

An analytic expression may be derived with an additional approximation:

(a4) The loss of atoms is small enough such that the shape of the densities do

not deform but remain Gaussian while the normalization of each cloudNP

decreases.

Using this, one can integrate Eq. (4.17) over all position space to find the total number of

scattered atoms from the collision,

Nsc =
N 2

P

4π
mβωxωyσ0. (4.18)

As shown in Sec. 4.2.1, when considering the limiting behavior of Eq. (4.12), the approx-

imation (a2) is satisfied when Tcoll � T (which is the case for collider velocities we consider

here). That the momentum distributions can be replaced with Dirac δ functions is consistent

with the quantum statistics not playing a significant role in the scattering that occurs when

the two clouds collide. However, the internal motion of each cloud can be influenced by

quantum statistics.

As the full DSMC solution includes the dynamics of scattered atoms, it is useful to split

the scattered atoms into two groups: (i) scattered atoms that have not undergone any sub-

sequent collisions, (ii) scattered atoms that have undergone additional collisions, including

all collision partners.4 All of the scattered atoms predicted by Eqs. (4.17) and (4.18) are of

group (i).

In Eqs. (4.17) and (4.18),Nsc is independent of the details of the differential cross section

(only depending on the total cross section), and this is largely true for the full solution in the

4We include atoms that are scattered out of cloud 1 or 2 by a collision with an already scattered atom.
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Figure 4.9: The fraction of scattered atoms due to the collision of two

equilibrium clouds as a function of asc. Equation (4.18) [solid green line]

has poor agreement with the solution of Eq. (4.17) (solid black line) for

Nsc/NP > 0.05, since approximation (a4) is no longer valid. Group (i)

scattered atoms (dashed black line) and total scattered atoms [groups (i)

and (ii)] (dashed-dotted black line) from the DSMC solution. The system

parameters are given in Fig. 4.7, and for the DSMC simulation, γ = 0.2,

NT = 107, and Nth = 2. The standard deviation error is not shown as it is

on the order of the line width.

case considered here. Thus, it is convenient to take σ0 = 8πa2
sc, which is of the form of

the total cross section for s-wave scattering in the low-collision energy limit with scattering

length asc (see Sec. 2.2). Additionally, Nsc in both equations is independent of vr, i.e., Tcoll.

However, this is not the case for the full solution, since the collision occurs in a trap. For

example, if the radial confinement is tight, then a scattered atom can oscillate out and back

in the radial plane and can recollide (depending on the timescale over which the collision

proceeds). Here, we choose to operate in a regime where these effects are small and the

simple model should accurately describe the full solution. To do this, we choose parameters

such that Tcoll = 300µK,5 giving a short time scale for the collision.

The results of Eqs. (4.17) and (4.18), as well as the full solution, are shown in Fig. 4.9

5For the full DSMC solution, the clouds accelerate as they approach the trap center, and we take the value

of p0 that they obtain at the trap center as the value to compare against the simple model.
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for varying asc. All models agree well in the low scattering regime Nsc/NP < 0.05, while

for higher scattering fractions, approximation (a4) becomes invalid, and the dynamics of the

scattered atoms becomes increasingly important. However, the solution of Eq. (4.17) agrees

to within 10% of the relative error to the total [groups (i) and (ii) combined] scattered fraction

given by the full solution over the whole range.

We can modify the collision problem and DSMC method to a regime that is exactly

described by the simplified equation (4.17). To do this, all particles are taken to have mo-

mentum ±p0 along the z axis (the components of momenta in the xy plane are zero) and

evolve without an external trapping potential. Consistent with the approximations going into

Eq. (4.17), whenever a pair of particles undergoes a collision, it is removed from the sys-

tem (eliminating any need for consideration of multiple collisions). Due to the form of the

distribution function, NNCs cannot be used.6

The relative error ofNsc as calculated by the DSMC solution to that of our numerical so-

lution of Eq. (4.17) is shown in Fig. 4.10 for the two casesNT = 105 and 107. The excellent

agreement of the two results is a good test that the DSMC method is correctly implemented.

The error bars represent the statistical fluctuations of the DSMC results. These fluctuations

reduce with increasing asc asNsc increases, while between the two cases, they are reduced by

a factor of 10, since they also decrease with increasing NT (to be definite, these fluctuations

are given by the inverse square root of the number of scattered test particles).

6Particles have no transverse momenta, thus particles from the same cloud never leave the proximity of each

other. Hence, it is required that a particle from one cloud is closest to a particle from the other cloud before a

collision can occur, which results in a decreased number of collisions.
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Figure 4.10: The relative error ofNsc as calculated by the DSMC solution

of Eq. (4.17) [see text] to that of our pseudo spectral solution of Eq. (4.17).

Here, we show the two cases NT = 105 (black) and 107 [green] with

γ = 0.2, Nth = 25, and the system parameters given in Fig. 4.7. We use

ηcoll = ηtr = 0.01, and ηmax = 0.1. The results shown here are averaged

over 200 simulations, while the error bars give the standard deviation.
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4.3 Many-body simulation of an ultra-cold-atom collider

In this section, we demonstrate the application of our DSMC algorithm to the simulation

of the ultra-cold-atom collider reported in Ref. [32]. The main extension, over the DSMC

collision test presented in Sec. 4.2.3, is the inclusion of the full two-body collisional cross

section needed for a realistic microscopic description of the collisional interactions. We

then extend our consideration to the long-time dynamics of the collider and how the system

progresses to equilibrium.

4.3.1 DSMC simulations

Using the full energy and angular-dependent-scattering cross section, we present the results

of column densities calculated after two equilibrium clouds feq (p± p0ẑ, r∓ r0ẑ) have col-

lided for the cases Tcoll = 200µK and 300µK. Following the experimental procedure [32],

we calculate these column densities at a quarter of the radial trap period (π/2ωx) after the

clouds reach the center of the trap. At this time the bulk of the scattered atoms reach their

maximal extent in the radial direction. Figures 4.11(a) and 4.11(c) show a regime of s- and

d-wave interference (Tcoll = 200µK), while Figs. 4.11(b) and 4.11(d) show a d-wave regime

(Tcoll = 300µK). Clearly, the distribution of scattered atoms deviates from the typical s-

wave halo (e.g., see Ref. [68]).

4.3.2 Long-time dynamics: Rethermalization

The idea of using rethermalization of colliding condensates to perform calorimetry has been

proposed in Ref. [69], however, no direct simulations were made of the thermalization dy-

namics. More generally, there has been significant recent interest in how a quantum system

rethermalizes [70], particularly in systems that might be experimentally realized with ultra-

cold-atomic gases (e.g., see Refs. [71, 72]). To date, much of the attention has focused on

integrable or nearly integrable systems where numerical solutions are available for small

samples of atoms (typically NP < 102). However, in such regimes, thermalization is often

inhibited or is strongly affected by constraints (e.g., see Ref. [73]) as well as being difficult to

explore experimentally due to the small atom number (or requiring many similarly prepared

systems to get a good signal).

Thus, we are motivated to apply the DSMC method to model the dynamics of colliding

ultracold clouds well past the first collision. As the collisions occur in the trap, the clouds will

oscillate back and forth, recolliding each time, and thus, are provided with the opportunity
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Figure 4.11: Column densities at time π/2ωx after the clouds reach the

center of the trap. Tcoll = 200µK [(a) and (c)] is a regime of s- and d-

wave interference, while Tcoll = 300µK [(b) and (d)] is a d-wave regime.

(c) and (d) only show the scattered atoms. The initial conditions for the

clouds are chosen as in Sec. 4.2.3, and the system parameters are given

in Fig. 4.7, while the simulation parameters are γ = 0.2, NT = 105,

and Nth = 2. The results were averaged over 200 simulations. Note, we

have compared these results to simulations with NT = 107 also averaged

over 200 runs, and we find that the number of scattered particles and the

angular scattering distributions agreed to within 1%.
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to rethermalize. This system is much larger and classical in nature than the small quantum

systems generically considered for thermalization studies. However, we believe this is an in-

teresting system: first as a bridge between quantum and classical thermalization in ultracold

gases that is practical for experimental investigation. Second, such a system might provide a

unique opportunity to test the BE in a regime where the microscopic parameters are precisely

known and with well-characterized far-from-equilibrium initial conditions. Few equations in

theoretical physics have evoked as much discussion and controversy as the BE – particularly

in reference to the introduction of irreversibility – and such a test could be of broad interest

and shed light on some long-standing issues in statistical mechanics.

Our first evidence for thermalization comes from examining the density profiles of the

colliding clouds at times after the first collision. Some examples of these density profiles

are shown in Figs. 4.12(a)-4.12(d) and reveal that, as time passes, the number of atoms

participating in the parametric oscillation of the mother clouds along the z axis decreases as

the collisions convert the system to a more isotropic form. Indeed, the system clearly appears

to increase entropy and approaches an equilibrium like configuration.

In order to quantify the approach to equilibrium, it is useful to consider how various

moments of the system evolve dynamically. In Fig. 4.13, we show the envelope of the os-

cillations in the position spread moment 〈r2〉1/2 = 〈x2 + y2 + z2〉1/2, characterizing the

root-mean square of the distance of the particles from the trap center. [Note the oscillations

of this moment occur on a much faster timescale and are shown in an inset to Fig. 4.13.]

These results show that the system rethermalizes quite rapidly over the first approximately

five trap periods. The number of collisions per particle over the first approximately three trap

periods is shown in the inset to Fig. 4.13. The steps in collision number, which are initially

apparent, arise from the periodic recolliding of the clouds. However, as the system is dis-

tributed over modes, these steps smooth out. These results show that, during this initial rapid

phase of rethermalization, atoms experience & 10 collisions, much greater than the value of

2.7 often quoted in the literature from the study of Wu and Foot [13].

After this rapid thermalization phase, the relaxation to equilibrium proceeds more slowly

as energy contained within a few low-frequency collective modes waits to be damped. We

find that two modes are dominant on long time scales. Most importantly, a mode that oscil-

lates at 2ωx(= 2ωy) is dominated by radial breathing character and is well described (both

frequency and damping) by the analytic predictions given in Ref. [12].7 Also, we note that

the rate of relaxation is strongly dependent on the trapping geometry and collision rate. The

analytical predictions are only applicable when the system is near the final equilibrium state,

7Calculations based on these analytic prediction were performed by Danny Baillie.
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Figure 4.12: Column densities illustrating the long time dynamics of

rethermalization. (a) At time tωz = 7.04 after the clouds have passed

through each other twice. The colliding clouds are still visible (density

peaks). When the colliding clouds are depleted, the system continues to

evolve through collective oscillations that are illustrated by the images (b)

and (c) at tωz = 18.85 and 19.60, respectively. The decay of these col-

lective oscillations occurs on a slower time scale than the depletion of the

colliding clouds, and the distribution does not take on the equilibrium dis-

tribution until much later times as seen in (d) at tωz = 500.02. The trap

frequencies are ωz = 2π × 50 Hz and ωx = ωy = 2ωz, and each of the

initial clouds has NP = 106 and T = 600 nK. We use an isotropic dif-

ferential cross section with asc = 10 nm. The initial separation is chosen

such that there is insignificant overlap of the clouds. The momenta are

chosen to give Tcoll = 32.4µK, giving a final equilibrium temperature of

T = 6µK. Note, for an isotropic trap, the system does not completely

thermalize without mean-field effects, since the breathing mode does not

damp [12].
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Figure 4.13: Envelope of the oscillations (as seen in the lower inset) of the

root-mean-square of r. The rapid decay of the envelope within the first ten

trap cycles is attributed to the depletion of the colliding clouds, while the

slower decay is the decay of the collective modes. The upper inset shows

the mean number of collisions per atom.
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where the standard deviations hold the time dependence.

In relation to thermalization dynamics, it is interesting to revisit the role of test particles

in the DSMC simulation. In general, increasing NT has the effect of reducing fluctuations

in a simulation and, hence, the number of trajectories needed to obtain an ensemble average.

However, in order to gain a better understanding of typical results (and, hence, fluctuations)

that might be expected in experiments, it is necessary to take NT = NP. To illustrate this,

we show some results for a small amplitude collective-mode oscillation in Fig. 4.14 for

54



4.3. Many-body simulation of an ultra-cold-atom collider

a system with NP = 104 and various numbers of test particles. As the number of test

particles increases, the results become increasingly indistinguishable from the ensemble-

averaged results. However, for NT = NP, the individual trajectory deviates significantly.

We emphasize that our simulations for thermalization in this section have been performed

for the case of purely s-wave scattering. A detailed study of thermalization, including higher-

order partial waves (e.g., as the collision energy is scanned across the d-wave resonance),

would be needed for detailed comparison with experiments in this area but is beyond the

scope of this thesis. Along these lines, we would like to note an interesting interplay between

the partial waves that has been shown in the study of the thermalization of mixtures by

Anderlini and Guéry-Odelin [74]. In that thesis, they performed an analytical study of near-

equilibrium thermalization of a two-component mixture and showed that the thermalization

time (unlike the collision rate) depended on the interference between the scattering partial

waves.
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Figure 4.14: Collective oscillation induced by a small contraction of the

radial trap confinement for a system with ωz = 2π × 50 Hz, ωx = ωy =

10ωz,NP = 104, and T = 600 nK. The legend givesNT used, and as this

increases, the results for a single run become increasingly indistinguish-

able from the ensemble-averaged result for NT = 107.
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Comparison to the Ultracold-Atomic
Collider Experiment

The partial-wave phase shifts completely characterize the two-body interactions between

atoms, and having an accurate description of these is fundamentally important to describing

ultracold atomic systems. The theoretical model of these phase shifts uses potentials that

rely on experimental results for their optimization. The ultracold-atomic collider [32] was

developed with the motivation to measure the phase shifts of atoms, in particular, their colli-

sion energy dependence. We quantify the development, since the experiment to current day,

of the theoretical predictions of the s- and d-wave phase shifts for 87Rb, in Sec. 5.1.

In the collider experiments [33, 34, 75], the phase shifts were measured by fitting the

differential cross section to the angular scattering probability P (θ), where P (θ) dθ gives

the probability that an atom will scatter between θ and θ + dθ. However, in Sec. 5.4.2, we

establish for this particular collider, the many-body effects are significantly large that this

two-body method cannot be applied. Thus, we are motivated to employ our DSMC algo-

rithm to: (i) establish the level of agreement between the experiment [32] and the theoretical

models (Sec. 5.4.1); (ii) give a quantitative measure the phase shifts (Sec. 5.4.3).

5.1 Theoretical Calculations of 87Rb Phase Shifts

A complete description of the two-body interactions between atoms is not currently possible

through ab initio calculations. Instead, informed by numerous photo-association, Feshbach

spectroscopy, and other experiments, collision theorists have been able to infer many prop-

erties of the inter-atomic potentials to various degrees of accuracy.

For the purposes of understanding the ultracold collider experiment, we need to have
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a model for the interactions at low, but finite, collision energy. Such a description can be

furnished by knowledge of the first few partial-wave phase shifts as a function of energy

(see Sec. 2.2), in particular, the s- and d-wave shifts. Calculations of these were made Paul

Julienne, of the National Institute of Standards in Gaithersburg, Maryland, in 2004 [32].

These calculations were based on a coupled-channels model that includes the ground state

singlet and triplet potentials, and all spin-dependent interactions. These used the, at the time,

state of the art values for the triplet potential: van der Waals C6 constant of 4707 atomic

units (1 atomic unit = 9.5734 × 10−26 J nm6), and a scattering length of 98.96 atomic units

(1 atomic unit = 0.052918 nm) [76].

In 2010, two-photon dark-state spectroscopy experiments, and associated theory, claim

to have further refined the 87Rb potentials [77]. Using these potentials, Eite Tiesinga, of the

National Institute of Standards in Gaithersburg, Maryland, has recalculated the s- and d-wave

phase shifts. These results are compared to the original Julienne calculations [32] in Fig. 5.1.

The difference of the s-wave properties in these two calculations is very small (≈ 0.1%

relative difference in the phase shift at a given Tcoll). However, the d-wave phase shifts are

more significantly changed, with the new results shifting the location of the resonance down

by 5− 10 µK.

5.2 Method of Analysis

Here, we discus how the angular scattering distribution is extracted from experiment and

simulation. We also detail how the angular scattering distribution is used to determine the

DSMC simulations which give best agreement to the experimental data.

5.2.1 Determining the Angular Scattering Distribution

The angular scattering probability is extracted from the experimental images using the meth-

ods given in Ref. [33], which includes the dynamics of the scattered atoms in the trap (see

Fig. 5.2). This forms the central observable that we use to fit the many-body simulations to

the experimental data. The process is shown in Fig. 5.3, where the experimental absorption

images are converted to column densities, then, these are converted to the three-dimensional

densities by performing an inverse-Abel transform, which exploits the cylindrical symmetry

of the system. The scattered atoms are isolated in a simple manner, from which, P (θ) is

obtained by binning the density into cells of size π/32 rads, along the θ coordinate.1

1The Cloud in a Cell interpolation scheme [78] is used.

58



5.2. Method of Analysis

δ 0
(r

a
d
s)

−1.5

−1

−0.5

0

δ 2
(r

a
d
s)

Tcoll (µK)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

(a)

(b)

Figure 5.1: Numerically calculated s-wave (a) and d-wave (b) partial-wave

phase shifts, by Eite Tiesinga (dashed green line with circles) using the

optimized potentials of Strauss et al. [77], and by Paul Julienne (solid

black line with crosses) in 2004 [32].

Obtaining P (θ) from the DSMC simulations (also binned into cells of size π/32 rads)

is straightforward, since the scattered atoms can be labelled. This enables us to isolate their

three-dimensional density easily. The scattered atoms are those of which have scattered with

an atom that is not part of the isolated equilibrium evolution of a cloud [groups (i) and (ii) in

Sec. 4.2.3].

We have removed a segment of the density near the collision axis by the isolation of

scattered atoms, hence, this part of P (θ) is ignored in the fitting procedure. This presents

a problem, as we wish to normalize the scattered distribution to unity (number of atoms is

difficult to measure and varies from shot-to-shot). We make the approximation that the con-

sidered region of the experimental data has the same total probability for the scattering of an

atom, as the normalized angular scattering probability obtained from the DSMC simulation.
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4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
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Figure 1. The trajectories Cθ for particles emitted at the same speed v
at angles 0, "θ, 2"θ, . . . , 2π with "θ = π/20 in an anisotropic harmonic
potential characterized by oscillation frequencies ωρ/ωz = 12. Superimposed is
an isochronic map (red lines), which shows possible progress of travel from the
centre in specified time intervals of π/10ωρ. The isochrones constitute ellipses
with semiaxes v sin(ωzt)/ωz and v sin(ωρt)/ωρ, where t is the time travelled after
emission at the origin. The outermost ellipse corresponds to a quarter of a radial
trap period (t = π/2ωρ). For times longer than this, trajectories will begin to
intersect.

v sin(ωzt)/ωz and v sin(ωρt)/ωρ in the axial and radial directions, respectively. The factor κ(t)
in (3) can be approximated as

κ(t) ≈
{

sin(ωρt)/ωρt if t " π/2ωz,
1 if t " π/2ωρ < π/2ωz.

(4)

For short times t " π/2ωρ, Et approaches a sphere of radius vt, which is the result for particles
scattered in free space (the so-called Newton sphere). In figure 1 we show trajectories for
particles emitted in a plane at uniformly distributed polar angles θ in steps of π/20 radians
when ωρ/ωz = 12.

2.2. Transformation of the angular scattering distribution

Particles colliding at the centre of the harmonic potential will be scattered out in a given direction
with a probability dictated by the differential cross section dσ/d(. If the collisional interaction
is assumed to be spherically symmetric, dσ/d( will have cylindrical symmetry about the z-axis
(the collision axis). Hence, the angular probability density distribution of a scattered particle
psc(θ) ∝ dσ/d( is independent of the azimuthal angle φ. Assuming several particles to be
scattered at the rate R(t) from the origin of the coordinate system within a finite time interval
tsc < π/2ωρ beginning at time t = 0, a three-dimensional scattering halo with a cylindrically
symmetric density distribution n(ρ, z) will be formed. The distribution of particles in the halo
is determined by R(t), psc(θ), and the dynamics in the harmonic well. For observation times
shorter than π/2ωρ the mapping to spatial coordinates is one-to-one. Assume for example that

New Journal of Physics 6 (2004) 146 (http://www.njp.org/)

Figure 5.2: After the collision, the systems continues to evolve in the trap-

ping potential. Thus, scattered atoms will evolve along curved trajectories.

Here, this is indicated by the black curved lines, where the atoms are emit-

ted from the origin. To account for this during the binning procedure, the

boundaries (Cθi−∆θ/2 and Cθi+∆θ/2) of a bin centered at θi, with width ∆θ,

are curved according to these trajectories. This image was presented in

Ref. [33].

I.e,
Nt−Nr∑

i=Nr+1

Pexpt (θi) =
Nt−Nr∑

i=Nr+1

Psim (θi) , (5.1)

where Nt is the total number of bins, and Nr is the number of bins removed from each end

of the angular scattering probability for the experiment Pexpt (θi), and simulation Psim (θi).

5.2.2 Establishing the Best Fits

The best fits to the experimental data are determined by a χ2 fitting procedure [79] for P (θ),

which also allows us to establish confidence limits for the results. In detail, for each of the

experimental Pexpt (θ), the χ2 value is calculated for each of the simulated Psim (θ),

χ2 =
Nt−Nr∑

i=Nr+1

[
Pexpt (θi)− Psim (θi)

ξi

]2

, (5.2)

where ξi is the standard deviation for data point i.
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Figure 5.3: Illustration of the process of determining P (θ). (a) The

column density extracted from the experimental images. (b) Three-

dimensional density obtained by performing an inverse-Abel transform

on the column density. (c) The scattered atoms are isolated as shown. (d)

P (θ) established by binning the isolated density.
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Since, the standard deviation of each data point in Pexpt (θ) are not available (only one

data set for each collision energy), we assume that the "goodness-of-fit" is good, errors are

normally distributed, and the standard deviation of each data point is the same, i.e., ξi = ξ0.

This allows us to assign the standard deviation

ξ2
0 =

1

Nt − 2Nr −M
Nt−Nr∑

i=Nr+1

[Pexpt (θi)− Psim (θi)]
2 (5.3)

to each point, where M = 1 is the number of fit parameters.

The additional assumption that the model is linear (or near enough in the region of inter-

est), confidence limits can be established according to the change in χ2 about its minimum.

5.3 Sensitivity to Initial Conditions

Following the discussions of Sec. 4.1 and Sec. 5.1, our ability to accurately simulate the

experiment is limited in two ways:

(i) The limited accuracy in the experimental measurements, and characteriza-

tion of the ultracold-atomic collider, that we do not have precise knowledge

of the cloud properties (i.e., sizes and atom numbers) prior to the collision.

These relate to the initial conditions for the phase-space distributions we

use to simulate the experiment (see Sec. 4.1.2).

(ii) The accuracy of existing theoretical two-body calculations of the 87Rb

phase shifts (as discussed in Sec. 5.1).

The main purpose of this chapter, is to discuss the limitations of the theoretical two-body

calculations of the 87Rb phase shifts. Hence, we first establish the collision energy regime,

where our results are insensitive to the initial conditions of the phase-space distribution func-

tion, thus, eliminating the first limitation.

First, we discuss the sensitivity of our results to the number of atoms in each cloud, and

the spatial widths of the clouds, as these were not well characterized. Then, we discuss the

role that trap dynamics plays in the results.

5.3.1 Relative Number of Atoms and Spatial Widths

The initial phase-space distribution functions of the clouds prior to the collision are not

well characterized, hence, assumptions of their form were made (see Sec. 4.1.2). Here, we

establish the sensitivity of the collision results, to the number of atoms in each cloud, and the
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5.3. Sensitivity to Initial Conditions

spatial widths of the clouds. To do this, we vary the density parameters, which were obtained

by fitting the experimental data, significantly (see Tab. 5.1), and observe changes in the

collision energy of the simulation that gives the best agreement with the experimental data.

The s- and d-wave differential cross section [Eq. (4.1)], and the collision energy dependent

phase shifts calculated by Paul Julienne in Ref. [32] (see Fig. 4.1), were used to describe the

interactions between the 87Rb atoms in the DSMC simulations.

Case N 1
P (105) N 2

P (105) ξ1
xy (µm) ξ2

xy (µm) ξ1
z (µm) ξ2

z (µm)

0 2.6 1.4 9 9 50 50

1 2.8 1.2 9 9 50 50

2 2.3 1.7 9 9 50 50

3 2.6 1.4 11.25 6.75 62.5 37.5

4 2.6 1.4 6.75 11.25 37.5 62.5

5 2.6 1.4 9 9 37.5 37.5

Table 5.1: Parameters used for establishing the sensitivity to the initial

conditions. Case 0 is the fitted parameters to the experimental data, while

in the other cases, the parameters are varied by 25% from case 0.

Since, our results are determined from fitting P (θ), the accuracy is dependent upon the

sensitivity of the differential cross section to changes in Tcoll, as it determines the directions

at which the atoms scatter. Prior to the d-wave resonance, there is a region of s- and d-wave

interference that rapidly changes the angular dependence of the differential cross section. In

this region, the results are found to be least sensitive to the initial conditions, and the highest

accuracy can be obtained. This is illustrated in Fig. 5.4, which displays χ2 for the P (θ) fits

to the experimental data sets Tcoll = 113, 174, and 225 µK, against the collision energy of the

simulation. The cases 113 and 225 µK are outside this interference region, as indicated by

the χ2 minima being broader than that of the 174 µK case (which is within the region). For

the former cases, the broad minima results in larger confidence limits of the best fit collision

energy, and the results are sensitive to the initial conditions.

The least sensitive cases are found to be Tcoll = 146, 174, and 204 µK. For the 146 µK

data, varying the initial conditions leads to a ±10 µK change in the collision energy of the

best fit simulation, while at 174 and 204 µK this is reduced to ±5 µK.
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Figure 5.4: For the case 0 initial conditions, χ2 is shown against the col-

lision energy of the simulation, for three cases to illustrate the fitting pro-

cess is most accurate when the differential cross section is most sensitive

to changes in Tcoll. The cases Tcoll = 113 and 225 µK are in regions where

it is insensitive, hence, the minima are broad. However, the 174 µK case

is within a region where the differential cross section changes rapidly, due

to the s- and d-wave interference, hence, the minima is much sharper in

comparison.

5.3.2 The Role of Trap Dynamics

Here, we seek to establish the dependence of the angular scattering distribution on Tcoll

through mechanisms other than the dependence of the phase shifts, i.e., the differential cross

section. We know from Sec. 4.2.3 that increasing the collision energy while retaining the

same differential cross section, has a little effect the number of scattered atoms. This is

easily realized when considering the collision probability, which contains the product vr∆t.

Qualitatively speaking, ∆t is inversely proportional to vr, thus, this product is constant.

Our main concern is the time scales of the collision and the trap in the radial direction.

Ideally, the trap time scale should be much greater than that of the collision, otherwise, when
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5.3. Sensitivity to Initial Conditions

the system is imaged quarter the radial trap period after the clouds overlap, the collision may

not yet be complete (the clouds still spatially overlap). This can be seen in Fig. 5.5, which

shows the fraction of total scattered atoms to the total number of atoms (N 1
sc +N 2

sc) /NP (the

superscript indicates which cloud). Below Tcoll = 100 µK the number of scattered atoms

decreases with decreasing Tcoll. However, in this region, the total cross section increases (see

Fig. 4.1) with decreasing Tcoll, which is expected to cause an increase in scattered atoms.

( N
1 s
c
+

N
2 s
c

) /
N

P

T Sim
coll (µK)

100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

Figure 5.5: The total fraction of scattered atoms for the fitted set of initial

conditions (Case 0) against the collision energy of the simulation. The

solid black line gives scattered fraction for both groups (i) and (ii), while

the dashed black line gives group (i), and dashed-dotted black line gives

group (ii). The groups are defined as in Sec. 4.2.3: (i) scattered atoms that

have not undergone any subsequent collisions, (ii) scattered atoms that

have undergone additional collisions, including all collision partners.

In the extreme case, where the collision time scale is much greater than the trap time

scales, atoms that scatter at the beginning of the collision, may undergo multiple trap oscil-

lations in the radial direction. This is not ideal, as the angular distribution of scattered atoms

becomes difficult to measure. Provided we concern ourselves with collision energy regimes

Tcoll > 100 µK, these issues will be less of a concern, as increasing Tcoll (increasing the

relative speed of the clouds) diminishes the collision timescale.

65



Chapter 5. Comparison to the Ultracold-Atomic Collider Experiment

For the cases we wish to consider, the 146 µK case has a small dependence on these

issues, while for 174 and 204 µK, these issues have negligible effect, i.e., the dependence on

Tcoll is solely through the differential cross section.

5.3.3 Summary of Important Results

We have seen that the experimental scattering patterns for Tcoll = 146, 174, and 204 µK are

insensitive to the initial conditions, hence, suitable for us to focus our attention upon. These

cases all occur in a regime where there is significant s- and d-wave interference, with the

phase shifts varying rapidly with collision energy.

We have also seen that the results are largely insensitive to the collision energy of the

simulation, except through the collision energy dependence of the differential cross section.

5.4 Results

In this section we present the main results of the chapter. We first apply the DSMC method

to provide a quantitative model of the experiments, using the partial-wave phase shifts pre-

dicted by Paul Julienne. Our results show significant disagreement between the theoretical

and experimental results suggesting that the theoretical phase shifts are inconsistent with

experiment. From our simulations, we infer that the location of the d-wave resonance is

significantly lower than Paul Julienne’s, and more recently, Eite Tiesinga’s predictions (see

Sec. 5.1). We also use these simulations to investigate the role of the many-body dynamics

in the experimental data, and show that a simple differential cross section model is inappro-

priate for providing a quantitative model of this experimental regime.

Motivated by the inadequacy of the current two-body predictions, we establish a model

differential cross section to simulate experiments, and quantitatively determine the partial-

wave phase shifts at Tcoll = 174 µK.
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5.4.1 Comparison using Paul Julienne’s Phase Shifts

Here, we compare our DSMC simulations to the experimental results of Thomas et al. [32],

where the simulations use the s- and d-wave differential cross section

dσ

dΩ
=

4~2

m2v2
r




s wave︷ ︸︸ ︷
4 sin2 δ0 +

d wave︷ ︸︸ ︷
25 sin2 δ2

(
3 cos2 θ − 1

)2

+ 20 cos (δ0 − δ2) sin δ0 sin δ2

(
3 cos2 θ − 1

)
︸ ︷︷ ︸

s- and d-wave interference


 , (5.4)

discussed in Sec. 4.1.1, where the predictions of Paul Julienne are used for the collision

energy dependence of the phase shifts (see Sec. 5.1), and the initial conditions given in

Tab. 5.2. We only seek comparison to the cases Tcoll = 146, 174, and 204 µK, since, as

discussed in Sec. 5.3 for these cases, we have the highest sensitivity to the phase shifts, and

least sensitivity to the initial conditions. It is also shown that the results are dependent on the

collision energy of the simulation only through the differential cross section.

N 1
P (105) N 2

P (105) ξ1
xy (µm) ξ2

xy (µm) ξ1
z (µm) ξ2

z (µm)

2.6 1.4 9 9 50 50

Table 5.2: The parameters, determined from fits to the experimental data,

used for the initial distribution [Eq. (4.8)] of the DSMC simulations in this

chapter.

The column densities of the experiment, theoretical predictions, and best match to exper-

iment are shown in Fig. 5.6. The inadequacy of the theoretical prediction is most obvious in

the angular scattering probability shown in Fig. 5.7, which also shows the excellent agree-

ment between the experiment and best fits.

These results indicate a discrepancy of ≈ 40 µK between the experimental measure-

ments, and the predictions of Paul Julienne (similarly Eite Tiesinga), suggesting the d-wave

resonance is shifted from the current theoretical predictions. However, our approach is not

sufficient to determine this, as adjusting collision energy is effectively performing a one di-

mensional search through the s- and d-wave phase shifts constrained into a relationship by

Paul Julienne’s calculation. However, this basic idea can be adjusted to make a more com-

prehensive model, in which, the s- and d-wave phase shifts at the collision energy are free

parameters. We will return to this in Sec. 5.4.3.
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146 µK

174 µK

204 µK

146 µK

174 µK

204 µK

190 µK

205 µK

245 µK

Experiment Theory Best Fit

250 µm

Figure 5.6: The experimental column densities are displayed in the first

column, while the theoretical predictions (DSMC simulations furnished

with the two-body calculations of the s- and d-wave phase shifts) are

displayed in the second column. The collision energy of the experi-

ment/simulation is displayed in the bottom right corner of each image.

The best matches to the experimental data is to the right of the experimen-

tal data in the third column. These show a discrepancy of 30 − 40 µK

between the collision energy of experiment and of theory. The confidence

limits for the collision energy of the best fit for the 146 µK case is ±10

µK, while ±5 µK for the other two cases.
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Figure 5.7: P (θ) for experiment (blue), theoretical prediction (green), and

best fit (red) for the cases: (a) Tcoll = 146 µK, (b) 174 µK, and (c) 204 µK.

We only show the experimental data points that are included in the fitting

procedure, while the simulated lines include all points. The error bars for

the experimental data are determined from the best fit using the method

given in Sec. 5.2.2. The experimental data is normalized to the best fit

(Sec. 5.2.1), and the theoretical prediction is normalized to the same value

over the range of experimental data points, for the purpose of comparison. 69
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5.4.2 Necessity of the DSMC method

Inadequacy of Differential Cross Section Analysis

The simple two-body approach of using the s- and d-wave differential cross section [Eq. (5.4)]

itself as the fitting model for P (θ) does not provide a quantitative model of the experimen-

tal data, as the many-body effects are significantly large. For example, Fig. 5.8 compares

the best fits of the DSMC simulation (as discussed in Sec. 5.4.1), and the differential cross

section, to the experimental data for the case of Tcoll = 174 µK. Notably, using this simple

model increases the discrepancy found between the experimental collision energy and best

match using Paul Julienne’s prediction for the phase shifts (see Sec. 5.4.1) from ≈ 40 µK to

≈ 60 µK.

In the following, we examine the underlying physics that makes the differential cross

section analysis inapplicable. Finally, we discuss the changes that would be required for the

collider experiments to operate in a regime where differential cross section analysis could be

used.

Many-Body and Finite Size Effects

Since, the trap dynamics are mostly accounted for in the procedure to determine the angular

scattering probability (see Fig. 5.2, and Sec. 5.2.1), and the results are only dependent upon

the collision energy through the differential cross section for Tcoll > 100 µK (see Sec. 5.3.2),

it is primarily atoms undergoing multiple collisions, and the finite sizes of the clouds, which

cause the differential cross section analysis to be inapplicable. Indeed, the differential cross

section analysis would be exact provided all the collisions occurred at the same point in space

and time (i.e., no finite size effects), and the scattered atoms did not undergo any subsequent

collisions.

The most important many-body effect, is atoms undergoing multiple collisions after the

initial outscattering collision. This can significantly change the trajectory of the outscattered

atoms, and causes asymmetries in the initial clouds to be resolved in P (θ) (e.g., see Fig. 5.7).

The second source is the finite sizes of the clouds. This causes collisions to occur over a range

of times and positions, which has the effect of broadening the collision halo.2

2Multiple collisions also broaden the collision halo.
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Figure 5.8: P (θ), for the case of Tcoll = 174 µK, is shown for experiment

(blue), the best fit of the differential cross section (green), and the best

fit of the DSMC simulations of Sec. 5.4.1. This demonstrates that the

differential cross section is a poor model for this experimental regime.

The differential cross section model yields a best fit collision energy of

228 µK. We do not include the confidence limits, as the requirement that

the model is appropriate for the "goodness-of-fit" in Sec. 5.2.2 is no longer

fulfilled.
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Minimizing the Many-Body and Finite Size Effects

The effects that cause the differential cross section to be a poor model for the fit, can be

negated by changing the experimental set up in several ways. First, reducing the density of

the clouds, so that, fewer collisions occur. How much of a reduction, and how to best achieve

this, is given qualitatively by Fig. 4.9 and Eq. (4.18),

Nsc =
N 2

P

4π
mβωxωyσ0. (5.5)

Equation (5.5) is not accurate for Nsc/NP > 0.05, but it qualitatively illustrates how a

reduction in the density, reduces the scattering fractions. In Fig. 4.9, our results showed that

for scattering fractions less than 15%, relatively few second collisions occurred.

The finite sizes of the clouds, become less important with increasing distance between

the atoms when imaged and the collision site. Hence, one can use a weaker trap in the radial

direction, or turn the trap off during, or after, the clouds collide. However, the imaging

capabilities of the experiment must be kept in mind, since the density of the scattered atoms

decreases as the collision halo expands.

5.4.3 Two-Parameter Model for Fitting to the Experiments

As we have shown in the previous sections, the current theoretical model for the partial-

wave phase shift collision energy dependence is not in agreement with experiment, thus, we

are motivated to give quantitative measures of the phase shifts from the experimental data.

Here, we first introduce a model appropriate for performing such measurement, and then,

give quantitative results of the experimental data at the collision energy of Tcoll = 174 µK.

The Model Differential Cross Section

Determining the simulation collision energy that most closely matches the experimental re-

sult is not a sufficiently general description to determine the phase shifts, since, this is a

single parameter search (in terms of collision energy), and does not allow the s- and d-wave

phase shifts to vary independently.

Here, we will concentrate on the Tcoll = 174 µK case, since the angular scattering prob-

ability is most sensitive to changes the phase shifts, giving the most accurate results. In

the simulation, the collision energy of the clouds is taken to be T Sim
coll = 174 µK, and we

introduce a model, where all collisions occuring with Tcoll ≤ 0.95T Sim
coll = 165.3 µK, are

described by the low energy s-wave (isotropic) differential cross section. For collisions oc-

curring with Tcoll > 0.95T Sim
coll , we use the s- and d-wave differential cross section, with the
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constant phase shifts δ̄0 and δ̄2 (the fitting parameters). I.e.,

dσ

dΩ
=





8πa2
sc T ijcoll ≤ 0.95T Sim

coll ,

D
(
θ, δ̄0, δ̄2

)
T ijcoll > 0.95T Sim

coll ,
(5.6)

where D indicates the s- and d-wave differential cross section [Eq. (5.4)], and ij indicates

the colliding pair of test particles. The rational of model (5.6) is as follows: It ensures

that low-energy collisions (e.g., collision within each cloud) occur at the background low-

energy cross section. However, a majority of high-energy collisions between the clouds

occur with T ijcoll ≈ T Sim
coll , and these contribute most significantly to the angular scattered

distribution. Thus, for these collisions (T ijcoll > 0.95T Sim
coll ), we take the phase shifts to be

constant parameters, which form the basis of our fitting procedure.

We have already established that a significant number of atoms undergo multiple inter-

collisions, which occur at various T ijcoll (most are close to T Sim
coll ). Thus, we test this model

by comparing it to the simulated results of Sec. 5.4.1 for the cases of Tcoll = 174, and 205

µK, which include the full collision energy dependence of the phase shifts. These are the

collision energy of the the simulations undertaken here, and the best fit from that section for

the experimental results of 174 µK (e.g., see Fig. 5.8), respectively. This comparison is done

by taking
{
δ̄0, δ̄2

}
=
{
δ0

(
T icoll

)
, δ2

(
T icoll

)}
, (5.7)

for the model differential cross section 5.6, where T icoll refer to the two cases above, and

the Tcoll dependence is the same as that used in Sec. 5.4.1 (i.e., Paul Julienne’s predictions).

The Fig. 5.9 shows good agreement for this comparison, indicating our choice of model is

sufficient to describe the regime of interest for the collider.

Best Fits and Corresponding Phase Shifts

By performing simulations for a range of δ̄0 and δ̄2, the best fits to the experimental data (see

Fig. 5.10) are given by the phase shifts in Tab. 5.3. We find that the partial-wave predictions

of Paul Julienne, and Eite Tiesinga in Sec. 5.1, give very good agreement for the s-wave

phase shift, however, the d-wave phase shift is significantly different.

5.5 Conclusion

Our DSMC simulations have shown there is a serious discrepancy between theoretical pre-

dictions for the phase shifts of 87Rb in the 200 µK regime. By developing an adjustable
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Figure 5.9: The red lines indicate the simulated results of Sec. 5.4.1 for

the cases of T Sim
coll = 174 (a), and 205 (b) µK. These results use the full

collision energy dependence shown in Fig. 4.1. The blue lines are given

by the s-wave cutoff model of this section. The good agreement shows

that this simplified model is sufficient.
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Figure 5.10: Comparison of the best fit of Sec. 5.4.1 (green), and the

s-wave cutoff model of this section (red), to the experimental data for

Tcoll = 174 µK (blue). We only plot P (θ) over the considered range of

the experimental P (θ), to highlight the quality of the agreement. The

least-squares residual for case (a) is 0.0080, while for case (b) it is 0.0067.
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TExpt
coll δFit

0 δFit
2 δA0 δA2 δB0 δB2

174 −0.97± 0.08 0.52± 0.02 −0.97 0.23 −0.97 0.23

Table 5.3: Here the fitted partial-wave phase shifts δFit
i , and phase shifts

calculated by Eite Tiesinga (δAi ), and Paul Julienne (δBi ), are shown, where

i = {0, 2}. At this collision energy (Tcoll = 174 µK), the two theoreti-

cal calculations agree to two significant figures. We find good agreement

with the s-wave phase shift. However, the d-wave phase shift disagrees

significantly.

model for the phase shifts, we have determined that this discrepancy lies mostly in the deter-

mination of the d-wave phase shift, and we have been able to provide a measure of the phase

shifts at 174 µK to an accuracy that should be a constraint in future two-body calculations to

improve our knowledge of the inter-atomic potentials.

The techniques that we have developed and applied, demonstrate that the ultracold-

atomic collider (with appropriate theoretical analysis) can provide a tool for precision colli-

sion spectroscopy.
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Chapter 6

Extension of DSMC to Include Quantum
Many-Body Statistics

In this chapter, we discuss extending the DSMC method to the quantum many-body descrip-

tion given by the quantum Boltzmann equation. First, we derive the quantum many-body

collision probability, and then, show how the algorithm presented in Chapter 3 is modified to

accommodate this new collision probability. Then, we discuss the problems associated with

constructing f (p, r, t) during runtime, which is of crucial importance to the accuracy of

the simulation. We suggest several new constructions of f (p, r, t) to remedy this currently

unsolved problem.

6.1 Derivation of the Quantum Collision Probability

Jackson and Zaremba [18] showed that the collision probability may be derived by treating

the test particles as an accepted set of samples for the Monte Carlo integration of the collision

rate per unit volume,

R (r, t) =
1

m

∫
d6u

h6

∫
dΩ

dσ

dΩ
|p1 − p| ff1 (1± f ′) (1± f ′1) , (6.1)

where d6u = d3p d3p1. Deriving the collision probability in this fashion directly links the

collisions of the test particles to the collision integral [Eq. (2.4)], and gives insight as to

how the test particles function to solve the quantum BE. It also shows how the quantum

many-body statistics are incorporated into the collision probability without resorting to ad

hoc arguments. This result provides a useful framework to discuss the quantum extension of

DSMC in detail. We now follow their methodology, and, where relevant to our purposes, we

discuss details and make adjustments.
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Rewriting Eq. (6.1) as

R (r, t) =

∫
d6u

h6
w (u, r, t) g (u, r, t) , (6.2)

where u is a point in the six-dimensional momentum hyper-space, and the weight function

is

w (u, r, t) ≡ ff1, (6.3)

and

g (u, r, t) =
1

m

∫
dΩ

dσ

dΩ
|p1 − p| (1± f ′) (1± f ′1) . (6.4)

If the integrand is non-zero on the domain
[
−pmax

2
, pmax

2

]
for each of the six momentum

components, we may approximate the integral by Monte Carlo integration with the following

process: randomly select a point ui in the non-zero domain of the integrand and randomly

select a numberwi in the range [0, wmax], wherewmax is the maximum of the weight function.

If wi < w (ui, r, t) then the point ui is accepted. By repeating this N times, the approximate

solution to the integral is given by

R (r, t) ' (pmax)6wmax
1

N

Nacc∑

i=1

g (uacc
i , r, t) , (6.5)

where the summation is over only the accepted points uacc
i , hence, Nacc ≤ N is the number

of such accepted points. If g (u, r, t) = 1, then, the integral would equate to the square of

the density, i.e.,

n (r, t)2 =

∫
d6u

h6
ff1, (6.6)

and thus, we may write

n (r, t)2 ' (pmax)6wmax
Nacc

N
. (6.7)

Using this, we can rewrite Eq. (6.5) as

R (r, t) ' n (r, t)2 1

Nacc

Nacc∑

i=1

g (uacc
i , r, t) . (6.8)

The momenta, p and p1, in the set of Nacc accepted points u = (p,p1) are distributed

according to f (p, r, t). Since, the test particles are also distributed according to f (p, r, t),

they can form the set of accepted Monte Carlo samples. However, there are a limited number

of test particles representing f (p, r, t), demanding we take a reasonable cell volume about r

to ensure enough test particles to implement Eq. (6.8). Two important questions we address

later are:

(i) What considerations are important in deciding the cell volume?
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(ii) What value of n (r, t) should be used for a finite cell volume?

Using Eq. (6.8), the number atoms which undergo a collision within the cell volume ∆V

about the point r in the time interval t to t+ ∆t is approximately

Ncoll ' n (r, t)2 1

Nacc

Nacc∑

i=1

g (uacc
i , r, t) ∆V∆t, (6.9)

Here we have assumed that the density across the volume is constant, thus, regardless of the

approach taken for questions (i) and (ii) we may write n (r, t) = 2αNacc/∆V , where we

have taken the number of atoms in that volume to be 2Nacc (i.e., we have used the 2Nacc test

particles to provide Nacc samples of p, and Nacc samples of p1). Using this, and the fact that

the number of test particles which undergo a collision is Ñcoll = Ncoll/α, since each atom is

represented by 1/α test particles, one arrives at

Ñcoll ' 2n (r, t)
Nacc∑

i=1

g (uacc
i , r, t) ∆t. (6.10)

Thus, we may associate a collision probability Pij , for the pairs of test particles within the

volume,

Pij = n (r, t) g (uacc
i , r, t) ∆t = n (r, t) vrσeff∆t, (6.11)

where the factor of 2 has been dropped as two test particles participate in the collision, and i

and j refer to the individual test particles of a given pair. The effective total cross section is

given by

σeff =

∫
dΩ

dσ

dΩ
(1± f ′) (1± f ′1) . (6.12)

We now return to the questions (i) and (ii) posed earlier: We have seen that regardless

of the choices for the cell volume and n (r, t), we arrive at the same collision probability

for testing Nacc = n (r, t) ∆V/2α collisions. Thus, the choices only have an effect on how

well n (r, t), f ′, and f ′1 are represented, and hence, the accuracy of the simulation. Here,

we consider three different choices: (1) the original DSMC method, (2) the NNC scheme,

and (3) a scheme we call locally sampled density (LSD). The relevant characteristics of the

schemes are shown in Tab. 6.1. Before we introduce the LSD scheme, it is useful to discuss

the first two.

In the original DSMC method, ∆V = ∆Vc, and the density is the average density of

the cell nc. The current form (Pij given by Eq. (6.11) and Nacc = Nc/2) corresponds to

Mc = N2
c /2 collisions. In light of the discussions in Sec. 3.3.3, we know that this derivation

should be modified, such that, Mc = Nc (Nc − 1) /2, which is done by now taking Nacc =

(Nc − 1) /2. Thus, this choice reduces Eq. (6.11) to exactly that of which is obtained by
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Scheme ∆V n (r, t)

Original DSMC ∆Vc nc

NNC 2α/nc nc

LSD 2α/n (rcom, t) n (rcom, t)

Table 6.1: Choices for ∆V and n (r, t) for the different schemes.

Bird [35], Eq. (3.10), with the appropriate scaling for Eqs. (3.12), and σ (vr) = σeff . The

NNC scheme can be understood as restricting ∆V to the volume, which on average for the

collision cell, contains only two test particles, however, retaining the density to be nc.

We have developed the LSD scheme, which restricts ∆V to contain two test particles

using the (yet to be determined) density evaluated at the centre-of-mass n (rcom, t). This

density could be obtained via an ansatz for the density or the interpolation of all test particles

in the simulation or in the cell itself. However, if n (rcom, t) is determined from the test

particles, it can reintroduce the finite number fluctuation issues discussed in Sec. 3.3.3, and

we find for the classical DSMC algorithm, this disadvantage is significant enough that it

should not be used. The fluctuation issues can, ofcourse, be circumvented by using more

test particles. However, we shall see later in Sec. 6.3 that the quantum extension of DSMC

requires large cells for many test particles, which causes nc to be a very coarse grained

representation. Here, the LSD scheme is expected to be most useful, as it can remove this

coarse graining, giving potentially more accurate simulations.

6.2 Adjustments to the DSMC Algorithm

Here, we discuss how the addition of the quantum many-body component changes the clas-

sical DSMC algorithm we presented in Chapter 3.

6.2.1 Scaling and LATS

Scaling of the collision probability and number of tested collisions is discussed in Sec. 3.3.3.

Pij → P̃ij =
Pij
Λ
, (6.13a)

Mc → M̃c = McΛ, (6.13b)

is now given with

Λ =
dMc∆t [n (r, t) vrσeff ]maxe

Mc

. (6.14)
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For computational simplicity and performance, we take

[n (r, t) vrσeff ]max = nmax [1 + εfmax]2 [vrσ (vr)]max , (6.15)

where nmax and fmax are the maximum values within the cell, and ε = 1 (0) for bosons

(fermions). Thus,

P̃ij =
Mcn (r, t) vrσeff∆t⌈

Mc∆tnmax [1 + εfmax]2 [vrσ (vr)]max

⌉ . (6.16)

Finally, for the LATS scheme, the relevant collision times of a cell are now given by

τ coll
c = n (r, t) vrσeff

−1
, (6.17a)

τmax
c =

{
nmax [1 + εfmax]2 [vrσ (vr)]max

}−1
. (6.17b)

6.2.2 Testing and Implementation of Collisions

The evaluation of P̃ij is more involved, due to the addition of the integral

σeff =

∫
dΩ

dσ

dΩ
(1± f ′) (1± f ′1) . (6.18)

During runtime, this integral must be evaluated, which, analytically, is almost always in-

tractable, and the analytical solutions can often be infeasible to implement numerically.1

Then, if the test particles collide, they scatter at angles determined by dσ
dΩ

(1± f ′) (1± f ′1).

We can combined these procedures into one, by employing the Monte Carlo method of staked

probabilities. This gives an approximate solution to Eq. (6.18), while determining the scat-

tering angles of the particles if they collide. The collision probability is taken to be

P̃ij =
2π

Ns

Ns∑

k=1

P̃Ωk
ij , (6.19)

where Ns is the number of samples, and

P̃Ωk
ij =

n (r, t) vr∆t

Λ

[
dσ

dΩ
(1± f ′) (1± f ′1)

]Ωk

, (6.20)

with [x]Ωk indicating that x is evaluated at the randomly selected angles Ωk. The collision

goes ahead if R < P̃ij , where R is a random number uniformly distributed between 0 and 1,

and the scattering angles are given as Fig. 6.1 demonstrates.

1For example, Eq. (6.18) can be solved for the equilibrium Bose-Einstein distribution, however, the solution

is an infinite sum.
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P̃Ω1
ij P̃Ω2

ij P̃Ω3
ij P̃Ω4

ij P̃Ω5
ij

No collision

0 1R PijP̃ij

Figure 6.1: Stacked probabilities: If R ≥ P̃ij , then no collision goes

ahead. Otherwise, the scattering angles are given by Ωk, such that,
∑k−1

l=1 P̃
Ωl
ij ≤ NsR/2π <

∑k
l=1 P̃

Ωl
ij . In the case illustrated here, a col-

lision goes ahead, and the scattering angles are given by Ω4.

Methods that are not derived as in Sec. 6.1, usually include the quantum many-body

statistics by selecting only one set of angles Ω1, according to the differential cross section.

Then, whether or not the collision goes ahead, is determined by testing a collision probability

Pij ∝ n (r, t)σTvr∆t [(1± f ′) (1± f ′1)]
Ω1 , (6.21)

where σT =
∫

dσ
dΩ
dΩ. This is expected to be sufficient for large numbers of test particles,

however, when it the description is insufficient, one will have to resort to the above.

6.3 Runtime Constructions of f (p, r, t)

How f (p, r, t) is established for the runtime evaluation of σeff , required to implement the

collision probability, is of crucial importance to the accuracy of the simulation. Our initial

investigations have shown that, where possible, an ansatz for f (p, r, t) provides a more accu-

rate and efficient simulation. For example, Bonasera et al. [54] used a parameterized Fermi-

Dirac distribution, and Lopez-Arias and Smerzi [80] used a parameterized Bose-Einstein dis-

tribution. However, implementing an ansatz is not always feasible, particularly for systems

away from equilibrium, and one must resort to extracting the full six-dimensional distribu-

tion f (p, r, t) from the test particles themselves. We have found that, with a simple imple-

mentation, the equilibrium state of a quasi-degenerate Bose gas is not always held, and the

system evolves to a new equilibrium state, which is more classical in nature, i.e., approach-

ing the Maxwell-Boltzmann distribution. This was also observed by Garcia and Wagner

[81]. The equilibrium state the system evolves to depends on the discretization parameters,

and requires optimization for the particular case under consideration. This is challenging for
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nonequilibrium systems, e.g., for the collisions of ultracold degenerate clouds, for which, the

optimized parameters for the initial and final states can be different. Ideally, the algorithm

should be robust and stand alone, or the discretization effects well understood and easily ac-

counted for. However, this is largely an unexplored problem, with the exception of the study

of Garcia and Wagner [81], and is often overlooked by people working in this area.2 Here,

we do not solve this problem, but present several possible avenues of investigations.

6.3.1 Analytic Result Required for Test of Collision Rate

Until now, the tests we performed on our (classical) DSMC algorithm were largely concerned

with giving the correct collision rate (see Sec. 4.2). This is a necessary requirement for the

accuracy of the simulation, but not sufficient in the quantum many-body context. The testbed

distribution for the collision rate is a degenerate case of the Bose-Einstein distribution

f (p, r) =
1

exp {β [H (p, r)− µ]} − 1
=
∞∑

j=1

exp {jβ [µ−H (p, r)]} , (6.22)

where H is the Hamiltonian of the system. Using the Gaussian expansion, we can solve for

the collision rate [Eq. (6.1)], yielding

R (r) =
1

2
√

2~6

σ1

m

(
m

πβ

) 7
2
∞∑

j,k=1

exp {β [j + k] [µ− U(r)]}×

{
1

jk

[√
j + k

jk
+ 2

∞∑

l=1

√
j + k + l

(j + l) (k + l)
exp {lβ [µ− U(r)]}

]
+

∞∑

l,n=1

√
j + k + l + n

(j + l) (k + l) (j + n) (k + n)
exp {β [l + n] [µ− U(r)]}

}
, (6.23)

where we have assumed a constant differential cross section that yields the total cross section

σ1. This result was also found by Lopez-Arias and Smerzi [80]. For a harmonic potential,

2For methods based on molecular dynamics like closest-approach collisions, which the closest-approach

distance does not scale with NT, it is unclear whether one should be concerned with this, since these methods

ultimately do not solve the quantum BE (assumes point particle collisions).
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integrating over each position space direction is relatively simple, and gives

R =
1

ωxωyωz

1

~6

mσ1

π2β5

∞∑

j,k=1

exp [β (j + k)µ]×

{
1

jk

[
1

jk

1

(j + k)
+ 2

∞∑

l=1

1

(j + l) (k + l)

1

(j + k + l)
exp [lβµ]

]
+

∞∑

l,n=1

1

(j + l) (k + l) (j + n) (k + n)

1

(j + k + l + n)
exp [β (l + n)µ]

}
. (6.24)

These expressions can be evaluated numerically, and give us a benchmark to test the initial

accuracy of the DSMC simulation. However, initially the agreement between the analytical

collision rate and the numerical collision rate determined by DSMC can be very good, but

when the system is evolved in time, it can still progressively evolve away from the initial

distribution. This must be checked for, in conjunction with the collision rate.

6.3.2 Three Constructions

For systems away from equilibrium, it is not always feasible to use an ansatz for f (p, r, t),

thus, one must resort to establishing f (p, r, t) from the test particles. We present three

constructions of f (p, r, t), the first being the typical construct found in literature, and the

other two, suggestions we make to combat issues discussed in due course. We also discuss

the mechanism that causes the system to evolve away from the initial state.

Construction (c1):

The simplest construction of f (p, r, t) is the mean density of the cell multiplied by a nor-

malized momentum distribution obtained from the test particles within the cell Kc (p, t),

fc (p, t) = ncKc (p, t) , (6.25)

where ∫
d3p

h3
Kc (p, t) = 1. (6.26)

Kc (p, t) can be determined binning the test particles into a grid of cells in momentum space

with width ∆pi in the i = (x, y, z) direction. This can be performed in several ways, e.g.,

the particles can be mapped to the nearest grid point (the so called nearest grid point or
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zeroth order scheme), and the resulting distribution convoluted with a Gaussian function.

The convolution theorem allows the convolution to be easily performed in Fourier space,

however, performing a Fast Fourier Transform (FFT), and then, the inverse-FFT for each

cell is computationally taxing. We find that similar accuracy can be achieved with the higher

order interpolation schemes of Ref. [78], and in most cases, for less computational effort.

Construction (c2):

For construction (c1), Kc (p, t) requires Nc to be large for a sufficiently accurate description,

hence, large ∆Vc, causing the density to be coarsely grained. The first new construction we

suggest, is to use the LSD scheme for the density,

fc (p, t) = n (rcom, t)Kc (p, t) . (6.27)

n (rcom, t) can be established by the convolution or interpolation methods as discussed for

Kc (p, t) above. This will give a more accurate description of the density, but, as we noted

earlier, this can reintroduce the fluctuation issues discussed in Sec. 3.3.3. However, we note

that the form of construction (c1) [Eq. (6.25)] does not remove these issues in the quantum

many-body description, since the product

n (r, t) (1± f ′) (1± f ′1) , (6.28)

in the collision probability is not linear in n (r, t). Furthermore, the fluctuation issues may

be less significant, as we require large Nc for Kc (p, t).

Construction (c3):

A careful study is required to determine whether the coarse graining of construction (c1), or

fluctuation issues in both constructions (c1) and (c2), will be important. However, our initial

investigations suggest that the fluctuations are most important in both cases. Furthermore,

this causes the two problems: (a) accurately representing the collision rate, and (b) the pro-

gressive evolution to another state, to be coupled. This motivates us to extend the methods

of Sec. 3.3.3 to remove the fluctuation issues, and uncouple the problems. For Eq. (6.25),

Eq. (6.28) reads

nc ± n2
c [Kc (p′, t) +Kc (p′1, t)] + n3

cKc (p′, t)Kc (p′1, t) , (6.29)
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thus, the collision rate features N2
c , N3

c , and N4
c . For Poissonian distributed fluctuations, one

can show

Nc (Nc − 1)
∗

= Nc
2
, (6.30a)

Nc [Nc (Nc − 3) + 1]
∗

= Nc
3
, (6.30b)

Nc {Nc [Nc (Nc − 6) + 11]− 6}∗ = Nc
4
, (6.30c)

where the asterisks indicates we have taken into account that the DSMC simulation neglects

cells with single occupation. Thus, the fluctuation affects can be removed by taking Mc =

Nc/2, and by replacing Eq. (6.29) with

ϑ (Nc − 1)± ϑ2 [Nc (Nc − 3) + 1] [Kc (p′, t) +Kc (p′1, t)] +

ϑ3 {Nc [Nc (Nc − 6) + 11]− 6}Kc (p′, t)Kc (p′1, t) , (6.31)

where ϑ = α/∆Vc, giving our second suggested construction. In detail, this gives

Pij = vr∆t

∫
dΩ

dσ

dΩ
ϑ [(Nc − 1)± ϑ [Nc (Nc − 3) + 1] [Kc (p′, t) +Kc (p′1, t)] +

ϑ2 {Nc [Nc (Nc − 6) + 11]− 6}Kc (p′, t)Kc (p′1, t)
]
. (6.32)

We have neglected the fact that Kc (p′, t) and Kc (p′1, t) are also determined from the test

particles, hence, have correlated fluctuations. The fluctuations may not have a significant

effect, and they may be negated by the scheme which established Kc (p, t).

Mechanism for Unphysical Evolution

We now discuss the mechanism that causes the system to progressively evolve away from

the initial equilibrium state. This artificial evolution is due to the transfer of information

in the collisions of test particles. The NNC scheme, which was introduced in a classical

context, combats transfer of information of spatially separated collision partners, however,

with the inclusion of quantum many-body statistics [(1± f ′) (1± f ′1)], there is now another

mechanism which destroys the correlations. We are concerned with the final states to which

the test particles scatter, which is determined by dσ
dΩ

(1± f ′) (1± f ′1). Since, the momentum

distributions are determined from all the test particles within the cell, we are effectively

spreading this information across the entire cell, furthermore, if the distributions are not well

determined, this can render the (1± f ′) (1± f ′1) terms ineffective. The density plays a role,

but the momentum distributions are less accurately determined. Such problems have been

seen by our initial investigations and by Garcia and Wagner [81].
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These problems we have discussed with the constructions, and this artificial evolution,

merit a careful study to determine the weaknesses of quantum DSMC algorithms, or give the

solutions, e.g., the use of an ansatz for f (p, r, t) circumvents these problems. This study

extends beyond the scope and aims of this work. Our main motivation for including this

chapter, is as a record of work undertaken, and to provide a platform for future work on the

quantum BE.
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Chapter 7

Conclusion and Outlook

In this work, we have presented a DSMC method for simulating the dynamics of nondegen-

erate ultracold gases. A motivation for our work was to describe experiments in which two

clouds were collided at high relative velocity. In order to simulate this highly nonequilib-

rium regime, we have adopted several modern enhancements of the DSMC algorithm (i.e.,

locally adaptive time steps and nearest-neighbor collisions) introduced in other fields but not

previously used for cold-atom simulation. We have verified that our algorithm is accurate

by comparison to a range of analytic results and simplified models. We have also provided

some benchmarks of the performance of our algorithm against traditional DSMC to quantify

the computational efficiency.

In order to quantitatively describe the collision experiments, we have included the full

energy dependence of the s- and d-wave scatterings in the differential cross section. We have

presented examples of the scattered distributions for the regime of experiments revealing the

d-wave shape resonance. We have also considered the long-time dynamics of the colliding

clouds, allowing them to recollide many times in the trap, observing how they approach

equilibrium. Our work suggests that this might be a fruitful system for future experimental

studies to test the accuracy of the Boltzmann equation and to better understand thermal-

ization. We also find a discrepancy between the experimental measurements of Thomas et

al. [32], and the two-body calculations of that work and Eite Tiesinga Sec. 5.1, in particular,

the phase shifts best fit the experimental data at lower collision energies, which are ≈ 40 µK

lower. Our results suggest that this shift occurs mainly in the d-wave phase shift and that the

s-wave collision energy dependence is accurate.

A future application of this work will be to produce a complete dynamical finite temper-

ature theory. Using a simple DSMC algorithm, Jackson and co-workers [16, 17, 18, 19, 20]

have already implemented the ZNG formalism [21]. In the future, our DSMC approach
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could be used to allow a similar extension to c-field formalism [82]. Having efficient proce-

dures for evolving the c-field equations that describe the low-energy condensed or partially

condensed part of the system [83, 84], the algorithm described in this thesis provides the ba-

sis for an efficient scheme for simulating the high-energy incoherent modes. In connection

with this, we have identified crucial problems in simulating the quantum BE with DSMC

techniques. Thus, with our solid understanding of the classical DSMC method, we have

suggested several avenues of investigation to remedy these issues.

Also, this work provides a theoretical basis for the next generation high-precision op-

tical collider currently in development by the Kjærgaard group at the University of Otago.

The work in this thesis has demonstrated the necessary many-body simulation techniques to

link the experimental observations to the two-body theory. This may lead to a better under-

standing of ultracold interactions, and complement the currently used techniques, such as,

Feshbach and photoassociation spectroscopy.
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