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Abstract

Ultra-cold spinor Bose gases present rich physics due to the special combi-
nation of superfluidity and magnetism in a quantum system. This system
was first realized in 1998 by confining a Bose-Einstein condensate in an
all-optical trap.

In this thesis, we consider the fluctuations of observable quantities in a
spin-1 Bose gas. Understanding how fluctuations arise due to the spin exci-
tations of the condensate is important because it offers an insight into how
measurement noise reveals the many-body physics of the system.

To begin, we present the mean-field and Bogoliubov theory of a uniform
spin-1 Bose gas subject to a constant magnetic field, describing the conden-
sate and its low-energy collective excitations.

We then develop a formalism to describe the fluctuations in a general
density-like observable. We start from the two-point correlation function
and cast it in the form of a generalised static structure factor determined
by the three Bogoliubov quasiparticle excitation branches. We derive ana-
lytic results for the fluctuation amplitudes and the temperature-dependent
static structure factors for observables of total density and the three spin
densities.

For all four magnetic phases, we analyse the spinor order parameter and
quasiparticle spectra while numerically mapping out the fluctuation ampli-
tudes and static structure factors for the total and spin density operators.

We describe the fluctuations in experimental measurements made within
finite cells, which is an important step to making meaningful predictions for
experiments. We consider cylindrical cells and gaussian cells as two limiting
cases. We apply this analysis to an experimentally realisable system of a
quasi-2D spinor gas in a harmonic trap, comparing extensive numeric results
with analytic limits.
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Chapter 1

Introduction

Ultra cold atoms have been an important proving ground for quantum mechanics for
almost 20 years. Starting in 1924 from Satyendra Bose’s serendipitous discovery of what
we now call Bose statistics [1], combined with the theoretical star-power of Einstein
[2], we fast forward to the landmark experiments of the mid-90s where the early theory
was brought to life and confirmed with the first cases of Bose-Einstein condensates
(BECs) using 87Rb [3], 23Na [4] and 7Li [5].

Over the last 15 years, cooling techniques have been refined and ever-tighter control
achieved in manipulating atomic samples with electromagnetic fields. The range of
atomic species that have been condensed has widened greatly, including atoms with
large magnetic moments like 52Cr [6], 164Dy [7], 162Dy [8] and 168Er [9], opening the field
to the study of the dipolar BECs with long-range anisotropic dipole-dipole interactions.
Meanwhile, advancements in trap design have opened the door to fully optical traps,
liberating the hyperfine spin levels and allowing the realization of multi-component
spinor condensates with 23Na [10, 11], 87Rb [12, 13] and 52Cr [14]. In Table 1.1 we
provide a review of the experimental timeline thus far in producing different BECs.

Spinor condensates offer a wide variety of rich physics, as testified by recent compre-
hensive reviews of the field [28, 29]. The multiple condensate components interact with
each other through the spin-dependent interaction, while the presence of a magnetic
field splits the hyperfine degeneracy. There is overlap with dipolar BECs since spinor
species also have magnetic moments. Symmetry considerations become essential, as
the spinor order parameter accesses spin-space symmetries, which in scalar conden-
sates were completely locked away. This new landscape of interactions and symmetries
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Chapter 1. Introduction

Year Scalar BEC Spinor BEC

F = 1 F = 2 F = 3

1995 23Na [4], 87Rb [3], 7Li [5]

1998 H [15] 23Na [10]

2000 85Rb [16]

2001 4He [17], 41K [18] 87Rb [12]

2003 133Cs [19], 174Yb [20] 23Na [11]

2004 87Rb [13]

2005 52Cr [6]

2007 39K [21], 170Yb [22]

2008 52Cr [14]

2009 40Ca [23], 84Sr [24, 25]

2010 86Sr [26], 88Sr [27]

2011 164Dy [7]

2012 168Er [9], 162Dy [8]

Table 1.1: Experimental time-line of achieving Bose-condensation for scalar and spinor
systems, with reference to the first experiments.

unfolds a veritable zoo of exotic spin textures, phase transitions, topological defects,
and spin excitations.

This new toolbox of magnetism and superfluidity is realizable in highly controllable
atomic systems, and has opened up the study of quantum properties of matter that
had previously been locked away inside bulky condensed matter systems.

2



1.1. BECs

1.1 BECs

1.1.1 Background

All particles can be divided into two types: bosons and fermions. The distinguishing
feature lies in a fundamental quantum property of particles, called “spin". Spin is
essentially the intrinsic angular momentum of a particle, with the classical analogy
being a particle spinning on its own axis. Quantum mechanically there is no spinning,
just the spin quantum number, F , which sets allowed states with spin components
mF = {−F,−F + 1, · · · , F} that follow the algebra of angular momentum.

Bosons are particles with integer spin; fermions are particles with half-integer spin.
They each display very different statistical behaviour. Fermions have many-body wave-
functions which are anti-symmetric which leads to them obeying the Pauli exclusion
principle - two identical fermions cannot occupy the same single-particle state simul-
taneously. Bosons have symmetric many-body wavefunctions and can thus occupy the
same single-particle state simultaneously. This property of bosons is what allows the
formation of a BEC.

The energy states for a dilute gas can be thought of as a ladder leading from the
ground state energy to higher and higher energies which become spaced closer and
closer together. If one takes a dilute gas of bosonic atoms and cools them, they will fall
down this ladder. As the gas gets very cold, the statistical distribution of energy changes
from the classical hot-gas Boltzmann distribution into the Bose-Einstein distribution.
At a temperature much higher than would be expected classically, Bose statistics makes
it favourable for atoms to drop into the ground state. In a large cloud of atoms, this
leads to macroscopic occupation of the ground state - a phase transition to a BEC
driven by quantum statistics. The ideal BEC is a spatially coherent matter-wave where
all atoms are in a single mode, with the many-body wavefunction a product state of
these single-particle states. Below the critical temperature, a BEC can be described by
a macroscopic order parameter.

1.1.2 Spinor BECs

A spinor BEC consists of atoms with a spin degree of freedom. Fig. 1.1 shows the
hyperfine splitting for 23Na and 87Rb, as was shown in Refs. [30] and [31] respectively.

3
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Figure 1.1: Hyperfine structure of 23Na and 87Rb ground states. In this thesis we focus
on the F = 1 manifold with its three mF sublevels.

The first spinor BEC to be realized experimentally was spin-1 23Na in 1998 [10], having
been theoretically predicted by Ho, Ohmi and Machida [32, 33]. As detailed in Table 1.1,
this was followed in subsequent years by BECs of spin-1 87Rb, spin-2 23Na and 87Rb,
and most recently by spin-3 52Cr.

In addition to exhibiting spatial coherence, a spinor condensate also displays a range
of spin orders, determined by the interactions and externally applied magnetic field.
Various aspects of the phase diagram and condensate dynamics have been explored
in experiments, particularly for the case of spin-1 where the atoms can access three
magnetic sublevels (e.g. see [34–42]). An important feature of this system is that it
exhibits a rich excitation spectrum with phonon and magnon branches [28, 29, 32, 33].
Phonons are density excitations analogous to classical sound waves, and are ubiquitous
in single-species scalar BECs. Magnons, however, are excitations of magnetization (i.e.
spin). These so-called ‘spin waves’ are a distinguishing feature of multi-component
BECs.
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1.2. Spinor Fluctuations

1.2 Spinor Fluctuations

The theory used to describe a BEC is mean-field theory. In this approach, we treat the
Bose gas as if each atom experiences the average (mean) field of all the other atoms.
When the system has macroscopic occupation of the ground state (i.e. a large num-
ber of atoms are condensate atoms), we can approximately describe the many-body
system with an order parameter. At this level of theory, one can predict mean values
of experimental measurements. In real experiments, each measurement follows the dis-
tribution of possible outcomes set by the full many-body wavefunction, which means
that individual measurements display fluctuations, seen as ‘noise’ in experimental data.
This noise might be seen as an impediment to confirming theoretical predictions, but
it actually reveals useful information which is not captured by mean-field theory.

To make theoretical predictions which account for fluctuations, we need to consider
the collective excitations about the condensate. These so-called ‘quasiparticles’ are the
low energy excited states of the Bose gas above the ground state BEC. The theoretical
framework that describes the collective excitations of the BEC is called Bogoliubov
theory, and it provides a good description of a Bose gas for temperatures well below
the condensation temperature.

For our fluctuation predictions to be relevant to experiments, we need to consider some
practical details of making a measurement. In an experimental system, measurements
are not point-like (i.e. with a definite position) but sample the volume contained by a
finite cell. This is due to having finite imaging resolution: the smallest possible mea-
surement cell is set by the point spread function of the imaging system and by the
finite pixel size of the camera used to collect the light signal [43–45].

When making measurements with finite cells, position correlations (where neighbouring
atoms are not independent) become important to consider, because typical cell sizes are
comparable to the correlation lengths of the system (on the order of a few microns). To
understand the correlations in the system, we introduce a two-point correlation function
for an observable of interest. This function gives a measure of the independence of the
fluctuations at two points in space. It is convenient for us to work with this correlation
function in momentum space, so we take the Fourier transform and call this the static
structure factor.

While the static structure factors are well characterised for the case of scalar conden-
sates (e.g. see [46]), much less work has been done on multicomponent systems. There
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optic axis

CCD array (image plane)

Lens/imaging system

BEC image

u axis

x axis

point spread function

point object

BEC
(object plane)

Figure 1.2: Here we show the experimental setup for imaging a BEC by shining light
onto it in the object plane. A point source of resulting light intensity is transformed
by the point spread function of the imaging system (lens etc.) to become a smeared
out blob in the image plane. At the image plane, a CCD array collects light intensity
within pixel cells. Measurements are thus of a finite volume of BEC in the image plane,
having been spread out due to the imaging system and finite pixel resolution.

have been theoretical studies of binary condensates [47, 48], and a study of the finite-
temperature transverse spin-density correlations in a quasi-2D ferromagnetic conden-
sate (see Appendix B of Ref. [49]). Experimentally, several methods can determine the
static structure directly, for example: fluctuation measurements (e.g. see [50, 51]), off-
resonant light scattering [52] and Bragg spectroscopy [53, 54]. Notably, spin-dependent
Bragg spectroscopy of a spin-1

2 Fermi gas was used to measure the z-spin density [55],
and speckle imaging has been employed on a strongly interacting Fermi gas to measure
the compressibility and magnetic susceptibility [56]. Along this path, a number of ex-
periments with spin-1 condensates have made fluctuation measurements, particularly
in application to dynamical regimes (e.g. [40, 57, 58]) and spin-squeezing [59]. We also
note a recent proposal to probe the excitation spectrum of a spinor condensate using
magnetic spectroscopy [60].
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1.3. Our work

1.3 Our work

This is the first study of equilibrium fluctuations of a spinor BEC, and includes the
important experimental consideration of finite imaging resolution. We develop a for-
malism that can be applied to describe the fluctuations of the total number density
and the components of the spin density, motivated by the capability to measure these
quantities directly in experiments (e.g. by Stern-Gerlach [58, 59, 61, 62] and dispersive
[39, 42, 63–65] probing). We characterise these fluctuations by deriving generalized
static structure factors, which arise from the collective excitation modes of the BEC
and thus can be calculated using Bogoliubov theory.

We apply our general theory to the case of a non-dipolar spin-1 BEC in a uniform trap
with a uniform magnetic field along z. For this system there are four distinct mag-
netic phases, and in each phase three Bogoliubov excitation branches contribute to the
fluctuations. Of particular interest are the antiferromagnetic and broken-axisymmetric
phases, in which a second continuous symmetry associated with the spin degree of
freedom is broken [in addition to the U(1) gauge symmetry]. This is revealed by the
emergence of a second Nambu-Goldstone mode [66]. Nambu-Goldstone modes are gap-
less – their dispersion relation goes linearly to zero as the momentum goes to zero –
and they act to restore spontaneously broken symmetries.

We apply our fluctuation formalism for the uniform spin-1 system to the experimentally
realizable setup of a spin-1 BEC in a harmonic trap with a pancake geometry (tight
in the z direction), and consider two limiting forms of the finite measurement cell: a
disc-shaped cylindrical cell and a smooth Gaussian cell.

The analysis we undertake of the relationship between the quasiparticle excitations
and the fluctuations in experimental measurements provides an exciting insight into
the decidedly quantum nature of the spin-1 BEC and how it can be revealed through
noise measurements.

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2, we review the mean-field theoretical
framework of the spin-1 BEC, which gives rise to the condensate spinor and four mag-
netic ground state phases. In Chapter 3, we take the condensate spinor and analyse the
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collective excitations about the ground state using Bogoliubov theory. From here, in
Chapter 4 we develop a formalism which can describe fluctuations of any observable,
which results in a generalized static structure factor. In Chapter 5 we apply this for-
malism to the total and spin density operators, and map out the excitation modes that
contribute to fluctuations in their mean value. In Chapter 6, we apply our general fluc-
tuation theory to a hypothetical experimental setup where fluctuations are measured
within finite cells. After developing the further theory needed to describe this situ-
ation, we apply our knowledge to numerically calculate fluctuations and analytically
calculate limiting expressions. This gives us theoretical predictions for experimentally
realizable fluctuation measurements. Finally, we conclude in Chapter 7 by discussing
the implications of our results.

1.5 Papers arising

The work in Chapters 4 and 5 has been published in Phys. Rev. A, Ref. [67]. The work
in Chapter 6 has been accepted for publication in Phys. Rev. A, and is available on
the arXiv, Ref. [68].
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Chapter 2

Spin-1 Mean-Field Theory

In this chapter, we review the mean-field theory of a spin-1 condensate. First, we
introduce the Hamiltonian that describes the cold-atom spinor gas. Then, taking a
mean-field approach, we assume that we have a BEC and separate out the condensate
spinor from the field operator. We explain how to calculate this spinor, before detailing
the ground state phase diagram as a function of the spin-dependent interaction and
magnetic field interactions. Finally, we conclude by detailing the spherical-harmonic
representation and the nematic spin order, which reveal the symmetry properties of
the spinor.

2.1 Hamiltonian

Here we consider a uniform three-dimensional spin-1 Bose gas subject to a uniform
magnetic field along z. We assume that we are in a temperature regime where the
only relevant atomic collisions are s-wave scattering. We also ignore the effects of the
dipole-dipole interaction by considering species where the magnetic dipole moment is
negligible compared to the other interaction energies.

The single particle description of the atoms is provided by the Hamiltonian

(h0)ij =
[
−~2∇2

2M − pi+ qi2
]
δij, (2.1)

where p and q are the coefficients of the linear 1 and quadratic Zeeman terms, re-
1The quantity p also serves as a Lagrange multiplier to constrain the z-component of magnetization.
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Chapter 2. Spin-1 Mean-Field Theory

spectively, and the subscripts i, j = {−, 0,+} refer to the mF = {−1, 0, 1} magnetic
sub-levels of the atoms. The value of q is tunable independently of p using AC electric
fields, e.g. see Refs. [69, 70], and can be both positive and negative. The linear and
quadratic Zeeman terms arising from a uniform magnetic field for 87Rb are shown in
Fig. 2.1.
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Figure 2.1: The Zeeman terms and F = 1 hyperfine splitting for 87Rb in a uniform
magnetic field B. The linear and quadratic terms are p and q respectively, and are
shown in (a). They parameterize the shifts of the individual mF levels shown in (b).

The cold-atom Hamiltonian, including interactions, is given by [32, 33]

Ĥ=
ˆ
dx

[
ψ̂
†(x)h0ψ̂(x) + c0

2 : n̂(x)n̂(x) : +c1

2 : f̂(x) · f̂(x) :
]
, (2.2)

where :: indicates normal ordering, ψ̂ = [ψ̂+, ψ̂0, ψ̂−]T is the spinor boson field operator,
and the superscript T indicates the transpose operation. The interaction terms involve
the total density n̂ and the spin density f̂ = [f̂x, f̂y, f̂z]T given by

n̂(x) = ψ̂
†(x)ψ̂(x), (2.3)

f̂α(x) = ψ̂
†(x)Fαψ̂(x), α ∈ {x, y, z} (2.4)

where {Fα} are the spin-1 matrices,

Fx = 1√
2


0 1 0
1 0 1
0 1 0

 , Fy = i√
2


0 −1 0
1 0 −1
0 1 0

 , Fz =


1 0 0
0 0 0
0 0 −1

 . (2.5)
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2.1. Hamiltonian

It is important to note that this Hamiltonian is number conserving and axially sym-
metric (along z) in spin space [71], i.e.

[Ĥ, N̂ ] = 0, (2.6)

[Ĥ, F̂z] = 0, (2.7)

where the total number and z-magnetization operators are respectively defined as

N̂ ≡
ˆ
dx n̂(x), (2.8)

F̂z ≡
ˆ
dx f̂z(x). (2.9)

The parameters c0 and c1 are the density and spin dependent interaction parameters,
respectively, and are given by

c0 = 4π~2

3M (a0 + 2a2), (2.10)

c1 = 4π~2

3M (a2 − a0), (2.11)

with aS (S ∈ {0, 2}) being the s-wave scattering length for the scattering channel of
total spin S. We introduce the spin healing length

ξs ≡
~√

M |c1|n
, (2.12)

as a convenient length scale, in analogy to the density healing length,

ξn ≡
~√
Mc0n

. (2.13)

The healing lengths characterize the sizes of spatial structures comparable to the rele-
vant interaction energy, e.g. ~2/Mξ2

s = |c1|n.

With reference to the Hamiltonian (2.2), we see that the sign of the spin-dependent
interaction affects the magnetization of the ground state. For c1 > 0, magnetization
is energetically unfavourable, so the global ground state favours having |f̂ | → 0. We
refer to this case as having antiferromagnetic interactions, and an experimental species
that realizes it is 23Na. Conversely, when c1 < 0, magnetization reduces energy and
the global ground state favours maximizing |f̂ |. In this case, we describe this system
as having ferromagnetic interactions, and it can be realized experimentally with 87Rb.

In Table 2.1, we show current best estimates of c0, c1, and their ratio for antiferro-
magnetic 23Na and ferromagnetic 87Rb. These estimates are based on experimental

11



Chapter 2. Spin-1 Mean-Field Theory

measurements of the scattering lengths a2, a0, and their difference a2 − a0. For our
numerical work, we are interested in the ratio c0/|c1|, and for these two species the cur-
rent experimental measurements have very large uncertainties. We note that the spin
dependent interaction is difficult to measure due to being so much smaller than the
spin independent interaction. This can be seen in that experiments which measure a2

and a0 separately are not fully in agreement with all experiments that measure a2− a0

directly (see Table 2 of Ref. [28] for details).

Species c̄0 (a.u.) c̄1 (a.u.) c0/|c1|

23Na 153.32± 1.60 3.0± 1.8 51.4± 31.0

87Rb 302.60± 0.30 −1.3± 0.4 240.2± 78.4

Table 2.1: Average experimental values of interaction parameters c̄0,1 ≡ c0,1 ×
3M/(4π~2) in units of the Bohr radius (aB = 0.0529 nm), along with their ratio c0/|c1|,
for 23Na and 87Rb, computed from experimental data listed in Table 2 of Ref. [28].

2.2 Mean-field description

Here we shall be interested in temperatures well below the condensation temperature
where the field can be written as

ψ̂(x) =
√
n ξ + δ̂(x), (2.14)

where 〈ψ̂〉 =
√
n ξ is the (uniform) mean-field that describes the condensate, n = N/V

is the condensate density, V is the volume, N is the number of condensate atoms, and
ξ = [ξ+, ξ0, ξ−]T is the normalized condensate spinor. The operator δ̂ = [δ̂+, δ̂0, δ̂−]T

represents the non-condensate field, with expectation 〈δ̂〉 = 0.

2.2.1 Condensate

The condensate is obtained as the lowest energy solution of the time-independent Gross-
Pitaevskii equation (GPE)

µξ =
[
h0 + c0n1 + c1

∑
α

fαFα
]
ξ, (2.15)

12



2.2. Mean-field description

where 1 is the 3× 3 identity matrix and

fα = nξ†Fαξ, (2.16)

is the α-component of the condensate spin density. We can write the matrix equation
as three coupled GPEs in the form

µξ+ =
[
−~2∇2

2M + (c0 + c1)n− p+ q

]
ξ+ + c1(ξ2

0 − 2ξ+ξ−)ξ∗−, (2.17)

µ ξ0 =
[
−~2∇2

2M + (c0 + c1)n
]
ξ0 − c1(ξ2

0 − 2ξ+ξ−)ξ∗0 , (2.18)

µξ− =
[
−~2∇2

2M + (c0 + c1)n+ p+ q

]
ξ− + c1(ξ2

0 − 2ξ+ξ−)ξ∗+. (2.19)

2.2.2 Using a real spinor

In general, the condensate spinor has three complex components, giving six variables to
solve for in Eq. (2.15). Using the fact that the spinor is equivalent under a global phase
rotation e−iθ and an arbitrary spin rotation around the z-axis e−iFzα [see Eqs. (2.7)
and 2.6)], we can rotate any complex spinor to a real one, reducing six coupled simul-
taneous equations down to three. To see this, write the general spinor in terms of real
magnitudes and arbitrary phases as

ξ = [|ξ+|eiθ+ , |ξ0|eiθ0 , |ξ−|eiθ− ]T . (2.20)

When substituted into the energy functional 〈Ĥ〉, only one phase-dependent term arises
(from within the spin-dependent term):

2c1n|ξ0|2|ξ+||ξ−| cos ∆, (2.21)

where
∆ ≡ θ+ + θ− − 2θ0. (2.22)

To minimize energy, the ground state must have ∆ = 0 for c1 < 0 and ∆ = π for
c1 > 0. As summarized in Table 2.2, we can thus always rotate to a real spinor.

13



Chapter 2. Spin-1 Mean-Field Theory

Parameters θ0 Transformation Rotated Form

c1 < 0, ξ (θ+ + θ−)/2 e−i(θ++θ−)/2e−iFz(θ+−θ−)/2 [|ξ+|, |ξ0|, |ξ−|]T

c1 > 0, ξ (θ+ + θ− + π)/2 e−i(θ++θ−−π)/2e−iFz(θ+−θ−+π)/2 [|ξ+|, |ξ0|,−|ξ−|]T

c1 > 0, ξ′ - e−i(θ++θ−)/2e−iFz(θ+−θ−)/2 [|ξ+|, 0, |ξ−|]T

Table 2.2: Rotating arbitrary spinors to real spinors, where we have introduced the
special case of ξ′ ≡ [|ξ+|eiθ+ , 0, |ξ−|eiθ− ]T . For spinors with the m-th spin component
fully occupied, just a global phase rotation e−iθm is required.

2.2.3 Phase diagram

A variety of ground state phases emerge from the competition between the spin-
dependent interaction (i.e. c1n) and the external magnetic field (i.e. p and q). For
spin-1 there are four distinct phases distinguished by their magnetization, both the
component of magnetization along the direction of the external field (fz), and the
component perpendicular to it,

f⊥ ≡
√
f 2
x + f 2

y . (2.23)

The ground state order parameter is found by first finding the stationary solutions of
the GPE, and from these the stable ground state solution is determined by which has
the lowest energy. These properties are summarized in Table 2.3, and the parameter
regions where each phase is the predicted ground state is shown in Fig. 2.2.

We note that in the AF and BA phases, the magnetization varies continuously. For
AF, 0 ≤ |fz| < n. In BA, the spinor is rotated away from the z-axis to develop f⊥ > 0.
Rotating the spinor by an angle of π/2 into the x− y plane puts the system along the
p = 0 line. Here, the magnetization is

f⊥ = n
√

1− q̃2, (2.24)

where we have defined
q̃ ≡ q

2|c1|n
=
√

1− (f⊥/n)2. (2.25)

This shows that, along p = 0, the BA phase has 0 < fx < n. We define an analagous
quantity to q̃ for the AF phase,

αz ≡
√

1− (fz/n)2. (2.26)
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2.2. Mean-field description

The detailed derivation of the ground states and the phase diagram is too lengthy to
present here, and we refer the reader to the excellent summary given in Sec. 3.3 of
Ref. [28].

p2 = 2c1n q

p = q + 1
2c1n

1/2

1

−1
P

F

F

A F

q/c1n

p/c1n

( a ) c 1 > 0 ( b ) c 1 < 0

p = q

p2= q2−2|c1|nq

2

P

F

F

B A

q/|c1|n

p/| c1|n

Figure 2.2: The zero temperature phase diagram of a spin-1 Bose gas in a constant
magnetic field, for cases with (a) antiferromagnetic interactions (i.e. c1 > 0), and (b)
ferromagnetic interactions (i.e. c1 < 0). The vertical and horizontal axes are the linear
and quadratic Zeeman energies (see text) in units of |c1|n, where n is the condensate
number density. The phases shown are (F) ferromagnetic, (P) polar, (AF) antiferro-
magnetic, and broken-axisymmetric (BA) (see Refs. [28, 34]). The rotational symmetry
about the direction of the applied field is spontaneously broken in the AF and BA
phases.
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Phase Properties
Ferromagnetic (F) Fully magnetized |fz| = n, |f⊥| = 0. ξ = [1, 0, 0]T or

[0, 0, 1]T .

Polar (P) Unmagnetized |fz| = |f⊥| = 0. ξ = [0, 1, 0]T

Antiferromagnetic (AF) Partially magnetized |fz| ≤ n, |f⊥| = 0. Conden-
sate spinor has non-zero components in the mF = ±1
sublevels.

Broken-axisymmetric (BA) Partially magnetized, but tilts to the z axis giving f⊥ >
0. Condensate spinor has non-zero components in all
sublevels.

Table 2.3: The phases of a spin-1 BEC in a constant magnetic field, as presented in
Fig. 2.2, categorised according to their magnetization.

2.2.4 Symmetry

The symmetries of the condensate spinor are not easily seen by just looking at its
components. To visualize these symmetries, it is helpful to use the spherical-harmonic
representation

Ψ(ŝ) =
∑
m

ξmY
m
F (ŝ), (2.27)

where ŝ is a unit vector in spin space, i.e. (fx, fy, fz) space. For our system with F = 1,
we use the three spherical harmonics

Y 0
1 = 1

2

√
3
π

cos(θ), (2.28)

Y ±1
1 =∓1

2

√
3

2πe
±iφ sin(θ). (2.29)

Using Eq. (2.27), we can generate a surface plot of |Ψ(ŝ)|2 and colour it with arg Ψ(ŝ).
This gives us a 3D representation of the spinor which can be used to compare the
symmetry of the condensate within different phases. We can easily tell whether different
order parameters have the same symmetry by seeing if they can be rotated onto each
other. Throughout Chapter 5, we show the spherical-harmonic representation of the
spinor in all four magnetic ground states. This reveals the symmetry of these phases
and how they relate and transform between each other.
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2.2. Mean-field description

2.2.5 Nematic tensor

In addition to the spin density, an important characterization of the condensate order
is provided by the nematic tensor

qαβ = nξ†Qαβξ, (2.30)

where Qαβ ≡ 1
2 (FαFβ + FβFα) is a 3×3 matrix for each pair of α, β ∈ {x, y, z}. The

nematic tensor is symmetric, and thus has six independent components.

Qxx =


1
2 0 1

2

0 1 0
1
2 0 1

2

 , Qyy =


1
2 0 −1

2

0 1 0
−1

2 0 1
2

 , Qzz =


1 0 0
0 0 0
0 0 1

 ,

Qxy = i


0 0 −1

2

0 0 0
1
2 0 0

 , Qxz = 1√
2


0 1

2 0
1
2 0 −1

2

0 −1
2 0

 , Qyz = i√
2


0 −1

2 0
1
2 0 1

2

0 −1
2 0

 . (2.31)
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Chapter 3

Spin-1 Bogoliubov Theory

In this chapter we develop a framework for understanding the collective excitations
that appear on top of the condensate. Our motivation for this is that we want to access
information revealed by fluctuations about the mean values of measurable quantities.
Firstly, we briefly review the derivation of the quasiparticle amplitudes by constructing
the Bogoliubov Hamiltonian and diagonalizing it. The resulting solutions give three
quasiparticle ‘spin mode’ branches, and we present analytic results for the four magnetic
phases of the spinor BEC.

3.1 Constructing the Bogoliubov Hamiltonian

To construct the Bogoliubov Hamiltonian, we substitute the field operator decompo-
sition given by Eq. (2.14) into the initial Hamiltonian in Eq. (2.2) and keep terms up
to second order in δ̂m (i.e. up to terms with four field operators where two are non-
condensate). Since we are considering the uniform system, it is helpful to expand each
field operator in the plane wave basis as

ψ̂m(x) = 1√
V

∑
k
âkme

ik·x. (3.1)

The âkm operators satisfy the Bose commutation relations

[âkm, â
†
k′,m′ ] = δkk′δmm′ , (3.2)

[âkm, âk′,m′ ] = [â†km, â
†
k′,m′ ] = 0. (3.3)
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Chapter 3. Spin-1 Bogoliubov Theory

Assuming we have a BEC, we have macroscopic occupation of the k = 0 mode, thus
we make the substitutions:

â†0,mâ0,m′ → N̂0ξ
∗
mξm′ , (3.4)

â†0,mâ
†
0,m′ â0,nâ0,n′ → N̂0(N̂0 − 1)ξ∗mξ∗m′ξnξn′ , (3.5)

where, for a system with a fixed number of atoms N ,

N̂0 ≡ N −
∑

k 6=0,m
â†kmâkm, (3.6)

N̂0(N̂0 − 1) ≈ N2 − 2N
∑

k 6=0,m
â†kmâkm. (3.7)

We keep only first order terms in these sums (higher ones are beyond quadratic order
in operators). After further calculation, we get the Bogoliubov Hamiltonian,

ĤB = 1
2

∑
k 6=0,m,m′

(
â†k â−k

)[Hk + H(1)] H(2)

[H(2)]∗ [Hk + H(1)]∗

 âk

â†−k


+ E0 −

1
2
∑
k 6=0

Tr[Hk + H(1)], (3.8)

where

E0 ≡ N
{
−pfz/n+ q

[
|ξ+|2 + |ξ−|2

]
+ n

2
[
c0 + c1

(
1− |ξ0ξ0 − 2ξ+ξ−|2

)]}
, (3.9)

is the condensate energy-functional, and we have defined

Hk ≡


(εk − µ)− p+ q 0 0

0 (εk − µ) 0
0 0 (εk − µ) + p+ q

 , (3.10)

where
µ = −pfz/n+ q(1− |ξ0|2) + (c0 + c1)n− c1n|ξ2

0 − 2ξ+ξ−|2, (3.11)

is the chemical potential of the condensate. We also define

H(1) ≡ n(c0 + c1)(ρ+ 1)− 2c1n


|ξ−|2 −ξ∗−ξ0 ξ∗−ξ+

−ξ∗0ξ− |ξ0|2 −ξ∗0ξ+

ξ∗+ξ− −ξ∗+ξ0 |ξ+|2

 , (3.12)

H(2) ≡ n(c0 + c1)ρ̃+ c1n(ξ2
0 − 2ξ+ξ−)


0 0 1
0 −1 0
1 0 0

 , (3.13)
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3.2. Diagonalizing

(ρ)mm′ ≡ ξmξ
∗
m′ , (3.14)

(ρ̃)mm′ ≡ ξmξm′ , (3.15)

with the free particle energy εk defined as

εk ≡ ~2k2/2M. (3.16)

3.2 Diagonalizing

We diagonalize the Bogoliubov Hamiltonian using the Bogoliubov transformation

âkm =
∑
ν

Ukmνα̂kν + V ∗−kmνα̂
†
−kν , (3.17)

â†−km =
∑
ν

U∗−kmνα̂
†
−kν + Vkmνα̂kν , (3.18)

where α̂kν and α̂†−kν are quasiparticle mode operators. We can write this in matrix
form as  âk

â†−k

 =
Uk V ∗−k

Vk U∗−k

 α̂k

α̂†−k

 . (3.19)

It is convenient to use the columns of the U and V matrices, i.e. we write

Uk = [ukν ], (3.20)

Vk = [vkν ], (3.21)

where ukν , vkν are 3 × 1 vectors, with ν ∈ {0, 1, 2} the spin-branch index. Enforcing
Bose commutation relations on the quasiparticle operators, we can invert Eq. (3.19) to
get

α̂kν = u†kν âk − v†kν â
†
−k, (3.22)

α̂†−kν = vT−kν âk − uT−kν â
†
−k, (3.23)

which shows that the quasiparticle excitation operators are linear combinations of the
boson field operators. Using this transformation, we end up having to diagonalize the
6× 6 matrix

σzM
B
k

ukν

vkν

 = Ekν

ukν

vkν

 , (3.24)
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where

σz =
1 0

0 −1

 , (3.25)

and

MB
k =

[Hk + H(1)] H(2)

[H(2)]∗ [Hk + H(1)]∗

 . (3.26)

We get six solution branches, only half of which satisfy the orthonormalization condition
imposed by the commutation relations. This gives us our three excitation branches (i.e.
ν = 0, 1, 2).

We note that, in general, the eigenvalues can be complex. If they are not real-valued,
then this indicates that the mean-field condensate is not the true ground state and
the system is dynamically unstable. In this situation, the quasiparticles with largest
imaginary part undergo exponential growth and destroy the BEC. For our purposes,
we are interested in the modes that have positive real-valued energies, which means
we always calculate the correct ground state spinor for the phase we are in before we
diagonalize to find the quasiparticle amplitudes.

3.3 Quasiparticles

Here we give an overview of the known analytic forms of the quasiparticle excitations
for the four ground state phases of the condensate, following Ref. [28] but labelling the
spin modes to be consistent with our analysis in Chapter 5. We have analytic forms for
the F, P, AF, and BA phases, although only for the case of p = 0 in the BA phase [28].
For the F and P phases, we also have analytic forms for the amplitudes (see Ref. [28]).
In general, for the AF and BA phases these are quite complicated and analytic forms
have not been published to our knowledge, although the equations describing them are
detailed in Ref. [66].

For the F, P, AF at fz = 0 and BA at p = 0 phases, the quasiparticle amplitudes are
given in Sec. 5.2 of [28], and in [66] for BA with p 6= 0.

For the AF phase, we have derived analytic low k limits for the quasiparticle amplitude
differences that we need in subsequent chapters. For 0 < c1 � c0, they are
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[uk0 − vk0]± =
√

1± fz
n

[
1± fz

n

(
1∓ 5fz

4n

)
c1

c0

] √
kξn
2 , (3.27)

[uk1−vk1]± =

√
1∓ fz

n

(1− f2
z

n2 )1/4

[
±1− fz

n

(
1± 3fz

4n

)
c1

c0

] √
kξs
2 , (3.28)

where ξn and ξs are the density and spin healing lengths defined respectively in Eqs. (2.13)
and (2.12). These expressions reduce to the result in [28] for fz = 0 and small k.

For the analytic results in the BA phase (at p = 0), we have defined

Ω ≡ 2(c1n)2(1− q̃2), (3.29)

Λk ≡
√

[(c0n− 3|c1|n)εk − Ω]2 + 4|c1|n(c0n− 2|c1|n)q̃2(εk)2. (3.30)

We note that we have derived these results independently and verified them numerically,
and as a result we have corrected some minor errors in the AF and BA results of
Ref. [28].
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Phase ν Energy spectrum Ekν uTkν vTkν

F

0
√
εk(εk + 2(c0 + c1)n) (u, 0, 0) (v, 0, 0)

1 εk + 2p− 2c1n (0, 0, 1) (0, 0, 0)

2 εk + p− q (0, 1, 0) (0, 0, 0)

P

0
√
εk(εk + 2c0n) (0, u, 0) (0, v, 0)

1
√

(εk + q)(εk + q + 2c1n)− p (u, 0, 0) (0, 0, v)

2
√

(εk + q)(εk + q + 2c1n) + p (0, 0, u) (v, 0, 0)

AF
0→+
1→−

√
εk

[
εk + (c0 + c1)n± n

√
(c0 − c1)2 + 4c0c1f2

z

]
(u, 0, u′) (v, 0, v′)

2
√

(εk − q + c1n)2 − (1− f2
z )(c1n)2 (0, u, 0) (0, v, 0)

BA
(p = 0)

0, 1
√
εk(εk + c0n+ |c1|n) + Ω± Λk (u, u′, u) (v, v′, v)

2
√
εk(εk + q) (u, 0,−u) (v, 0,−v)

Table 3.1: Quasiparticle excitations, labelled by spin mode ν, showing their spectrum
and the general form of their ukν and vkν amplitudes. We have dropped the ν subscript
on the amplitude components u, v, u′ and v′ for brevity. Further details can be found in
Sec. 5.2 of [28], and in Refs. [66, 72]. We have used q̃ as defined in Eq. (2.25) and the free
particle energy εk as defined in Eq. (3.16). The ν ∈ {0, 1} modes in the BA phase have
an avoided crossing. For these energies: before the crossing, we take 0 → −, 1 → +;
after the crossing we switch to 0→ +, 1→ −.
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Chapter 4

Spin and Density correlations

In this chapter we look at generalized density correlation functions, creating a formalism
to describe fluctuations in a general multicomponent spinor gas. We separate out the
behaviour of the correlation function into coherent and incoherent parts, which each
become dominant at certain length scales. We use this correlation function to define a
generalized static structure factor, whose behaviour we shall explore in Chapter 5 and
then use in Chapter 6 to characterize fluctuations within measurement cells.

4.1 Observable

Our interest lies in the fluctuations that occur in the total and spin densities of the
system, as characterized by the observables given in Eqs. (2.3) and (2.4). We will
generically represent these observables as

ŵ(x) = ψ̂
†(x)Wψ̂(x), (4.1)

where W is a 3×3 matrix.1 In the low temperature regime of interest the mean value
is determined by the condensate and is spatially constant, i.e.

w = 〈ŵ(x)〉 = nξ†Wξ, (4.2)

and in what follows we consider the fluctuations about this mean value.
1In this thesis we will consider the cases of W ∈ {1,Fx,Fy,Fz}, i.e. ŵ(x) being the total density

or a component of the spin density.
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4.2 w density-density correlation function

The spatial fluctuations of ŵ are characterized by the two-point correlation function

Cw(x− x′) = 〈δŵ(x)δŵ(x′)〉 , (4.3)

where we have introduced the fluctuation operator

δŵ(x) = ŵ(x)− w. (4.4)

Because we consider a uniform system, Cw only depends on the relative separation of
the two points.

It is convenient to use the Bose commutation relations to rewrite the correlation func-
tion in the form

Cw(x− x′) = 〈: δŵ(x)δŵ(x′) :〉+ w2 δ(x− x′), (4.5)

where
w2 ≡ 〈ψ̂

†(x)W2ψ̂(x)〉 = nξ†W2ξ. (4.6)

The delta-function term in Eq. (4.5) represents the autocorrelation of individual atoms
(shot noise), and a completely uncorrelated system is one in which Cw(r) = w2 δ(r).
The normally ordered term in Eq. (4.5) thus represents the correlations arising from
quantum degeneracy and interaction effects.

4.3 Static structure factor

The w static structure factor is defined as

Sw(k) ≡ 1
N

ˆ
dx dx′Cw(x− x′)e−ik(x−x′), (4.7)

= 〈δŵkδŵ−k〉
N

. (4.8)

Here δŵk is the Fourier transformed fluctuation operator

δŵk ≡
ˆ
dx e−ik·xδŵ(x), (4.9)

≈
√
N
∑
ν

(
δw̃kνα̂kν + δw̃∗kνα̂

†
−kν

)
, (4.10)

where
δw̃kν ≡ ξ†Wukν − vTkνWξ, (4.11)
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is a quantity we will refer to as the w fluctuation amplitude. In obtaining Eq. (4.10),
we have substituted the field operator expansion Eq. (2.14) into Eq. (4.4) to get

δŵ(x) =
√
n
∑
mn

Wmn

(
ξ∗mδ̂n + ξnδ̂

†
m

)
+
∑
mn

Wmn〈δ̂†mδ̂n〉+
∑
mn

δ̂†mWmnδ̂n, (4.12)

and then neglected higher order terms in the quasiparticle operators, giving

δŵ(x) ≈
√
n
∑
mn

Wmn

(
ξ∗mδ̂n + ξnδ̂

†
m

)
, (4.13)

which should be a good approximation at low temperatures. Using our Bogoliubov
formalism from Chapter 3, we can write the non-condensate operator as

δ̂(x) =
∑

k 6=0,ν
(ukνα̂kν + v∗kνα̂

†
−kν)

eik·x√
V
. (4.14)

Substituting this into Eq. (4.13) and taking the Fourier transform, we get Eq.(4.10).

The static structure factor is then given by

Sw(k) =
∑
ν

|δw̃kν |2 coth
(
Ekν

2kBT

)
, (4.15)

where we have used that
〈α̂†kνα̂k′ν′〉 = δkk′δνν′

eEkν/kBT − 1 , (4.16)

with δab the Kronecker delta.

In the high k limit, where the kinetic energy is large compared to the thermal and
interaction energies, only the uncorrelated part of Cw contributes and from Eq. (4.7)
we have

Sw(k →∞) = 1
n
w2. (4.17)

We refer to this as the uncorrelated limit of the structure factor.

4.4 Results for Spin-1

We now specialise our general formalism of this Chapter to the case of total and spin
density fluctuations, adopting the notation

ŵ → {n̂, f̂x, f̂y, f̂z}, (4.18a)

W→ {1,Fx,Fy,Fz}, (4.18b)

δw̃kν → {δñkν , δf̃x,kν , δf̃y,kν , δf̃z,kν}, (4.18c)

Sw(k)→ {Sn(k), Sx(k), Sy(k), Sz(k)}. (4.18d)
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Chapter 4. Spin and Density correlations

Using our analytic results from Chapter 3, and aided by Mathematica, we have con-
structed the Bogoliubov Hamiltonian and diagonalized to find the quasiparticles for
each phase. From these we form expressions for the relevant structure factors. For each
structure factor we find a limiting expression for the low k and high k behaviour. These
results have been checked against known analytic results.

We have also implemented Python code to diagonalize the Hamiltonian at each point
on a k-grid. From this we can numerically construct each structure factor and we
have checked our limits against these numerical results and found agreement to within
numerical precision.

Numerically implementing our formalism required a significant amount of coding. To
analyze a point on the phase diagram, we take as input the interaction parameters,
fz magnetization, quadratic Zeeman and linear Zeeman parameters. We then compute
the correct ground state spinor, and construct the Bogoliubov Hamiltonian on a k-grid.
When diagonalizing, to look at fluctuation amplitudes it was necessary to correctly
order the resulting energies across the k-grid.

We made use of the NumPy libraries to efficiently represent our data. The NumPy
diagonalization method we used (numpy.linalg.eig) is efficiently implemented using
low-level LAPACK routines in Fortran, and meant that our code runs in a few minutes
for k-grids of order 105 points.

We summarise our extensive analytic and numeric work on the limiting expressions of
the structure factors in the Tables that follow. In Table 4.1, we detail expressions found
for the low k behaviour of the fluctuation amplitudes δw̃kν for each spin mode ν and
operator ŵ. In Table 4.2, we detail our results for the low k and high k limits – with
T = 0 and T > 0 limits for low k – for all the structure factors Sw(k). Both Tables
comprehensively detail the limiting behaviours and effects of the three quasiparticle
modes throughout the (p, q) phase diagram of the uniform spin-1 condensate. In the
following Chapter we go beyond these analytic limits and numerically explore the
excitations and fluctuations of the four ground state phases in detail.
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4.4. Results for Spin-1

Phase Obs.(s) |δŵkν |2

ν = 0 ν = 1 ν = 2

F
n̂, f̂z

√
εk

2(c0 + c1)n 0 0

f̂x, f̂y
0 0 1

2

P

n̂
kξn
2 0 0

f̂z
0 0 0

f̂x, f̂y
0 1

2
√

1 + 2c1n/q

1
2
√

1 + 2c1n/q

AF

n̂

(
1− 1

2
f̂2
z

n2
c1

c0

)
kξn
2

f̂2
z

n2

√
1− f̂2

z

n2
c

3/2
1

c
3/2
0

kξn
2 0

f̂z
f̂2
z

n2

√
c1

c0

kξs
2

√
1− f̂2

z

n2

(
1− 3f̂2

z

2n2
c1

c0

)
kξs
2 0

f̂x→+
f̂y→−

0 0 1
2

(
1± αz

1± αz − q/c1n

)
EAF

g,2

c1n

BA
(p = 0)

n̂

√
εk

2(c0 + c1)n 0 q̃2

(1− q̃2)3/2

(
εk
c1n

)2

f̂x
1

1− q̃2

√
εk

2(c0 + c1)n 0 q̃2√
1− q̃2

f̂y
0 1

2(1 + q̃)
√

q

εk
0

f̂z
0 1

2(1− q̃)
√
εk
q

0

Table 4.1: Small k limits of fluctuation amplitudes. For n̂ and fz in the AF phase, the
results are the first terms in an expansion for c1 � c0. Where the entry is zero, the
fluctuation amplitude is zero for all k.
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Chapter 4. Spin and Density correlations

Phase Obs.(s) Sw(k → 0)
Sw(k →∞)

T = 0 T > 0

F
n̂, f̂z

√
εk

2(c0 + c1)n
kBT

(c0 + c1)n 1

f̂x, f̂y
1
2

kBT

EF
g,2

1
2

P

n̂
kξn
2

kBT

c0n
1

f̂z
0 0 0

f̂x, f̂y
1√

1 + 2c1n/q

(
1 + (c1n)2

q(q + 2c1n)
k2ξ2

s

2

) (
2q

q(q + 2c1n)− p2

)
kBT 1

AF

n̂

[
1 + f2

z

n2

(
−1

2
c1

c0
+
√

1− f2
z

n2

(
c1

c0

)3/2
)]

kξn
2

kBT

c0n
1

f̂z

[√
1− f2

z

n2

(
1− 3f2

z

2n2
c1

c0

)
+ f2

z

n2

√
c1

c0

]
kξs
2

kBT

c1n
1

f̂x→+
f̂y→−

1
2

(
1± αz

1± αz − q/c1n

)(
EAF

g,2

c1n
± αz

c1n

EAF
g,2

k2ξ2
s

2

) (
1± αz

1± αz − q/c1n

)
kBT

c1n

1
2(1± αz)

BA
(p = 0)

n̂

√
εk

2(c0 + c1)n
kBT

(c0 + c1)n 1

f̂x
q̃2√

1− q̃2
+ 1

1− q̃2

√
εk

2(c0 + c1)n

(
1

(c0 + c1)n + 2q̃2

|c1|n

)
kBT

1− q̃2 1

f̂y
1
2(1 + q̃)

√
q

εk
(1 + q̃)kBT

εk

1
2(1 + q̃)

f̂z
1
2(1− q̃)

√
εk
q

(1− q̃)kBT
q

1
2(1− q̃)

Table 4.2: High and low k limits of the structure factors. In the k → 0 limits we
distinguish between T = 0 and T > 0 results: In the T = 0 case we give a k expansion,
whereas for T > 0 we give the structure factor value at k = 0. For n̂ and f̂z in the AF
phase, the T = 0 results are the first terms in an expansion for c1 � c0 and the finite
T results are valid for |fz| < n. Note: in terms of |c1|n we have εk = 1

2k
2ξ2
s |c1|n.
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Chapter 5

Excitations and Fluctuations

In this Chapter we expand on our analytic results detailed in Tables 4.1 and 4.2 to
fully explore the excitations for the ground state phases shown in Fig. 2.2, and how
they manifest in the various structure factors. As we did at the end of Chapter 4,
we specialise our general formalism to the case of total and spin density fluctuations.
In the next subsections we discuss the various phases, their excitation spectra and
fluctuations.

5.1 Parameter choice

With reference to Table 2.1 in Sec. 2, the most commonly realised spinor condensates
of 87Rb and 23Na atoms have spin dependent interactions which are much smaller than
their spin independent interactions. Additionally, 23Na has c1 > 0 (i.e. antiferromag-
netic interactions), while 87Rb has c1 < 0 (i.e. ferromagnetic interactions). Here we
choose to present results using c0 = −250c1 for BA, within the range of experimental
predictions for 87Rb, and using c0 = 50c1 for the other phases, within the range of
experimental predictions for 23Na. We adopt the spin healing length [see Eq. (2.12)] as
a convenient length scale, noting that for our choice of parameters it is a factor of

√
50

or
√

250 larger than the density healing length [see Eq. (2.13)].
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Figure 5.1: Bogoliubov dispersion relations in the F phase. Subplots (a) and (b) fo-
cus on different ranges of k values. We show the phonon (black solid line), magnon
(blue dashed line), and transverse magnon (red dash-dot line) branches of the exci-
tation spectra, and attribute these the indices ν = 0, 1, 2, respectively. Parameters:
p = 1.5 c1n, q = −c1n, c0 = 50 c1, c1 > 0.

5.2 F phase

5.2.1 Condensate and excitation spectrum

The F phase occurs for both c1 > 0 and c1 < 0, and in this phase the condensate is
completely magnetized in the mF = 1 or −1 states depending on the value of p [see
Fig. 2.2(a), (b)]. We will focus on the case p > 0 with atoms in the mF = 1 state

ξF = [1, 0, 0]T . (5.1)

Here we have chosen ξF to be real. The most general form of this state is obtained by
applying an arbitrary gauge transformation eiχ0 and a spin rotation about the z-spin
axis (i.e. e−iFzχ1) to ξF (see Fig. 5.2). Because the F phase is axially symmetric these
transformations leave the properties of the condensate, and its fluctuations, unchanged.
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5.2. F phase

The nematic tensor [see Eq. (2.30)] for ξF is

qF = n


1
2 0 0
0 1

2 0
0 0 1

 . (5.2)

⇡

0

2⇡

⇡
2

3⇡
4

x y

z

Figure 5.2: Surface plot of the spherical harmonic representation of the F spinor in
spin-space [see Eq. (2.27)], coloured according to phase. Note the full axial symmetry
about the z spin axis. We can see the spin-gauge symmetry in that a rotation about z
is the same as a 2π phase winding.

An example of the excitation spectrum for the F state [28] is shown in Fig. 5.1. This
spectrum has phonon (index ν = 0), magnon (index ν = 1), and transverse magnon
(index ν = 2) branches.1 The phonon mode is the Nambu-Goldstone mode for this
phase and resides entirely in the mF = 1 component. The phonon is magnetic field
independent and corresponds identically to the phonon mode of a scalar gas, but with
an effective interaction of

c0 + c1 = 4πa2~2/M, (5.3)

corresponding to the scattering length of the spin-2 channel.
1We identify the phonon branch as that having the largest contribution to the density fluctuations.

For the case that the condensate has an average spin we denote the magnon modes as transverse or
axial if they give rise to fluctuations that are solely transverse or axial to the mean spin, respectively
(c.f. [73]).
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Chapter 5. Excitations and Fluctuations

The magnon modes have energy gaps

EF
g,1 = 2p− 2c1n, (5.4)

EF
g,2 = p− q, (5.5)

for ν = 1 and 2, respectively. These branches have quadratic dispersions, and are
magnetic field sensitive (e.g. revealed by the dependence of EF

g,1, EF
g,2 on p and q).

We now consider how these modes relate to fluctuations in the system for the ob-
servables of interest. This is most easily seen by examining the fluctuation amplitudes
(i.e. δw̃kν), which reveal the contributions from the various excitation branches. By
summing over these according to Eq. (4.15) the relevant static structure factors are
then computed.

5.2.2 Fluctuations in n and fz

Because the condensate resides entirely in the mF = 1 level we trivially have FzξF =
1ξF so that [from Eq. (4.11)] the fluctuation amplitudes δñkν and δf̃z,kν are identical.2

The results in Fig. 5.3(a) demonstrate that fluctuations in these quantities are entirely
due to the phonon mode, with no contribution from either of the magnon modes.
The (identical) static structure factors for density and axial spin are shown in Fig. 5.4(a)
for several temperatures, with analytic limiting results given in Table 4.2. This behavior
is similar to that of the density static structure factor for a scalar Bose gas, with the
phonon speed of sound set by the scattering length of the spin-2 channel (c0 + c1). For
example,

Sn(0) = kBT/[(c0 + c1)n], (5.6)

and the uncorrelated limit [Sn(k)→ 1] occurs for wavevectors k � 1/ξn at sufficiently
low temperatures [also see Table 4.2].

5.2.3 Fluctuations in fx and fy

The symmetry of the F phase about the spin z axis is reflected in the fluctuations of fx
and fy being identical. Only the transverse magnon mode contributes to the fluctuation
amplitudes δf̃x,y, as shown in Fig. 5.3(b). Because this mode is single particle like, i.e.

uTk2 = [0, 1, 0], (5.7)

vTk2 = 0, (5.8)
2Note, for the F phase with the condensate in the mF = −1 state, which we denote as ξ′F , then

FzξF′ = −1ξF′ .
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5.2. F phase
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Figure 5.3: Fluctuation amplitudes for the F phase. Subplots (a) δñkν , δf̃z,kν , (b) δf̃x,kν ,
δf̃y,kν , as defined in Eq. (4.11). The modes (index ν) have the same line types as in
Fig. 5.1. Other parameters as in Fig. 5.1.

the fluctuation amplitudes are constant valued with

|δf̃x,k2| = |δf̃x,k2| = 1/
√

2. (5.9)

Note that the ν = 1 magnon mode is of the form

uTk1 = [0, 0, 1], (5.10)

vTk1 = 0, (5.11)

and does not contribute to total density or spin density fluctuations.
The associated structure factors, Sx and Sy, are shown in Fig. 5.4(b), with analytic
limiting results given in Table 4.2. These factors have a non-zero value for k → 0 at
T = 0, i.e.

ST=0
x,y (k → 0) 6= 0. (5.12)

This behavior was also found for a two component system in Ref. [48], where the
magnon mode was also energetically gapped. The energy gap of the transverse magnon
mode delays the onset of thermal fluctuations to temperatures T & EF

g,2/kB.
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Figure 5.4: Static structure factors for the F phase at various temperatures. Struc-
ture factors (a) Sn and Sz (which are identical) (b) Sx and Sy (which are also iden-
tical), as defined in Eq. (4.15). For temperatures of (from bottom to top curves)
T = {0, c1, 2c1, c0 + c1}×n/kB, as labelled in the inset to (b). Insets reveal addi-
tional detail for the lower temperature results at small kξs. Other parameters as in
Fig. 5.1.

5.3 P phase

5.3.1 Condensate and excitation spectrum

The P phase occurs for both c1 > 0 and c1 < 0 [see Figs. 2.2(a),(b)]. In this phase the
condensate is unmagnetized and occupies the mF = 0 level, with normalised spinor

ξP = [0, 1, 0]T . (5.13)

The nematic tensor [see Eq. (2.30)] for ξP is

qP = n


1 0 0
0 1 0
0 0 0

 . (5.14)

The most general form of the P phase spinor is obtained by applying an arbitrary
gauge transformation and a spin rotation about the z-spin axis to ξP (see Fig 5.5).
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5.3. P phase

Because the P phase is axially symmetric these transformations leave the properties of
the condensate, and its fluctuations, unchanged.

⇡
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⇡
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3⇡
4
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z

Figure 5.5: Surface plot of the spherical harmonic representation of the P spinor in
spin-space [see Eq. (2.27)], coloured according to phase. Note the full axial symmetry
about the z spin axis.

An example of the excitation spectrum for the P state [28] is shown in Fig. 5.6. This
spectrum is similar to the F phase [Fig. 5.1] in that it has a phonon (index ν = 0)
and two gapped magnon branches (indices ν = 1, 2). The magnon gaps depend on the
magnetic field and are given by

EP
g,1 =

√
q(q + 2c1n)− p, (5.15)

EP
g,2 =

√
q(q + 2c1n) + p, (5.16)

for ν = 1 and 2, respectively. The ν = 1 magnon mode is of the form

uTk1 = [u, 0, 0], (5.17)

vTk1 = [0, 0, v], (5.18)

while the ν = 2 magnon mode has

uTk2 = [0, 0, u], (5.19)

vTk2 = [v, 0, 0]. (5.20)
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Figure 5.6: Bogoliubov dispersion relations in the P phase. Subplots (a) and (b) focus
on different ranges of k values. We show the branches of the excitation spectra for the
phonon mode (black solid line) and the two magnon modes as (blue dashed line) and
(red dash-dot line). Parameters: q = 2.1 c1n, c0 = 50 c1 and p = 1.5 c1n, c1 > 0.

The phonon mode resides entirely in themF = 0 component and corresponds identically
to that of a scalar gas with an effective interaction of c0.

5.3.2 Fluctuations in n and fz

Because the condensate resides entirely in the mF = 0 level we have that the fz

fluctuations are identically zero [from Eq. (4.11)] to the level of approximation we
work at here, with the leading order term coming from the small terms we neglected
in Eq. (4.10). We do not consider a higher order treatment here, and take the fz
fluctuations to be zero.
The density fluctuations are entirely due to the phonon mode, which resides in mF = 0,
with no contribution from either of the magnon modes [see Fig. 5.7(a)] . The associated
static structure factor is shown in Fig. 5.8(a) for several temperatures, with analytic
limiting results given in Table 4.2.
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5.3. P phase

5.3.3 Fluctuations in fx and fy

Because the P phase is axisymmetric, the fx and fy fluctuations are identical, and
relevant fluctuation amplitudes are shown in Fig. 5.7(b). These results show that
both magnon modes contribute equally. The associated structure factors are shown
in Fig. 5.8(b), with analytic limiting results given in Table 4.2. Similar to the Sx and
Sy structure factors considered for the F phase, these are also gapped at k → 0 and at
zero temperature.
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Figure 5.7: Fluctuation amplitudes for the P phase. Subplots (a) δñkν , (b) δf̃x,kν , δf̃y,kν ,
as defined in Eq. (4.11). Note δf̃z,kν = 0. The modes (index ν) have the same line types
as in Fig. 5.6. Other parameters as in Fig. 5.6.
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Figure 5.8: Static structure factors for the P phase at various temperatures. Structure
factors (a) Sn, (b) Sx, Sy, as defined in Eq. (4.15). Note Sz = 0. For temperatures of
(from bottom to top curves) T = {0, c1, 2c1, c0}×n/kB, as labelled in the inset to (b).
Insets reveal additional detail for small kξs. Other parameters as in Fig. 5.6.
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5.4 AF phase

5.4.1 Condensate and excitation spectrum

The AF phase occurs only for c1 > 0 [see Fig. 2.2(a)]. In this phase the condensate
takes the form

ξAF =
[√

1
2(1 + fz/n), 0,

√
1
2(1− fz/n)

]T
, (5.21)

and has a z-component of magnetization given by

fz = p/c1, (5.22)

for |p| ≤ c1n. The AF state breaks symmetry about the z axis, as can be seen from its
nematic tensor [see Eq. (2.30)]

qAF = n


1
2(1 + αz) 0 0

0 1
2(1− αz) 0

0 0 1

 , (5.23)

where α is defined in Eq. (2.26).
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Figure 5.9: Surface plot of the spherical harmonic representation of the AF spinor
in spin-space [see Eq. (2.27)], coloured according to phase. Subplots are: (a) fz/n =
0.9, (b) fz/n = 0.5 and (c) fz/n = 0. Note the broken symmetry about the z-axis,
even though the magnetization is fully aligned – as discussed in the text, the broken
symmetry arises in the nematic tensor rather than the magnetization vector.
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5.4. AF phase

We note that qAF corresponds to qF (5.2) in the limit of a fully magnetized AF state
(i.e. fz → n). The most general form of the AF phase spinor is obtained by applying
an arbitrary gauge transformation and a spin rotation about the z-spin axis to ξAF.
We note that the spin rotation changes the orientation of the nematic distortion in the
spin xy-plane (see Fig. 5.9).
An example of the AF excitation spectrum [28] is shown in Fig. 5.10. It has phonon
(index ν = 0), axial magnon (index ν = 1), and transverse magnon (index ν = 2)
branches. The AF phase has two broken continuous symmetries giving rise to two
Nambu-Goldstone modes: in addition to the phonon mode arising from the broken
U(1) symmetry of the condensate, the broken axial spin symmetry (revealed by the
nematic tensor) yields a massless axial magnon mode. The axial magnon dispersion
mode crosses over from having a linear to quadratic dependence on k at a wavevector
of k ∼ 1/ξs, whereas the phonon mode crosses over at k ∼ 1/ξn. The transverse magnon
mode has an energy gap of

EAF
g,2 = c1n

√
(1− q/c1n)2 − α2

z. (5.24)
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Figure 5.10: Bogoliubov dispersion relations in the AF phase. Subplots (a) and (b)
focus on different ranges of k values. We show the phonon (black solid line), axial
magnon (blue dashed line), and transverse magnon (red dash-dot line) branches of the
excitation spectra, and attribute these the indices ν = 0, 1, 2, respectively. Parameters:
q = −c1n, c0 = 50 c1 and p = 0.2 c1n, giving fz = 0.2n, αz ≈ 0.98.
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Figure 5.11: Fluctuation amplitudes for the AF phase. Subplots (a) δñkν , (b) δf̃z,kν ,
(c) δf̃x,kν , (d) δf̃y,kν , as defined in Eq. (4.11). The modes (index ν) have the same line
types as in Fig. 5.10. Other parameters as in Fig. 5.10.
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5.4.2 Fluctuations in n

The density fluctuation amplitudes δñkν are shown in Fig. 5.11(a). These results demon-
strate that the density fluctuations are dominated by the phonon mode, although a
weak contribution arises from the axial magnon mode. This magnon contribution in-
creases as c1 increases relative to c0 and also depends on the axial magnetization fz

(note: the axial magnon and phonon modes decouple for fz = 0, and at this point the
magnon mode does not contribute to δñkν).
The density static structure factor (Sn) is shown in Fig. 5.12(a) for several tempera-
tures. This behavior is similar to that of the density static structure factor in the F
phase, except that the phonon speed of sound varies between the value set by c0n and
(c0 + c1)n depending on fz.

5.4.3 Fluctuations in fz

The axial spin fluctuation amplitudes δf̃z,kν are shown in Fig. 5.11(b), and demonstrate
a dominant contribution from the axial magnon mode, and a smaller, but appreciable
contribution from the phonon mode. The associated static structure factor (Sz) is
shown in Fig. 5.12(b). The general behavior is similar to the density fluctuation case,
but with the much smaller spin-dependent energy c1n being the appropriate energy
scale. Thus the fluctuations are more easily thermally activated and the uncorrelated
limit [Sz(k)→ 1] is reached at lower wave vectors k � 1/ξs [also see Table 4.2].

5.4.4 Fluctuations in fx and fy

The transverse spin fluctuation amplitudes, i.e. δf̃x,kν and δf̃y,kν , are shown in
Figs. 5.11(c) and (d), respectively. Only the transverse magnon mode contributes to
these. The difference in the behavior of δf̃x,kν and δf̃y,kν reveals the broken symmetry
of the AF state about the z-spin axis [c.f. Eq. (5.23)].
The associated structure factors are shown in Figs. 5.12(c) and (d). Similar to the Sx
and Sy structure factors for the F and P phases, these also have a non-zero value for
k → 0 at T = 0. The energy gap of the transverse magnon mode delays the onset of
thermal fluctuations to temperatures T & EAF

g,2 /kB.
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5.5 BA phase

5.5.1 Condensate and excitation spectrum

The BA phase occurs for c1 < 0 [see Fig. 2.2(b)], and in this phase the condensate
occupies all three mF states. The results we present here are for the case of p = 0,
where the magnetization is purely transverse (i.e. fz = 0). This case has the advantage
that it affords a simpler analytic treatment [66, 72], allowing us to write the spinor as

ξBA =
[

1
2
√

1− q̃,
√

1
2(1 + q̃), 1

2
√

1− q̃
]T
, (5.25)

where q̃ is defined in Eq. (2.25). For our choice of a real spinor ξBA, the magnetization
is along the x-spin axis. The most general form of the BA phase spinor is given by
an arbitrary gauge transformation and spin rotation about z-spin axis applied to ξBA.
The nematic tensor for ξBA [see Eq. (2.30)] is

qBA = n


1 0 0
0 1

2(1 + q̃) 0
0 0 1

2(1− q̃)

 , (5.26)

which reveals the broken symmetry of the BA state about the z axis (see Fig. 5.13)
due to the transverse magnetization,

f⊥ = fx =
√

1− q̃2, (5.27)

where f⊥ is defined in Eq. (2.23).
The Bogoliubov excitations of the BA phase have been investigated in several recent
papers [66, 72] (also see Appendix of [49]).3 The excitations of the BA phase at p = 0
are shown in Fig. 5.14. Because the BA phase has two broken continuous symmetries,
the system has two gapless Nambu-Goldstone modes: a phonon branch (index ν = 0)
and a transverse magnon branch (index ν = 1). These two modes are decoupled at
p = 0. The transverse magnon has the energy dispersion [66]

Ek1 =
√
εk(εk + q), (5.28)

i.e. independent of the interaction parameters, where the free particle energy is defined
in Eq. (3.16). Since the quadratic Zeeman sets the relevant energy scale for this magnon,
we define an associated length scale

ξq ≡ ~/
√
Mq. (5.29)

3While various analytic results have been reported for the p = 0 case [66], the understanding of
the p 6= 0 case is based largely on numerical results [72].
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Figure 5.13: Surface plot of the spherical harmonic representation of the BA spinor in
spin-space [see Eq. (2.27)], coloured according to phase. Subplots are: (a) q = 0.01|c1|n,
(b) q = 0.5|c1|n and (c) q = 1.5|c1|n. Here, axial symmetry is broken by the magneti-
zation vector and also by the nematic tensor (see text). As q → 0 the spinor looks like
a rotated F spinor, while for q̃ → 1 it becomes the P spinor.

49



Chapter 5. Excitations and Fluctuations

The last branch (index ν = 2) is a magnon excitation with energy gap

EBA
g,2 = 2|c1|n

√
1− q̃2 = 2fx|c1|n. (5.30)

This gapped magnon does couple to the phonon branch, and they have an avoided
crossing, as revealed in Fig. 5.14(a) and inset. We have chosen to switch the labelling
either side of this crossing to match the labelling choice made in Ref. [72] and also
to ensure that away from the crossing the ν = 0 mode has phonon character (i.e. a
dominant effect on density fluctuations). The coupling between these two modes is
small so that the avoided crossing occurs over a narrow range of k vectors, with the
energy gap between these branches being

∆C = q
√

1− q̃2

√
|c1|
c0
, (5.31)

to lowest order in c1/c0.
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Figure 5.14: Bogoliubov dispersion relations in the BA phase. Subplots (a) and (b)
focus on different ranges of k values. We show the branches of the excitation spectra for
the phonon mode (black solid line) and the axial (blue dashed line, note the magneti-
zation axis is x) and transverse (red dash-dot line) magnon modes. Inset to (a) reveals
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5.5.2 Fluctuations in n and fz

From Fig. 5.15(a) we see that the dominant contribution to density fluctuations comes
from the phonon mode, although a contribution from the (gapped) axial magnon mode
occurs near the avoided crossing noted in the spectrum.4 In contrast the fz fluctuations
come entirely from the (Nambu-Goldstone) transverse magnon branch (ν = 1) [see
Fig. 5.15(b)].
The structure factors Sn and Sz are shown in Fig. 5.16(a) and (b), respectively, with an-
alytic expressions for the limiting behavior provided in Table 4.2. Interestingly, the long
wavelength fluctuations of the z component of magnetization is set by the quadratic
Zeeman energy, i.e.

Sz(0) = (1− q̃)kBT
q
. (5.32)

This diverges for q → 0 as the full spin rotational symmetry [SO(3)] is restored (noting
we have set p = 0).

5.5.3 Fluctuations in fx and fy

Because the magnetization lies along x for our choice of p and ξBA, fluctuations in fx
correspond to fluctuations in the length of the magnetization. Fig. 5.15(c) reveals that
both the gapped magnon mode and the phonon mode contribute to these fluctuations.
In contrast, fluctuations in fy are orthogonal to the direction of magnetization and
act to restore the axial symmetry [SO(2)] of the Hamiltonian. In Fig. 5.15(d) we see
that these fluctuations are entirely due to the (Nambu-Goldstone) transverse magnon
mode, and that these fluctuations diverge as k → 0. The divergence is clearly apparent
in Sy [see Fig. 5.16(d)], and is seen to go as k−2 for small k at finite temperature [see
Table 4.2].

4The rapid variation in {δñk0, δñk2} and {δf̃x,k0, δf̃x,k2} for k ≈ 0.12/ξs occurs because the phonon
and transverse magnon hybridize near the anti-crossing. We emphasise that summed contribution of
these fluctuations to the relevant structure factors is smooth.
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5.5.4 BA phase for p 6= 0

We conclude by briefly commenting on the qualitative behavior for p 6= 0. In this
case the condensate magnetization tilts out of the xy-plane and the Nambu-Goldstone
branches (i.e. ν = 0 and ν = 1 branches) become coupled (c.f. at p = 0 where the only
coupling is between the ν = 0 and ν = 2 branches, giving rise to the avoided crossing).
In Ref. [72] this occurrence was referred to as phonon-magnon coupling. As a result of
this coupling the ν = 1 mode contributes to density fluctuations, and the ν = 0 mode
contributes to the fz fluctuations.
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Chapter 6

Measuring fluctuations in
finite cells

In this Chapter we apply our understanding of structure factors to a concrete exper-
imental system of a quasi-2D spinor condensate. We consider making experimental
measurements of this system; specifically, measuring the number of atoms or a total
spin component within a measurement cell of finite volume. The size and shape of
the measurement cell is an important consideration because it affects which parts of a
structure factor contribute to fluctuations within the cell. We also explore the various
limiting cases that exist for different sized cells independent of their precise shape. We
present comprehensive analytic limit results, and compare them with full numerical
solutions in all four magnetic ground state phases.

6.1 General theory

Let us consider making measurements in a localised region of space of a spin-1 Bose-
Einstein condensate with observables that can be expressed as

Ŵσ ≡
ˆ
dDx σ(x)ŵ(x), (6.1)

where the weight function σ(x) describes the localised cell in which the measurement
is made and ŵ(x) is a generalized density operator of interest as defined in Eq. (4.1)
[also see Fig. 6.1].
The variance in Ŵσ is given by

∆W 2
σ ≡ 〈Ŵ 2

σ 〉 − 〈Ŵσ〉2. (6.2)
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Figure 6.1: Schematic illustration of fluctuation measurement for a quasi-2D spinor
condensate. Within a small cell of radius R (e.g. a cylindrical cell, indicated by green
boundary walls) an operator of interest is measured. For example, the total number of
atoms or the total components of spin.

This can be evaluated as

∆W 2
σ =
ˆ
dDx
ˆ
dDx′ σ(x)σ(x′) 〈δŵ(x)δŵ(x′)〉 , (6.3)

where the fluctuation operator δŵ(x) = ŵ(x) − w was defined in Eq. (4.4). The cor-
relation function appearing in Eq. (6.3) is the same as the one defined in Eq. (4.3),
i.e.

〈δŵ(x)δŵ(x′)〉 = Cw(x− x′). (6.4)

For the homogeneous system, it depends only on the relative separation r. This means
we can carry out the first of the two spatial integrals in Eq. (6.3) to get

∆W 2
σ =
ˆ
dDx
ˆ
dDx′ σ(x)σ(x′)Cw(x− x′) =

ˆ
dDr τσ(r)Cw(r), (6.5)

where we have defined the geometry function

τσ(r) ≡
ˆ
dDx
ˆ
dDx′ σ(x)σ(x′)δ(x− x′ − r). (6.6)

We can then Fourier transform to get

∆W 2
σ = n

ˆ
dDk

(2π)DSw(k)τ̃σ(k), (6.7)
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where

τ̃σ(k) =
∣∣∣∣∣
ˆ
dDx e−ik·xσ(x)

∣∣∣∣∣
2

, (6.8)

is the Fourier space geometry function of the cell σ, n = N/V and Sw(k) is the w static
structure factor as defined previously in Eq. (4.7).

6.2 Cell weight function

The integral of the weight function

Vσ =
ˆ
dDx σ(x), (6.9)

defines the D-dimensional effective volume of the cell. To ensure that we get Poissonian
number fluctuations for uncorrelated atoms, we set Nσ = nVσ, and require that ∆N2

σ =
Nσ when Sn(k) = 1. This gives us

∆N2
σ = n

ˆ
dDk

(2π)DSn(k)τ̃σ(k) = nτσ(0) = Nσ

Vσ

ˆ
dDx[σ(x)]2, (6.10)

which leads to the normalization condition of the weight function

Vσ =
ˆ
dDx σ(x) =

ˆ
dDx [σ(x)]2. (6.11)
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6.3 Quasi-2D system

We now specialize our theory to the D = 2 case of measurements made in effectively
2D cells in a quasi-2D system, specifically a spin-1 Bose gas in a harmonic trap with
a so-called ‘pancake’ geometry, as schematically shown in Fig. 6.1. Such a system has
been realized, along with precise number fluctuation measurements, for a scalar gas of
Cs atoms in Cheng Chin’s lab at Chicago [43].
The pancake trap geometry consists of a tight harmonic potential along the quantiza-
tion axis (which we take to be the z-axis) and a weak ‘in-plane’ harmonic potential
(which we take to be the x−y plane). This system is physically three-dimensional, but
if the z trap is strong enough then excitations in the z direction become energetically
unreachable, and the system will become frozen in the harmonic oscillator ground state
in the z direction.
We go through an analysis of this situation in Appendix A, and conclude that we can
approximately treat the central condensate region using our general uniform spin-1
theory by choosing appropriate parameters. The appropriate parameters, which we
will consider for the rest of this Chapter are the effective 2D interaction parameters
c2D

0 and c2D
1 , the 2D areal peak density, and a chemical potential shifted by the z trap’s

energy.
We note that a BEC is technically forbidden from existing at finite temperature in an
infinite 2D system [74, 75]. However, we can safely ignore finite-size effects as long as
the fluctuation integral Eq. (6.7) converges in the limit that we integrate down to k = 0
(i.e. an infinite system).

6.4 Cells in a quasi-2D system

Experimental measurements of cold-atom systems are always limited in their resolution
and thus encompass a finite measured volume instead of being precisely at one point
in space. Here we discuss the two types of cell we consider to approximate such finite-
resolution measurements of a quasi-2D gas, illustrated in Fig. 6.2.
(i) Cylindrical cell: contains all points (with equal weight) in a disc of fixed radius R
from the cell centre as schematically indicated by the green cell boundary in Fig. 6.1.
For this case we have

σ(x) = θ(R2 − |x|2), (6.12)
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where θ is the Heaviside step function, giving a cell volume of Vσ = πR2. The geometry
function is

τ̃σ(k) = 4π2R2J2
1 (Rk)

k2 , (6.13)

where J1 is the first order Bessel function of the first kind. This type of hard cell
has been considered in previous theoretical studies (e.g. see [48, 76–79]). Of particular
relevance are the results of Klawunn et al. [78] for disc-shaped cells in a quasi-2D scalar
condensate.
(ii) Gaussian cell: density contributions are weighted by distance from cell centre
with Gaussian weight,

σ(x) = 2 exp(−|x|2/R2), (6.14)

where R is the radial length scale over which the weighting falls by a factor of 1/e, giving
a cell volume of Vσ = 2πR2. This cell shape approximates the effect of measurements
made with a real imaging system of finite resolution (e.g. see [43–45]), with R being
related to the resolution spot size. For this case

τ̃σ(k) = 4π2R4e−k
2R2/2. (6.15)

6.5 Thermodynamic Limit

For sufficiently large cells τ̃σ(k) becomes concentrated near k = 0 and the fluctuations
cross over to the thermodynamic limit expression

∆W 2
σ ≈ NσkBTχw, (6.16)

where Nσ = nVσ is the average number of atoms in the cell and we have introduced a
generalised static susceptibility,

χw ≡ Sw(0)/kBT. (6.17)

This result is valid when the dimension R of the cell is much larger than any microscopic
length scale of the system, i.e. healing and thermal length scales.
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Figure 6.2: Weight and geometry functions for R = 2ξs. Subplots: (a) and (b) are
weight functions, (c) and (d) are geometry functions (momentum space) and (e) and
(f) are the geometry functions multiplied by the cylindrical Jacobian, 2π|k|. Left and
right columns are for cylindrical and gaussian cells, respectively. In (c) and (d) we see
different decay rates – the cylindrical geometry function has a slow algebraic decay
in momentum space (∼ k−3), while the geometry function of gaussian cells decays
exponentially.
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6.6 Quantum Fluctuations: Small Cells

Classically, we expect all fluctuations to vanish at zero temperature. However, quantum
mechanically, fluctuations persist. These quantum fluctuations are dominant in regimes
where thermal effects can be neglected (i.e. here we take T = 0). It is convenient to
treat large cells, where collective modes dominate, separately from small cells where
we recover a quantum shot noise limit. Here we consider the small cell regime, and
discuss the large cell case in the next section. The length scale ξL that defines the
cross over between small and large cells depends on the phase and observable under
consideration, and is also given in the next subsection (i.e. ξQ or ξE).
For k � 1/ξL the structure factors approach the incoherent value [see Eq. (4.17)]

Sw(k →∞) = ξ†W2ξ, (6.18)

which is dependent on the condensate order parameter [c.f. the familiar result of Sn(k →
∞) = 1 for density fluctuations]. For sufficiently small cells (R � ξL), τ̃σ(k) spreads
out so much that result (6.7) is dominated by the incoherent value of Sw(k), and the
fluctuations approach the quantum shot noise value

∆W 2
σ ≈ NσSw(∞). (6.19)

6.7 Quantum Fluctuations: Large Cells

Interactions can affect the long wavelength modes which strongly contribute to the
fluctuations measured in large cells.
Two cases arise dependent upon the k → 0 behaviour of the structure factor. Depending
on the phase and spin density (and ignoring the special cases of the gapped Sx and
divergent Sy structure factors in the BA phase, which we treat later), the T = 0
structure factors can either (i) approach zero linearly with k [e.g. see Fig. 6.3(a)] or (ii)
approach a finite value at k = 0 quadratically with k, with a characteristic correlation
peak or trough [e.g. see Fig. 6.3(b)].
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Figure 6.3: Examples of the two models for T = 0 structure factors used to derive
analytic results. Subplots are: (a) model SAw (dashed red line) for where Sw ∝ k as k → 0
with characteristic length scale ξQ [with Sz (solid black line) as a specific example],
and (b) model SBw (dashed red line) for where Sw ∝ k2 as k → 0 with characteristic
length scale ξE [with Sx (solid black line) as a specific example]. Examples are from
the AF phase with c0/c1 = 50/3, fz/n = 0.2 and q/c1n = −1.
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6.7.1 Suppressed Structure Factor

For cases where the structure factor vanishes as k → 0 like

Sw = 1
2ξQk, (6.20)

(e.g. as happens for Sn at T = 0), we find the quasi-2D specific results [78]

∆W 2
σ

Nσ

≈


ξQ
πR

ln
(
Sw(∞)CR

ξQ

)
, Cylindrical cell (6.21a)

ξQ
2R

√
π

2 , Gaussian cell (6.21b)

where ξQ parameterises the long wavelength behavior and C is determined by the short
wavelength properties of the system1. The result for the gaussian cell is valid in the
limit that R� ξQ, and follows from applying the result in Sec. B.2 of Appendix B to
Eq. (6.20). The result for the cylindrical cell requires accounting for high k behaviour
[due to the momentum tail of the geometry function; see Fig. 6.2 (e)], and can be
derived by using a model structure factor [see Fig. 6.3 (a)]

SAw (k) =


1
2ξQk, k < 2/ξQ,

Sw(∞), k > 2/ξQ.
(6.22)

Integrating Eq. (6.7) using this model yields (6.21a) with

C = 16eγ−1 ≈ 10.5, (6.23)

where γ ≈ 0.5572 is the Euler constant (also see 3D result for density fluctuations
obtained in Sec. IV of Ref. [77]).
Interestingly the prefactor of the logarithm scales as the perimeter of the cell R ∼

√
Nσ,

showing that long-wavelength quantum fluctuations grow more slowly (non-extensively)
with R than thermal fluctuations [which grow extensively as Nσ ∼ R2, see Eq. (6.16)].

1For a scalar quasi-2D condensate, ξQ is the healing length, and using the Bogoliubov dispersion
relation the value C ≈ 7.4 is obtained (see [78]).
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6.7.2 Gapped Structure Factor

For gapped structure factors (where Sw(0) > 0) like Sx at T = 0 [e.g. Fig. 6.3 (b)],
where we can write the structure factor as

Sw(k) = Sw(0) + βk2ξ2
s +O(k4), (6.24)

with β containing extra terms of the k2 coefficient, the fluctuations are given by

∆W 2
σ

Nσ

≈ Sw(0) +


1√
π

[Sw(∞)− Sw(0)] ξE
R
, Cylindrical cell (6.25a)

1
2 [Sw(∞)− Sw(0)] ξ

2
E

R2 , Gaussian cell. (6.25b)

where

ξE =
√

4β
Sw(∞)− Sw(0)ξs. (6.26)

The gaussian result follows from the integrals given in Appendix B.2 using a = βξ2
s . The

cylindrical result was derived by making the general observation that in this case the
structure factor can be represented as a peak (or dip) at k = 0 on top of the background
value set by Sw(∞). Indeed, with reference to Eq. (4.5), the peak is determined by the
Fourier transform of the normally ordered part of the correlation function, whereas
the Fourier transform of the delta function (completely uncorrelated) part sets the
background value. Thus, for a simple analytic model of this case, we use [see Fig. 6.3 (b)]

SBw (k) ≈ [Sw(0)− Sw(∞)]e−(ξEk)2/4 + Sw(∞), (6.27)

where Sw(0) − Sw(∞) is the peak height, and 2/ξE is the k-width. To find ξE, we
perform a series expansion of Eq. (6.27) to get

SBw (k) ≈ Sw(0)− 1
4[Sw(0)− Sw(∞)]k2ξ2

E +O(k4), (6.28)

and match terms with Eq. (6.24) to solve for ξE, giving Eq. (6.26). Substituting our
model structure factor Eq. (6.27) into Eq. (6.7) and integrating gives the fluctuation
result Eq. (6.25a).
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6.8 Cell fluctuation results for spin-1

Like we did for the structure factors and fluctuation amplitudes in Chapter 5, we
specialize our results to the cases of measuring total density and the three components
of spin density within cells, using the notation

ŵ → {n̂, f̂x, f̂y, f̂z}, (6.29a)

Ŵσ → {N̂σ, F̂x,σ, F̂y,σ, F̂z,σ}, (6.29b)

Sw(k)→ {Sn(k), Sx(k), Sy(k), Sz(k)}. (6.29c)

We use the structure factor results derived and detailed in Chapter 5, including nu-
merical results and limiting analytic expressions, and apply the cell fluctuation mea-
surement formalism derived in the previous Sections. Our extensive analytic results,
obtained with this Chapter’s formalism, are summarised in Table 6.1. For the BA phase
(with condensate magnetised along fx) the F̂y,σ fluctuations are divergent in the k → 0
limit, while the F̂x,σ fluctuations have a gapped zero-temperature structure factor, and
we discuss these in Sec. 6.8.5.1. For the P phase, F̂z,σ fluctuations are zero to our level
of approximation [see Chapter 5.3.2].
To numerically calculate cell fluctuations, we extend our numerics from Chapter 5. For
both cylindrical and gaussian cells, we construct the geometry function and integrate
this against our computed structure factors. The integration presents challenges nu-
merically, with regards to getting numerical convergence and agreement with analytic
limits, particularly for cylindrical cells with the Bessel function in the geometry func-
tion – see Fig. 6.2 (c) and (e) compared with (d) and (f). We have to be careful in our
choice of k-grid in order to get correct results. For small R, we extend our k-grid to
a maximum size scaled by 1/R in order to account for the spreading of the geometry
function. For large R, we set a minimum size according to the healing length so that
the Bessel function can still sample short wavelength behaviour. Gaussian cells are
numerically easier to handle because their geometry function decays exponentially and
thus in their case we only need k-grids out to a few multiples of 1/R; in our case we
generally use kmax = 5/R. Resolution-wise, we use k-grids with between 104 and 105

points.
In the following subsections, we compare our numeric and analytic results for the
fluctuations of the measurement operators given in Eq. (6.29b) in each ground state
phase. We discuss the fluctuation scaling with temperature and cell size, and compare
cylindrical cells with gaussian cells.
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Phase Obs.(s) Quantum Large Cells Thermodynamic
Limit

Quantum
Small Cells

Ŵσ ξQ, ξE χw Sw(∞)

F
N̂σ, F̂z,σ ξQ = ~/

√
M(c0 + c1)n 1/(c0 + c1)n 1

F̂x,σ, F̂y,σ ξE = 0 1/EFg,3 1/2

P

N̂σ ξQ = ξn 1/c0n 1

F̂x,σ, F̂y,σ ξE =
√

c1n

q + 2c1n

√
|c1|n√

q(q + 2c1n)− q
ξs 2q/[q(q+2c1n)−p2] 1

F̂z,σ 0 0 0

AF

N̂σ ξQ =
{

1 + f2
z

n2

[
− 1

2
c1
c0

+
√

1− f2
z

n2

(
c1
c0

) 3
2
]}

ξn 1/c0n 1

F̂z,σ ξQ =
[√

1− f2
z

n2

(
1− 3f2

z

2n2
c1
c0

)
+ f2

z

n2

√
c1
c0

]
ξs 1/c1n 1

F̂x,σ ξE =
√

2αzc1n

(αz + [1− q/c1n− EAFg,2 /c1n])EAFg,2
ξs

1 + αz
1 + αz − q

c1n

1
c1n

1
2 (1 + αz)

F̂y,σ ξE =
√

2αzc1n

(αz − [1− q/c1n− EAFg,2 /c1n])EAFg,2
ξs

1− αz
1− αz − q

c1n

1
c1n

1
2 (1− αz)

BA
(p = 0)

N̂σ ξQ = ~/
√
M(c0 + c1)n 1/(c0 + c1)n 1

F̂x,σ ξQ[?] = 1
1− q̃2

~√
m(c0 + c1)n

1
1− q̃2

(
1

(c0 + c1)n + 2q̃2

|c1|n

)
1

Fy,σ [?] [?] 1
2 (1 + q̃)

F̂z,σ ξQ = 1
2 (1− q̃)ξs/

√
q̃ (1− q̃)/q 1

2 (1− q̃)

Table 6.1: Analytic results for cell measurement fluctuations in a uniform spin-1 con-
densate. We detail parameters in all four magnetic phases for the quantum large-
cell limit [Eq. (6.21)], thermodynamic limit [Eq. (6.16)] and quantum small-cell limit
[Eq. (6.19)] for the observables in Eq. (6.29b). Values for Sw(0) [needed for Eq. (6.25)]
are provided in Table 4.2. The quantities q̃, αz, EAF

g,2 , and EF
g,3 are defined in Eqs. (2.25),

(2.26), Eq. (5.24), and Eq. (5.5), respectively.
? – the zero-temperature F̂x,σ structure factor is gapped, and the F̂y,σ structure factor
is divergent at k → 0; we cover these specific cases later in Sec. 6.8.5.
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6.8.1 Parameters for numerical results

We calculate fluctuations numerically for the quasi-2D uniform system that approxi-
mates the central region of a cloud of N = 106 atoms in a harmonic pancake trap with
frequencies ωz,ρ = 2π × (300, 5) Hz (see Appendix A for details).
We choose interaction parameters within the range of experimental values, with ref-
erence to Table 2.1. For the F, P and AF phases, we use parameters appropriate to
antiferromagnetic 23Na, and for the BA phase we consider parameters appropriate for
ferromagnetic 87Rb, as listed in Table 6.2.

Parameter 23Na 87Rb

c0n/kB 14.3 nK 28.1 nK

|c1|n/kB 0.280 nK 0.111 nK

ξn 1.21 µm 0.446 µm

ξs 8.68 µm 7.08 µm

Table 6.2: Species-specific parameters for numerically calculating fluctuations within
cells. Note that the interaction parameters are the appropriate quasi-2D effective in-
teraction parameters for the system, and that for 87Rb we have c1 < 0.
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Chapter 6. Measuring fluctuations in finite cells

6.8.2 F phase

Numerical results for the F phase are presented, along with analytic limits, in Fig. 6.4
as a function of temperature and in Fig. 6.5 as a function of cell size R. As discussed in
Chapter 5, to our level of approximation we have that N̂σ = F̂z,σ in the F phase. Since
only the density phonon mode (ν = 0) contributes to these fluctuations, the N̂σ and
F̂z,σ operators can essentially be described using similar arguments to those applied to
describe the the number fluctuations of a scalar system, with healing length

ξQ = ~/
√
M(c0 + c1)n = 1.20µm, (6.30)

slightly smaller than the density healing length ξn. The behaviour of this type of sys-
tem has been studied thoroughly [45, 78], and can be understood by considering the
competing length scales. The relevant length scales are the cell size R, the thermal
wavelength defined in relation to the ν = 0 spectrum

EF
0

( 1
λth

)
≡ kBT, (6.31)

and the correlation length ξQ which depends on the structure factor of the operator
under consideration. We note that for kBT < (c0 + c1)n, λth is the thermal phonon
wavelength,

λth ∼
~2

MξQkBT
, (6.32)

while for kBT > (c0 +c1)n it is proportional to the usual thermal de-Broglie wavelength

λth ∼
~√

2MkBT
. (6.33)

For R � {λth, ξQ}, we go to the quantum small-cell limit as we see in Fig. 6.5(a) and
(c). In this regime, atoms within the cell are independent, and we sample the incoherent
value of the structure factor independently of temperature so long as λth � R.
As T increases to the point where λth is comparable to or smaller than R, the relevant
modes become thermally occupied and fluctuations increase. We see this in Fig. 6.4
(a) and (c), noting that it happens at lower T for larger cells. In the high T regime,
λth � R and the fluctuations increase linearly with T , as predicted by the classical
thermodynamic result in Eq. (6.16). However, if R is not much larger than ξQ then
correlations are still important, which leads to an offset from the limit. This reduction
was seen and discussed in Fig. 3 of Ref. [78]. With reference to the T = 5 nK and
T = 50 nK lines on Fig. 6.5 (a) and (c), we see that for any temperature we can get to
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6.8. Cell fluctuation results for spin-1

a regime where R is larger than all other length scales and fluctuations are dominated
by thermal modes, thus reaching the thermodynamic limit.
In the case of zero-temperature, for R & ξQ we sample the quantum phonon regime
[see Fig. 2(b) in Ref. [45]] as R → ∞ (since λth = ∞) and we get fluctuations which
monotonically decrease to zero (relative to Nσ) with increasing R.
Due to the axial symmetry of the F phase, we have that F̂x,σ = F̂y,σ. For these fluctua-
tions, the correlation length ξE is zero. This leads to fluctuations which scale extensively
at low temperatures (i.e. there is no R dependence). For high temperatures, modes be-
come thermally occupied and fluctuations increase linearly with T [see Fig. 6.4 (b) and
(d), similar to the high temperature regime in Fig. 6.4(a) and (c)].
Comparing cylindrical and gaussian cell subplots in Figs. 6.4 and 6.5, we see that they
have qualitatively the same fluctuation behaviour. To understand the small differences,
we note that the oscillating tail of the cylindrical geometry function [see Fig. 6.2 (c) and
(e)] means cylindrical cells are sensitive to fluctuations at higher momenta than just the
main peak (whose position depends on 1/R for both cell shapes), unlike gaussian cells
with their exponentially decaying momentum dependence. Thus, gaussian fluctuations
have less fluctuations at low-temperature with large cells, because only modes with
wavelength ∼ R contribute and the higher value of the incoherent limit is exponentially
suppressed. The decay rate of the cylindrical geometry function [see Fig. 6.2] means
that cylindrical cells converge slower to our high R fluctuation limits, which we see
in both Fig. 6.4 and Fig. 6.5. Gaussian cells converge slower to the small cell limit,
since their geometry function spreads out slower in momentum space than that of
cylindrical cells. Another difference is that, as shown in Fig. 6.5 (a), the cylindrical
zero-temperature high-R limit [Eq. (6.21a)] is valid for a wider range of R values than
the analogous gaussian limit [Eq. (6.21b)] in Fig. 6.5 (c), although it becomes an invalid
approximation for R/ξQ . 1.
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Ŵ

2 σ
〉/
N
σ

(a) N̂σ, F̂z,σ

0.2 µm

2.0 µm

20.0 µm

100

101

(b) F̂x,σ, F̂y,σ

10−3 10−2 10−1 100 101 102 103 104

T (nK)

10−2

10−1

100

101

102

〈δ
Ŵ
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Figure 6.4: Cell fluctuations for the F phase as a function of temperature T . Subplots
show observables (a) N̂σ, F̂z,σ and (b) F̂x,σ, F̂y,σ for cylindrical cells, and (c) N̂σ, F̂z,σ and
(d) F̂x,σ, F̂y,σ for gaussian cells. We plot cell sizes of R ∈ {0.2, 2, 20}×µm, as labelled in
(a). Also plotted are the quantum small cell limit (dashed blue line), quantum large cell
limit (dashed black line) and thermodynamic limit (dot-dashed red line). Parameters
are as in Sec. 6.8.1, with fz = n, p = c1n and q = −c1n.
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Ŵ

2 σ
〉/
N
σ

(c) N̂σ, F̂z,σ

10−1 100 101 102

R (µm)

10−1

100

101

102
(d) F̂x,σ, F̂y,σ

Cylindrical Cylindrical

Gaussian Gaussian

Figure 6.5: Cell fluctuations for the F phase as a function of cell size R. Subplots show
observables (a) N̂σ, F̂z,σ and (b) F̂x,σ, F̂y,σ for cylindrical cells, and (c) N̂σ, F̂z,σ and (d)
F̂x,σ, F̂y,σ for gaussian cells. For temperatures T ∈ {0, 5, 50} nK, as labelled in (a). Also
plotted are the quantum small cell limit (dashed blue line), quantum large cell limit
(dashed black line) and thermodynamic limit (dot-dashed red line). Parameters are as
in Sec. 6.8.1, with fz = n, p = c1n and q = −c1n.
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6.8.3 P phase

Numerical results for the P phase are presented, along with analytic limits, in Fig. 6.6
as a function of temperature and in Fig. 6.7 as a function of cell size R. As discussed
in Chapter 5, to our level of approximation we have that F̂z,σ = 0 in the P phase. Our
analysis in Chapter 5 also showed that only the ν = 0 phonon mode contributes to N̂σ

fluctuations, and thus they are essentially described by an equivalent scalar system but
with healing length given by

ξQ = ξn = 1.21µm. (6.34)

The same analysis done in the F phase for N̂σ and F̂z,σ now applies for the results
shown in Fig. 6.6 (a) and (c) and Fig. 6.7 (b) and (d).
The axial symmetry of the P phase means that, as in the F phase, we have F̂x,σ = F̂y,σ.
The same analysis as for the F phase applies, except that now we have a non-zero
correlation length given by

ξE = 6.63µm, (6.35)

which causes non-extensive scaling with R at low temperatures in Fig. 6.6(b) and (d).
Zero temperature fluctuations have a non-zero lower limit set by the gap (k = 0 value)
of the structure factor [see Fig. 5.8 (b)], as seen by the solid blue lines in Fig. 6.7 (b)
and (d) having a non-zero high-R limit (a similar non-zero value was seen in Ref. [48]
for a gapped structure factor in a two-component system). This is different from the
analogous case in the F phase in Fig. 6.5 (b) and (d) where the zero temperature
fluctuations tended to zero at high R. At high temperatures we get the same behaviour
as in the F phase.
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Figure 6.6: Cell fluctuations for the P phase as a function of temperature. Subplots
show observables (a) N̂σ and (b) F̂x,σ, F̂y,σ for cylindrical cells, and (c) N̂σ and (d)
F̂x,σ, F̂y,σ for gaussian cells. For cell sizes R ∈ {0.2, 2, 20}µm, as labelled in (a). Also
plotted are the quantum small cell limit (dashed blue line), quantum large cell limit
(dashed black line) and thermodynamic limit (dot-dashed red line). Parameters are as
in Sec. 6.8.1, with fz = 0, p = 1.5c1n and q = 2.1c1n.
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Figure 6.7: Cell fluctuations for the P phase as a function of cell size R. Subplots
show observables (a) N̂σ and (b) F̂x,σ, F̂y,σ for cylindrical cells, and (c) N̂σ and (d)
F̂x,σ, F̂y,σ for gaussian cells. For temperatures T ∈ {0, 5, 50} nK, as labelled in (a). Also
plotted are the quantum small cell limit (dashed blue line), quantum large cell limit
(dashed black line) and thermodynamic limit (dot-dashed red line). Parameters are as
in Sec. 6.8.1, with fz = 0, p = 1.5c1n and q = 2.1c1n.
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6.8.4 AF phase

Numerical results for the AF phase are presented, along with analytic limits, in Fig. 6.8
(cylindrical cells) and Fig. 6.9 (gaussian cells) as a function of temperature, and in
Fig. 6.10 (cylindrical cells) and Fig. 6.11 (gaussian cells) as a function of cell size R.
The N̂σ and F̂z,σ fluctuations can essentially be described by the number fluctuations
of equivalent scalar systems. For N̂σ, the healing length is

ξQ = 1.21µm. (6.36)

For F̂z,σ, the appropriate healing length is

ξQ = 8.55µm, (6.37)

which is only slightly smaller than the spin healing length ξs. The results in subplots
(a) and (b) in Figs. 6.8, 6.9, 6.10 and 6.11 can then be interpreted in the same way as
the results for N̂σ and F̂z,σ in the F phase.
For F̂x,σ, the correlation length is

ξE = 8.27µm, (6.38)

while for F̂y,σ it is
ξE = 10.8µm. (6.39)

The results in subplots (c) and (d) in Figs. 6.8, 6.9, 6.10 and 6.11 can be interpreted
in the same way as the results for F̂x,σ and F̂y,σ in the P phase. There is one difference:
for F̂y,σ, the k = 0 gap in the structure factor is higher than the k → ∞ incoherent
limit [see Fig. 5.12 (d)]. This has the effect that at low temperatures, fluctuations scale
non-extensively in the opposite manner to F̂x,σ fluctuations – as cell size increases the
fluctuations increase faster than the volume does. We can also see this in subplot (d)
of Figs. 6.10 and 6.11, where the fluctuations are lowest for the quantum small cell
limit. It is worth noting that axial symmetry is broken in the AF phase, and this leads
to heavy suppression of F̂y,σ fluctuations in our results [where for our parameters we
have α = 0.98; α = 1 is fully asymmetric, see Eq. (5.23)].
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Figure 6.8: Cylindrical cell fluctuations for the AF phase as a function of temperature.
Subplots show observables (a) N̂σ, (b) F̂z,σ, (c) F̂x,σ and (d) F̂y,σ. For cell sizes R ∈
{0.2, 2, 20}µm, as labelled in (a). Also plotted are the quantum small cell limit (dashed
blue line), quantum large cell limit (dashed black line) and thermodynamic limit (dot-
dashed red line). Parameters are as in Sec. 6.8.1, with fz = 0.2n and q = −c1n.
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Figure 6.9: Cell fluctuations for the AF phase as a function of temperature, as in
Fig. 6.8, but for gaussian cells.
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Ŵ

2 σ
〉/
N
σ

(a) N̂σ
0.0 nK

5.0 nK

50.0 nK

10−1

100

101

102

(b) F̂z,σ

10−1 100 101

R (µm)

100

101

102

〈δ
Ŵ
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Figure 6.10: Cylindrical cell fluctuations for the AF phase as a function of cell size R.
Subplots show observables (a) N̂σ, (b) F̂z,σ, (c) F̂x,σ and (d) F̂y,σ. For temperatures
T ∈ {0, 5, 50} nK, as labelled in (a). Also plotted are the quantum small cell limit
(dashed blue line), quantum large cell limit (dashed black line) and thermodynamic
limit (dot-dashed red line). Parameters are as in Fig. 6.8.
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Figure 6.11: Cell fluctuations for the AF phase as a function of cell size R, as in
Fig. 6.10, but for gaussian cells.
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6.8.5 BA phase

Numerical results for N̂σ, F̂z,σ and F̂x,σ fluctuations in the BA phase are presented,
along with analytic limits, in Fig. 6.12 (cylindrical cells) and Fig. 6.13 (gaussian cells)
as a function of temperature, and in Fig. 6.14 (cylindrical cells) and Fig. 6.15 (gaussian
cells) as a function of cell size R. Note that for this phase, we use parameters from
Table 2.1 appropriate to ferromagnetic 87Rb, which has a much smaller density healing
length than 23Na which we looked at in previous phases.
The N̂σ and F̂z,σ fluctuations can essentially be described by the number fluctuations
of equivalent scalar systems. For N̂σ, the healing length is

ξQ = ξn = 0.446µm. (6.40)

For F̂z,σ, the relevant healing length is

ξQ = 10.0µm, (6.41)

which is larger than the spin healing length ξs = 7.08µm.
For F̂x,σ, the f̂x structure factor is gapped [i.e. non-zero at k = 0, see Fig. 5.16 (c)],
but otherwise has a linear dependence on k as k → 0, with a healing length

ξQ = 0.36µm, (6.42)

slightly larger than the density healing length. To calculate the quantum large-cell
fluctuations (which are affected by the gap), we adapt our model of Sec. 6.7.1, writing
the structure factor as

Sx(k) = Sx(0) + SAx (k), (6.43)

where

SAx (k) =


1
2ξQk, k < 2/ξQ,

d ≡ Sx(∞)− Sx(0), k > 2/ξQ,
(6.44)

i.e. we separate out the constant part and write the remaining part as a model struc-
ture factor. We get results slightly modified from the quantum large-cell results in
Eqs. (6.21a) and (6.21b),

∆F̂ 2
x,σ

Nσ

≈ Sx(0) +


ξQ
πR

ln
(
CdR

ξQ

)
, Cylindrical cells (6.45a)

ξQ
2R

√
π

2 , Gaussian cells (6.45b)

where C is the same constant described in the Sec. 6.7.1 that depends on the small-
wavelength behaviour of the structure factor.

82



6.8. Cell fluctuation results for spin-1

The same analysis we performed on the F phase now applies to the results for N̂σ, F̂z,σ
and F̂x,σ. The only significant difference, apart from the length scales, is that F̂x,σ has
a minimum level of fluctuations set by the structure factor gap, which we can see in
the low temperature behaviour with R in subplot (c) of Figs 6.12 and 6.14. We saw
similar behaviour in the P phase with the F̂x,σ and F̂y,σ fluctuations [see subplots (b)
and (d) in both Figs. 6.6 and 6.7], although their structure factors had a quadratic
dependence on k rather than a linear one.
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Figure 6.12: Cylindrical cell fluctuations for the BA phase as a function of tem-
perature. Subplots show observables (a) N̂σ, (b) F̂z,σ, and (c) F̂x,σ. For cell sizes
R ∈ {0.2, 2, 20}µm, as labelled in legend (outset). Also plotted are the quantum small
cell limit (dashed blue line), quantum large cell limit (dashed black line) and thermo-
dynamic limit (dot-dashed red line). Parameters are as in Sec. 6.8.1, with fz = 0, p = 0
and q = |c1|n.
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Figure 6.13: Cell fluctuations for the BA phase as a function of temperature, as in
Fig. (6.12), but for gaussian cells.
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Figure 6.14: Cylindrical cell fluctuations for the BA phase as a function of cell
size R. Subplots show observables (a) N̂σ, (b) F̂z,σ, and (c) F̂x,σ. For temperatures
T ∈ {0, 5, 50} nK, as labelled in legend (outset). Also plotted are the quantum small
cell limit (dashed blue line), quantum large cell limit (dashed black line) and thermo-
dynamic limit (dot-dashed red line). Parameters are as in Fig. (6.12).
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Figure 6.15: Cell fluctuations for the BA phase as a function of cell size R, as in
Fig. (6.14), but for gaussian cells.
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6.8.5.1 Divergent f̂y structure factor

In the BA phase [see Fig. 5.16 (d)], the f̂y structure factor diverges as

Sy(k → 0) =



(
(1 + q̃)

√
q̃

ξs

)
k−1, T = 0, (6.46a)(

2(1 + q̃)
ξ2
s

kBT

|c1|n

)
k−2, T > 0. (6.46b)

Let us define

ξ̃Q = 2
(1 + q̃)

ξs√
q̃
, (6.47)

ξ̃2
E = 2

(1 + q̃)ξ
2
s , (6.48)

such that we can write the structure factor as

Sy(k → 0) =



(1
2kξ̃Q

)−1
, T = 0, (6.49a)(1

2kξ̃E
)−2 kBT

|c1|n
, T > 0. (6.49b)

In the BA phase, the fx magnetization breaks the continuous SO(2) axial spin sym-
metry about z, and f̂y fluctuations act to restore the broken symmetry. The T = 0 f̂y
structure factor in Eq. (6.46a) can be integrated in 2D to get convergent results, but for
finite temperature the fluctuation integral diverges for k → 0 (the limit of an infinite
system). This is not surprising, because breaking a continuous symmetry is forbidden
at finite temperature in an infinite 2D system [74, 75]. This issue also occurs for the
BEC phase transition, which breaks global U(1) phase symmetry and results in diver-
gent phase fluctuations which destroy the condensate order. In practise BEC theory is
only applicable in a finite 2D system of size Lsys at sufficiently low temperature that
the phase coherence length is & Lsys [80]. In a similar manner, finite-temperature F̂y,σ
fluctuations explicitly depend on Lsys.
Applying the results in Appendix B to the T = 0 structure factor in Eq. (6.46a), we
find that the (convergent) quantum large-cell limits are given by

∆F̂ 2
y,σ

Nσ

≈ 2R
ξ̃Q
×


8

3π , Cylindrical cells, (6.50a)√
π

2 , Gaussian cells. (6.50b)

In contrast, as expected, the thermodynamic limits of the F̂y,σ fluctuations are di-
vergent. To handle this divergence, following the results in Appendix B applied to
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Eq. (6.46b), we restrict ourselves to a finite system of size Lsys ≡ R/κ for κ � 1, i.e.
a low k cutoff kmin ≡ 1/Lsys. The fluctuations then converge to give us the thermody-
namic limits

∆F̂ 2
y,σ

Nσ

≈ 2R2

ξ̃2
E

(
kBT

|c1|n

)
×


ln
(2
κ

)
+ 1

4 − γe, Cylindrical cells, (6.51a)

ln
( 2
κ2

)
− γe, Gaussian cells. (6.51b)

We now present numerical results for F̂y,σ fluctuations in the BA phase, along with
the analytic limits just derived. In Fig. 6.16 fluctuations are shown as a function of
temperature, and in Fig. 6.17 as a function of cell size R. A cutoff of kmin = 10−2/ξs

(i.e. Lsys = 102ξs) has been used to get finite fluctuations at high temperatures.
The analysis of the F̂y,σ fluctuations has some similarities with that done in the F phase
for N̂σ and F̂z,σ fluctuations, but with important differences due to the diverging f̂y
structure factor.
Only the ungapped ν = 1 magnon mode contributes to the F̂y,σ fluctuations, and it
has an associated length scale [see Sec. 5.5]

ξq = ~/
√
Mq = 7.08µm, (6.52)

and for our parameters is equal to the spin healing length ξs. The relevant length scales
for the fluctuations are the cell size R, the thermal wavelength defined in relation to
the ν = 1 spectrum

EBA
1

( 1
λth

)
≡ kBT, (6.53)

and the lengths ξ̃Q and ξ̃E as defined in Eqs. (6.47) and (6.48), which for our parameters
are

ξ̃Q = 13.4µm, (6.54)

ξ̃E = 8.18µm. (6.55)

Analogous to the F phase, for kBT < q, λth is the thermal phonon wavelength while
for kBT > q it is proportional to the usual thermal de-Broglie wavelength.
For R� {λth, ξ̃Q, ξ̃E}, we go to the quantum small-cell limit as we see in Fig. 6.17 (a)
and (b). As T increases to the point where λth is comparable to or smaller than R,
the relevant modes become thermally occupied and fluctuations increase, as we see in
Fig. 6.16 (a) and (b). In the high T regime, λth � R and the fluctuations increase
linearly with T , but with an additional R2 dependence from the diverging structure
factor. This non-extensive scaling is clearly seen in the slope of the T > 0 lines in
Fig. 6.17 (a) and (b).
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With reference to the T = 5 nK and T = 50 nK lines on Fig. 6.17 (a) and (c), we see
that for any non-zero temperature we can get to a regime where R is larger than all
other length scales and fluctuations are dominated by thermal modes, thus reaching
the thermodynamic limit.
In the case of zero-temperature, for R ∼ ξ̃Q we sample the linearly diverging struc-
ture factor, and we get non-extensive scaling with fluctuations increasing linearly with
increasing R, as we see with the T = 0 solid blue line in Figs. 6.17 (a) and (b).
Comparing cylindrical and gaussian cell subplots in Figs. 6.16 and 6.17, we see that they
have qualitatively the same fluctuation behaviour. The differences are barely noticeable
on a log scale. At large R, cylindrical cells have a slightly smaller scaling coefficient than
gaussian cells due to the first peak of the geometry function being relatively smaller,
so they scale the divergence differently [as seen in Eqs. (6.50a)-(6.51b)].
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Figure 6.16: F̂y,σ cell fluctuations in the BA phase as a function of temperature. For cell
sizes R ∈ {0.2, 2, 20}µm, as labelled in (a). Also plotted are the quantum small cell limit
(dashed blue line), quantum large cell limit (dashed black line) and thermodynamic
limit (dot-dashed red lines). Parameters as in Fig. (6.12), with kmin = 10−2ξs (see text).
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Figure 6.17: F̂y,σ cell fluctuations in the BA phase as a function of cell size R. At
temperatures T ∈ {0, 5, 50}nK, as labelled in (a). Also plotted are the quantum small
cell limit (dashed blue line), quantum large cell limit (dashed black line) and thermo-
dynamic limit (dot-dashed red lines). Parameters as in Fig. (6.12), with kmin = 10−2ξs

(see text).
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Chapter 7

Discussion and Conclusions

7.1 Density Fluctuations

In this thesis we have developed a formalism for the static structure factor of a uniform
spin-1 condensate subject to constant linear and quadratic Zeeman shifts. Our results
are based on the Bogoliubov formalism and are accurate to the leading order term
proportional to the condensate density. The static structure factors are an important
tool in quantifying fluctuations for scalar and binary systems (e.g. see [77–79, 81]), and
this work is important for extending such results to the spinor system.
A feature of spinor condensates is that additional continuous symmetries can be bro-
ken, leading to new Nambu-Goldstone modes, as is predicted to occur for the AF and
BA phases. For the AF phase we found that the asymmetry in the nematic order of
the condensate was revealed through the fx and fy fluctuations. In the BA phase we
observed a divergence in the fy fluctuations, associated with the spontaneous develop-
ment of a transverse (axial-symmetry-breaking) magnetization. Our results show that
this divergence arises from the Nambu-Goldstone magnon mode. Interestingly, such a
divergence in fluctuations was not observed in our results for the AF phase, which also
has a Nambu-Goldstone magnon branch [ν = 1 in Fig. 5.10]. The reason is that for
the AF phase the broken symmetry manifests only in the nematic order of the conden-
sate, not in the spin order. Indeed, an immediate extension of our theory is to assess
fluctuations of the nematic density,

q̂αβ(x) = ψ̂
†(x)Qαβψ̂(x), (7.1)

as a generalisation of Eq. (2.30). We find that for the AF state the fluctuations in qxy
diverge for k → 0 due to both the phonon and magnon modes, with the magnon branch
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dominating. Because some of the techniques used to image the spin density are also
sensitive to the nematic density (e.g. see [29]), the measurement of such fluctuations
may also be possible in experiments.

7.2 Fluctuations measured in cells

We have applied our fluctuation formalism to the experimentally realistic situation
of measuring fluctuations within finite cells, considering the two limits of hard-edged
cylindrical and soft-edged gaussian cells. Our analytic limiting results come from ap-
proximate integrals of the relevant structure factors, and our numerical analysis has
shown the relevant regimes of validity for the small cell quantum limit and the large
cell quantum and thermodynamic limits.
For operators with structure factors similar to those of equivalent scalar systems, our
results for cylindrical cells are in agreement with the work done in Ref. [78] for a scalar
system. The extension from scalar systems to a spin-1 system required creating model
structure factors for certain spin-density operators in order to perform analytic inte-
grals. Numerically verifying these analytic results required care in the case of cylindrical
cells due to the slow decay of the structure factor at high k, and in general gaussian
cells fluctuation integrals are much faster to converge numerically. Physically, measure-
ments will be a convolution of these two shapes, and experimental results are expected
to be between the bounds of the cylindrical and gaussian results.

7.3 Application to experiment

Our analysis here has been for a uniform system, and several factors will become
important in applying these results to the experimental regime. First, external trap-
ping potentials cause the total density of the condensate to vary spatially and a full
treatment of the trapped system would require a large-scale numerical solution of the
Gross-Pitaevskii equation for the condensate and of the Bogoliubov-de Gennes equa-
tions for the quasiparticles. However, our analysis can be applied to this situation using
the local density approximation, i.e. we consider the gas to be homogeneous at each
point in space using the local value of the condensate density. A discussion of the local
density approximation in relation to the density response of a scalar condensate is pre-
sented in Ref. [46]. Second, in our analysis of the AF and BA phases we have assumed
that the axisymmetry is broken uniformly over the entire system. For the case where
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the system forms domains of local broken axisymmetry our analysis will only apply to
each domain (also see discussion in [72]).

7.4 Outlook

We hope that this work will motivate future experiments to investigate the fluctuations
of the spin-1 system. The different scaling that emerges in the low-temperature regime
is a clear signal of the quantum and spinor nature of the spin-1 Bose condensate.
There are a variety of potential future research directions that are opened up by the
work in this thesis. There are more operators than just total and spin density avail-
able; as already mentioned, nematic density operators already reveal interesting extra
information. Within the spin-1 system there are many more phenomena that are still
poorly understood and ripe for theoretical illumination. Current spin-1 systems have
a magnetic dipole moment, which we have neglected in this thesis but has been shown
to have a detectable effect in spin-1 87Rb systems [39, 82].
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Appendix A

Quasi-2D spinor condensate

Here we detail how to apply our formalism for the uniform spin-1 condensate to a
trapped system in the quasi-2D regime, where the z direction is frozen in the ground-
state of a harmonic trap. We show that the effect of the confining z-trap is to scale the
interaction parameters and shift the chemical potential by the trap energy.
Our formalism goes beyond the mean-field approach to analyze the fluctuations of the
condensate, so we also show that moving to quasi-2D involves the same Bogoliubov
quasiparticle modes as for the 3D case, which means we can apply our spin-1 Bogoliubov
theory to the quasi-2D system.
Finally, we consider a system with a weak in-plane harmonic trap, which is what
experiments can actually achieve. We show it can be adequately described (close to the
centre of the trap) by our formalism for the uniform system, by using a density equal
to the peak density of the in-plane harmonic trap.

A.1 Uniform, trapped in z

A.1.1 Condensate

The quasi-2D regime is realised by harmonic confinement of angular frequency ωz in
the z direction, i.e. a trapping potential

V (z) = 1
2Mω2

zz
2, (A.1)

with length scale
lz =

√
~/Mωz. (A.2)
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We assume that the trap is sufficiently tight such that the thermal and interaction
energy scales are less than ~ωz so that the system is in the harmonic oscillator ground
state in the z direction and we don’t have to account for excited z-modes.
In this case, we can write the 3-dimensional condensate wave function as

ψ(x) =
√
nξχ(z), (A.3)

where n is the areal density and χ(z) is the harmonic oscillator ground state given by

χ(z) ≡ 1
(πl2z)1/4 exp

(
− z

2

2l2z

)
. (A.4)

We can write the spinor GPE

µψ(x) =
[
h0 + 1

2Mω2
zz

2 + c0ψ
†(x)ψ(x)1 + c1

∑
α

[
ψ†(x)Fαψ(x)

]
Fα
]
ψ(x), (A.5)

where 1 is the 3 × 3 identity matrix. We can project ψ†(x) onto this, substitute in
Eq. (A.3), and integrate over z (from −∞ to ∞), i.e.

µ =
ˆ (

χ∗(z)ξ†h0ξχ(z) + 1
2Mω2

zz
2|χ(z)|2 +

[
c0n+ c1|f |2

]
|χ(z)|4

)
dz, (A.6)

since ξ†ξ = 1 and
´
|χ(z)|2 dz = 1. The first term on the R.H.S isˆ [

χ∗(z)ξ†h0ξχ(z)
]
dz =

[ˆ
χ∗(z)−~

2

2M
∂2

∂z2χ(z) dz
]
− pξ†Fzξ + qξ†F2

zξ (A.7)

= 1
4~ωz − pfz/n+ q(1− |ξ0|2). (A.8)

The second term (z trap potential) is
1
2mω

2
z

ˆ
z2|χ(z)|2 dz = 1

4~ωz. (A.9)

The last term is [
c0n+ c1|f |2

]ˆ
|χ(x)|4 dz = [c0n+ c1|f |2]√

2πlz
. (A.10)

We can then define effective 2D interaction parameters

c̃0 = c0√
2πlz

, c̃1 = c1√
2πlz

. (A.11)

Thus we get

µ̃ = −pfz/n+ q(1− |ξ0|2) + c̃0n+ c̃1|f |2, (A.12)

where
µ̃ ≡ µ− 1

2~ωz. (A.13)

This matches our general µ defined in Eq. (3.11), after making the replacements c̃0 →
c0, c̃1 → c1, µ̃→ µ. Thus we can apply our formalism for the uniform spin-1 condensate
by using these effective interaction parameters and modified chemical potential.
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A.1.2 Excitations

Here we show that we can treat the excitations in the quasi-2D system with our for-
malism for the uniform 3D system by integrating out the z direction and using effective
interaction parameters.
For the uniform system harmonically trapped in the z direction, we assume that the
z direction is so strongly trapped that the only excitations to appear are in-plane,
with the z direction frozen in the harmonic oscillator ground state. In this case, the
non-condensate operator becomes

δ̂(x) =
∑

kρ 6=0,ν
(ukρν(z)α̂kρν + v∗kρν(z)α̂†−kρν

)e
ikρ·ρ
√
V
. (A.14)

Using Eq. (A.3) for the condensate, and adding a harmonic potential of the form given
in Eq. (A.1), the resulting Bogoliubov Hamiltonian is the same as the one derived in
Sec 3.1, but with effective interaction parameters c0 → c̃0 and c1 → c̃1 as defined in
Eq. (A.11), a shifted chemical potential µ̃ [as defined in Eq. (A.13)], and n being the
in-plane areal density.
For the quasiparticle amplitudes, let us assume that they have the same z-dependence
as the condensate, i.e.

ukρ,ν(z) = ukρ,νχ(z), (A.15)

vkρ,ν(z) = vkρ,νχ(z), (A.16)

where χ(z) is the harmonic oscillator ground state given by Eq. (A.4). Then the Bo-
goliubov de-Gennes equations become

χ(z)σzMB
k

ukρ,ν

vkρ,ν

 = χ(z)Ekν

ukρ,ν

vkρ,ν

 . (A.17)

We can then project out the z-dependence by multiplying Eq. (A.17) by χ∗(z) and
integrating over z (from −∞ to ∞). This gives us effectively the same Bogoliubov
de-Gennes equations as Eq. (3.24), with k→ kρ.
Thus we can use our formalism for the uniform system to describe the collective ex-
citations of the uniform quasi-2D system by using effective interaction parameters, a
shifted chemical potential, and the in-plane density.
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A.2 Trapped in 2-D

We would like to use our formalism for the uniform system on a quasi-2D system with
N atoms inside a weak, cylindrically symmetric harmonic trap in the radial direction
given by

V (ρ) = 1
2Mω2

ρρ
2, (A.18)

where ρ ≡
√
x2 + y2. Let us consider a region close to the centre of the trap where

the density is approximately uniform and thus our formalism can be applied. In this
region, we can approximate the density as the peak density at the centre. For the case
where c0 � c1, i.e. the density interaction energy dominates all other effects, and if we
neglect kinetic energy [the Thomas-Fermi (TF) approximation] then a similar approach
to Sec. A.1 gives us

nTF (ρ) ≈ µ̃− V (ρ)
c̃0

, (A.19)

where µ̃ is the chemical potential that fixes N in our trapped system, defined in
Eq. (A.13). Our system extends to the Thomas-Fermi radius, given by

R2
TF = 2µ̃

Mω2
ρ

. (A.20)

Using these we can relate µ̃ to N by carrying out the integral

N =
ˆ RTF

0
2πρnTF (ρ) dρ = πµ̃2

Mc̃0ω2
ρ

, (A.21)

and thus we have

µ̃ =
√
c̃0NMω2

ρ

π
. (A.22)

Therefore, using effective interaction parameters as in Eq. (A.11) and the peak density

npeak = µ̃

c̃0
, (A.23)

we can apply our general mean-field formalism of Chapter 2 to a harmonic pancake
trapped quasi-2D system.
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Appendix B

Cell fluctuation integrals

If Sw(k) = a, then regardless of cell shape we get

∆W 2
σ = n

ˆ
dDk

(2π)DSw(k)τ̃σ(k) = anτσ(0) = aNσ, (B.1)

because the weight function is normalized according to Eq. (6.11).

We now specialize to cell-specific results for the case of R →∞ with Sw(k)→ akn as
k → 0, where the system size is R/κ (i.e. the k integral starts at κ/R). We use these
results to generate the large R fluctuation limit for all our structure factor limits by
summing each contribution of the k power series.

B.1 Cylindrical cells

Rn∆W 2
σ

aNσ

→ 2Rn

ˆ ∞
κ/R

dk kn+1[J1(kR)/k]2 (B.2)

=



1
2

[
ln(2/κ) + 1

4 − γe
]

n = −2
8

3π −
κ
2 n = −1

1− 1
4κ

2 n = 0

+ O
(
κn+4

)
, (B.3)

where the Euler-gamma constant is

γe ≈ 0.5772. (B.4)

For n ∈ {0,−1} we can take the limit of κ → 0 (i.e. an infinite system), but n = 2 is
divergent. For n > 0, we construct model structure factors that we can integrate, since
the Bessel function makes integrating the full structure factors problematic.
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Appendix B. Cell fluctuation integrals

B.2 Gaussian cells

Rn∆W 2
σ

aNσ

→


1
2 [ln(2/κ2)− γe] + O (κn+4) n = −2

2n/2Γ(n/2 + 1)− κn+2

n+2 + O(κn+4) n 6= −2
(B.5)

=



1
2 [ln(2/κ2)− γe] n = −2√
π
2 − κ n = −1

1− 1
2κ

2 n = 0√
π
2 −

1
3κ

3 n = 1

2− 1
4κ

4 n = 2

+ O
(
κn+4

)
, (B.6)

where γe is defined in Eq. (B.4). For n > −2 we can take κ→ 0 (i.e. an infinite system),
but n ≤ −2 is divergent.
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