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Abstract

With the successful condensation of chromium, dysprosium and erbium in the past

decade, physicists have begun to explore the properties of dipolar Bose gases. These

gases interact via the dipole-dipole interaction, which leads to exciting and novel

physics. In this dissertation I discuss the non-zero temperature theory of c-field tech-

niques in the context of ultra-cold dipolar Bose gases in a quasi-2D geometry. I imple-

ment these methods numerically and demonstrate temperature effects on the density

fluctuations and the dispersion of the system. I also identify a possible instability of

dipolar systems that may prove to be important in theoretical and experimental study

of these gases.
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Introduction

Bose-Einstein condensates (BECs) have been at the forefront of physics research since

their experimental realisation in 1995. BECs exhibit a range of interesting phenomena

such as superfluidity, superconductivity, and coherence. The low-temperature regimes

of BECs make it feasible to develop theoretical models starting with full quantum

mechanical theory. These low temperatures also allow exceptional experimental control

and manipulation of atoms via optical trapping.

In this dissertation I consider dipolar Bose gases. These species interact via the

long range and anisotropic dipole-dipole interaction, which leads to completely novel

behaviour unseen in other Bose gases.

Elements which exhibit strong dipolar interactions have only been condensed re-

cently. Of these, chromium was the first to be condensed in 2005 [1], followed by

dysprosium [2] and erbium [3] in 2011 and 2012 respectively. Our interest chiefly lies

in gases of these atoms.

The dipole-dipole interaction has already been shown to play a crucial role in the

stability and dynamics of the 52Cr condensate [4, 5]. Dysprosium and erbium have only

been condensed very recently, and new results from these experiments are imminent.

There is also growing interest in creating a quantum-degenerate gas of heteronu-

clear molecules such as KRb [6, 7]. Successfully condensing heteronuclear molecules

would open the door to creating condensates with many new and interesting proper-

ties. These heteronuclear molecules possess an electric dipole far stronger than any of

the magnetic dipoles possessed by a single atom. It is therefore anticipated the dipolar

interactions will be very apparent in these systems, and will play an important role in

their behaviour. This prompts further interest in the properties of dipolar Bose gases.1

Knowledge of the dipole-dipole interaction will not necessarily only apply to highly

dipolar systems. In fact, the dipole-dipole interaction has been shown to play a role in

systems with comparatively small magnetic dipole moments [8].

Much of the theory of Bose gases considers systems at zero temperature. How-

ever, experiments operate at temperatures that are beyond the reaches of these zero-

temperature theories. For that reason, we are interested in non-zero temperature the-

ory.

1Admittedly, the most success thus far has been made with fermionic species, but there are also
groups working with bosons.
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INTRODUCTION 2

In this dissertation, I study dipolar Bose gases using the non-zero temperature

theory of “c-field techniques”. These techniques provide an approximate description of

the ultra-cold Bose gas for temperatures approaching the critical temperature. Popular

non-zero techniques such as Hartree-Fock-Bogoliubov-Popov encounter difficulties with

dipolar systems, and our c-field approach provides an alternative.

Before considering non-zero temperatures and c-field techniques, I will discuss the

zero-tempearture theory of dipolar Bose gases. I do this in Chapter 1. I then discuss

the numerical implementation of two c-field techniques. I consider the projected Gross-

Pitaevskii equation in Chapter 2, and then the stochastic projected Gross-Pitaevskii

equation in Chapter 3. Using these two techniques I identify an instability of the

dipolar system, and explore the effect of temperature on its density fluctuations. As I

conclude, I will outline possible avenues of further research.



Chapter 1

Zero Temperature Theory

In this chapter I discuss the standard theoretical treatment of dilute and dipolar Bose

gases at zero temperature. This will serve as a starting point for the non-zero temper-

ature approaches I’ll introduce in later chapters.

1.1 The Dipole-Dipole Interaction

Let us begin by considering the properties of the dipolar interaction.

Some atoms possess a large magnetic moment, arising from their total angular

momentum J . This magnetic moment means the atoms interact via the long range and

anisotropic dipole-dipole interaction.1

The potential energy of two dipoles with dipole moments d1 and d2 separated by

x = x1 − x2 is given by

Vd(x) =
1

|x|3 (d1 · d2 − 3(x̂ · d1)(x̂ · d2)) (1.1)

In this dissertation, I restricted my attention to identical dipoles with dipole moments

aligned along the z direction. If they each have dipole moment d, the dipole potential

takes the form

Vd(x) =
d2

|x|3
(
1− 3 cos2 θ

)
(1.2)

where cos θ = x̂ · d̂. The basic properties of this potential are discussed in Figure 1.1.

1Molecules can also interact via the dipole-dipole interaction. But for the case of heteronuclear
molecules, these interactions would be due to the molecules’ electric dipole moment. Nevertheless, the
dipole-dipole interaction here is unchanged from the magnetic case - so while I will focus on atomic
gases, the case of molecular gases is equivalent.

3



CHAPTER 1. ZERO TEMPERATURE THEORY 4

(a) (b) (c)

x

Figure 1.1: The basics of the dipole-dipole interaction (a) The interaction between two dipoles
is proportional to 1/x3, and angle-dependent (b) For two side-by-side dipoles, the interaction
is repulsive (c) For head-to-tail dipoles, the interaction is attractive. In essence, they behave
much like “bar-magnets”. Figure adapted from [9]

It is this anisotropic and long range character of the interactions that leads to the

completely novel physics we witness in dipolar systems.

We can see from Equation 1.2 that the interaction strength is proportional to the

square of the dipole moment d. There are a number of other parameters that are used

to describe this interaction strength, and I will pause to introduce these now.

The scattering properties of contact interactions can be described by the s-wave

scattering length a. The equivalent length scale for dipolar interactions is defined as

add := md2/3~2, where m is the mass of the atom and d its dipole moment. We then

define the interaction coupling g as related to a scattering length a by

g :=
4πa~2

m
(1.3)

As we will see, the interaction couplings g (contact) and gdd (dipole-dipole) will be

the defining parameters of our dipolar systems. The values of these parameters for a

number of key atomic and molecular species are summarised in Table 1.1.

Table 1.1: Dipole moments and scattering lengths of selected atoms and molecules

Species Dipole Moment add (a0)
87Rb 1 µB 0.71
52Cr 6 µB 15.4
168Er 7 µB 67.6
164Dy 10 µB 134

41K87Rb 0.6 Debye 3940
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1.2 Quasi-Two-Dimensional Geometry

Experimentally, a Bose gas must be confined by some sort of trap. And because of the

anisotropic nature of the dipole-dipole interaction, the physics of a dipolar system is

hugely dependent on the trap geometry.

We will consider a quasi-two-dimensional (quasi-2D) trap geometry. This geometry

has a tight level of confinement in z direction, but no confinement in the x-y plane.

More explicitly, we have an external trap potential of U(x) = 1
2mω

2
zz

2. We define the

corresponding harmonic oscillator length as lz :=
√

~/mωz.
At low (yet experimentally realisable) temperatures, the energy of oscillations in

the z-direction is significantly larger than kBT . Consequently, the gas in the direction

of tight confinement undergoes zero-point oscillations, and we can separate out the

z-component of the wave function as the ground-state wavefunction of a harmonic

potential;

χ(z) =
1

lz
1/2π1/4

exp

(
− z2

2lz
2

)
(1.4)

since the lowest z-vibrational mode is usually occupied. This leaves us with an essen-

tially 2D wavefunction,

Ψ(x) = χ(z)ψ(ρ) (1.5)

where ψ(ρ) is the wavefunction in the x-y plane and ρ = (x, y). This is known as the

single mode approximation, and is valid where interaction energies are small compared

to ~ωz”.

For example, the group in Stuttgart who condensed chromium uses a trap with a

length of lz ≈ 1300 a0 (where a0 is the Bohr radius) [10]. So for temperatures less than

200 nK, we would lie in this limit.

However, it is important to note that the problem we are faced with is not wholly

two-dimensional. The dipoles typically interact at length scales smaller than the trap

size. (To return to the example of the experiment in Stuttgart, chromium’s dipole

length is 15 a0, many times smaller than their trap length of lz ≈ 1300 a0.) This means

that the dipoles are not forced to lie in a plane side-by-side; some may possibly be

head-to-tail.

This has important ramifications for how we treat g, the interaction coupling param-

eter that dictates the strength of dipolar interactions. The parameter g we introduced

earlier applies to a three-dimensional system, and as we go from three dimensions to

quasi-2D, we must modify it. Petrov et al. [11] showed that for a quasi-2D Bose gas at
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ultra-cold but non-zero temperatures, the interaction coupling takes the form

gq2D =
2
√

2π~2

m

1

lz/a− 1/
√

2π ln(πk2lz
2)

(1.6)

Consider the limit a � lz. This means that the length scales of the trap in the

z-direction are much longer than the length scales of the interactions. In this limit, g

takes the form

gq2D =
g√
2πlz

(1.7)

which, aside from a constant, is simply the three dimensional result. Therefore, we

retain three-dimensional scattering theory, despite reducing the wave function to two

dimensions.

This quasi-2D geometry is, in some ways, a simplistic limiting case. Of course, in

an experiment one cannot have an infinite plane of atoms — they must be somehow

confined in the x-y directions, too. And to date, experiments with dipolar gases have not

quite reached quasi-2D regimes. Nevertheless, the quasi-2D problem is still worthwhile

considering. Quasi-2D simulations reproduce the same results qualitatively as much

more complicated simulations. For a fuller discussion on the applicability of the quasi-

2D problem, see Appendix A.1.

1.3 The Gross-Pitaevskii Equation

Having considered the interactions and geometry of our system, we will now develop the

governing equations for an ultracold dilute Bose gas. Since the system is dilute, we only

need to concern ourselves with two-body interactions. The many body Hamiltonian is

therefore

Ĥ =

∫
dx Ψ̂†(x, t)Ĥ (1)Ψ̂(x, t) +

1

2

∫
dx

∫
dx′ Ψ̂†(x, t)Ψ̂†(x′, t)V (x−x′)Ψ̂(x′, t)Ψ̂(x, t)

(1.8)

where V (x− x′) is some (as of yet unspecified) interaction potential that will account

for contact and dipole-dipole interactions, and Ĥ (1) is the single particle Hamiltonian

Ĥ (1) = −~2∇2

2m
+ U(x) (1.9)

where m is the mass of a single particle and U(x) is the external trapping potential.
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The evolution of the field operator Ψ̂(x) is governed by the equation

i~
∂

∂t
Ψ̂(x, t) = [Ψ̂(x, t), Ĥ ]

=

(
−~2∇2

2m
+ U(x) +

∫
dx′ Ψ̂†(x′, t)V (x− x′)Ψ̂(x′, t)

)
Ψ̂(x, t)

(1.10)

At T = 0, the gas will be fully condensed, and one can replace the operator Ψ̂(x, t)

with the classical field Ψ(x, t).2 With the correct steps taken, one can obtain the

time-dependent Gross-Pitaevskii equation (GPE)

i~
∂

∂t
Ψ(x, t) =

(
−~2∇2

2m
+ U(x) +

∫
dx′ Ψ∗(x′, t)V (x− x′)Ψ(x′, t)

)
Ψ(x, t) (1.11)

but now V (x−x′) is a low energy effective interaction potential. The energy functional

for this system is given by

E[ψ(x)] =

∫
dx

(
~2

2m
|∇Ψ(x)|2 + U(x)|Ψ(x)|2

+
1

2

∫
dx′ Ψ∗(x)ψ∗(x′)V (x− x′)Ψ(x′)ψ(x)

) (1.12)

Note that if the condensate wave function is given by

Ψ(x, t) = Ψ(x) exp

(
− iµt

~

)
(1.13)

where we define the chemical potential µ = ∂E
∂N then the GPE reduces to the time-

independent GPE(
−~2∇2

2m
+ U(x) +

∫
dx′ Ψ∗(x′)V (x− x′)Ψ(x′)

)
Ψ(x) = µΨ(x) (1.14)

This equation was derived independently by Gross [13] and Pitaevskii [14] in 1961. It

is the main theoretical tool for considering dilute Bose gases.

2The interaction potential must be treated carefully when this substitution is made; see [12].
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The GPE in Quasi-2D

In the case of a quasi-2D gas we can use the decomposition Ψ(x) = χ(z)ψ(ρ, t) (equation

1.5) to remove the z-dependence of our problem. For the time dependent GPE, making

this substitution gives

i~
∂

∂t
ψ(ρ, t)χ(z)

=

(
−~2∇2

2m
+

1

2
mω2

zz
2 +

∫
dx′ ψ∗(ρ′, t)χ∗(z′)V (x− x′)ψ(ρ′, t)χ(z′)

)
ψ(ρ, t)χ(z)

(1.15)

where ρ = (x, y), and we have used the quasi-2D trap potential U(x) = 1
2mω

2
zz

2. If we

then multiply by χ∗(z) and integrate over z we obtain

i~
∂

∂t
ψ(ρ, t) =

(
−

~2∇2
ρ

2m
+

1

2
~ωz

+

∫
dz

∫
dx′ χ∗(z)χ∗(z′)Ψ∗(ρ′, t)V (x− x′)Ψ(ρ′, t)χ(z′)χ(z)

)
ψ(ρ, t)

(1.16)

Since we know χ(z) explicitly, carrying out this integration removes any z-dependence

from the problem. We can also ignore the constant factor of 1
2~ωz, as it only leads to

an inconsequential energy shift.

1.4 Interaction Potentials in Quasi-2D

We now look to incorporate both contact and dipolar interactions into the Gross-

Pitaevskii equation we have just established.

Our objective is to evaluate the integral∫
dz

∫
dx′ χ∗(z)χ∗(z′)ψ∗(ρ′)V (x− x′)ψ(ρ′)χ(z′)χ(z) (1.17)

as this is the form in which the interaction potential appears in the quasi-2D time

dependent GPE (equation 1.16), and elsewhere.
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Case 1: Contact Interactions

For the contact component we use the pseudopotential Vc(x − x′) = gδ(x − x′). It

is important to note that atomic contact interactions are far more complicated than

this “bowling-ball”-like potential indicates. However for the case of dilute systems like

ours, and at the low collision energies relevant at ultra-cold temperatures, the actual

form of the two-body potential is unimportant, and this pseudopotential is adequate

for describing the interactions. Using this pseudopotential, equation 1.17 becomes

g

∫
dz

∫
dx′ ψ∗(x′)δ(x− x′)ψ(x′) = g|ψ(ρ)|2

∫
dz |χ(z)|4 =

g√
2πlz
|ψ(ρ)|2 (1.18)

This coefficient can be recognised as the quasi-2D interaction coupling gq2D.

Case 2: Dipole-Dipole Interactions

Incorporating the dipolar potential is more involved than the contact case, and will

not be shown here, but is instead included in Appendix A.2. The key results of the

derivation are as follows.

Firstly, it is advantageous to transform the effective interaction potential into k-

space. There, it takes the form

Ṽd(kρ) =
gdd√
2πlz

F

(
kρlz√

2

)
where F (q) = 2− 3

√
πqeq

2
erfc(q) (1.19)

where erfc(q) is the complementary error function. Then the integral 1.17 can be

evaluated via the convolution theorem, and is found to be∫
dz

∫
dx′ ψ∗(x′)Vd(x− x′)ψ(x′) = F−1[Ṽd(kρ)n(kρ)] =: ΦD(ρ) (1.20)

where F is the fourier transform, and n(kρ) = F(|ψ(ρ)|)2 is the momentum-space

density.

The Total Interaction Potential

Before incorporating all of these results into the GPE, it is worthwhile pausing for a

moment to consider the behaviour of the effective total potential (contact plus dipole)

Ṽ (kρ) = Ṽc(kρ) + Ṽd(kρ) =
1√
2πlz

(
g + gddF

(
kρlz√

2

))
(1.21)
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Note that Ṽ (kρ) is actually dependent on the magnitude, but not the direction of kρ

This function is plotted in Figure 1.2 for a range of g and gdd.

0 1 2 3 4 5 6
1

0.5

0

0.5

1

1.5

2

2.5

3

klz/
√

2

1
+

ε d
d

F
(k

l z
/
√

2
)

εdd =-1

εdd =-0.5

εdd =0

εdd =0.5

εdd =1

εdd =1.5

Figure 1.2: The behaviour of the total effective potential of a Bose gas with contact and
dipolar interactions in quasi-2D. εdd is defined as gdd/g. Note that if the function drops below
0 the interaction has become attractive.

F (q) has the limiting behaviour

lim
q→0

F (q) = 2 (1.22)

lim
q→∞

F (q) = −1 (1.23)

Namely, the dipolar interaction is repulsive at low k-values, but attractive at high

k-values. This is interpreted in Figure 1.3

Figure 1.3: An intuitive way to consider the limiting behaviour of Ṽ (k). Excitations with
low k-values (corresponding to long wavelengths) leave the dipoles largely side-by-side, where
they are repulsive, so Ṽ (k) is positive. On the other hand, high k-value excitations (short
wavelengths) arrange the dipoles end-to-end, where they are attractive, so Ṽ (k) is negative.
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We are finally ready to incorporate both contact and dipolar interactions into the time

independent GPE. Combining our calculations for both cases, the interaction term

becomes∫
dz

∫
dx′ χ∗(z)χ∗(z′)ψ∗(ρ′, t)V (x− x′)ψ(ρ′, t)χ(z′)χ(z) = gq2D|ψ(ρ, t)|2 + ΦD(ρ, t)

(1.24)

So for a Bose gas with contact and dipolar interactions, the time independent GPE

becomes

i~
∂

∂t
ψ(ρ, t) =

{
−~2∇2

2m
+ gq2D|ψ(ρ, t)|2 + ΦD(ρ, t)

}
ψ(ρ, t) (1.25)

While this only holds at strictly zero temperature, it will serve as our starting point

for developing non-zero temperature theory.

From now we will be exclusively considering this two dimensional problem, and I

will simply write “x” instead of “ρ”.

1.5 Excitations and the Bogoliubov Approximation

We will now consider the elementary excitations of a Bose gas at zero temperature. To

do this, a standard perturbative approach is to assume that the gas is almost exclusively

in the condensate, and then linearise any excitations about the condensate.

An equivalent procedure3 is to diagonalise the system’s Hamiltonian via the substi-

tution

â0, â†0 →
√
N0 (1.26)

This amounts to assuming the gas is almost fully condensed, since if N0 � 1 it follows

that

â0|N0, 0, 0, ...〉 ≈
√
N0|N0, 0, 0, ...〉 â†0|N0, 0, 0, ...〉 ≈

√
N0|N0, 0, 0, ...〉 (1.27)

This approach was first suggested by Bogoliubov [15], and is known as the Bogoliubov

approximation. A full derivation of the diagonalsiation procedure can be found in

Appendix A.4. Here, I will give an outline of the procedure and discuss the results. We

begin with the Hamiltonian of equation 1.8:

Ĥ =

∫
dx Ψ̂†(x)Ĥ (1)Ψ̂(x) +

1

2

∫
dx

∫
dx′ Ψ̂†(x)Ψ̂†(x′)V (x− x′)Ψ̂(x′)Ψ̂(x) (1.28)

3We demonstrate this equivalence in Appendix A.5.



CHAPTER 1. ZERO TEMPERATURE THEORY 12

We then adopt this Hamiltonian to a quasi-2D geometry in a similar manner as we did

for the time dependent GPE in Section 1.3. Having done this, we are left with a field

operator ψ̂(x) that is two dimensional and unconfined. To handle this “infinite” field,

we restrict our attention to a square cell of edge length L, and adopt the plane wave

basis

ψ̂(x) =
∑
k

1

L
e ik·xâk (1.29)

Using this basis, the Hamiltonian can be recast as

Ĥ =
∑
k

~2k2

2m
â†kâk +

1

2L2

∑
k1,k2,q

Ṽ (q)â†k1+qâ†k2−qâk1 âk2 (1.30)

By employing the Bogoliubov approximation â0, â†0 →
√
N0, the Hamiltonian separates

into terms proportional to N0
2, N0

3/2, N0, and so on. It can then be diagonalised up

to the order of N0.

In diagonalising the Hamiltonian, we introduce the quasiparticle operators α̂k and

α̂†k as follows

âk = ukα̂k − vkα̂†−k
â†−k = ukα̂

†
−k − vkα̂k

=⇒ α̂k = ukâk + vkâ†−k
α̂†−k = ukâ†−k + vkâk

(1.31)

where uk and vk are some suitably chosen coefficients.

These quasiparticle operators allow us to rewrite the Hamiltonian of equation 1.28

as

Ĥ ≈ 1

2
n2DNṼ (0) +

1

2

∑
k 6=0

(
Ek − ε0k − nṼ (k)

)
+

1

2

∑
k 6=0

Ek

(
α̂†kα̂k + α̂†−kα̂−k

)
(1.32)

where

ε0k =
~2k2

2m
and Ek =

√
ε0k(ε

0
k + 2nṼ (k)) (1.33)

n is the two-dimensional density of the gas, and Ṽ (k) is the interaction potential that

we discussed in Section 1.4.
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The Bogoliubov Dispersion

It is important to notice that having diagonalised the Hamiltonian, the quantity Ek
is the quasiparticle dispersion relation of our system. It is of much interest, and it is

worthwhile exploring its possible behaviour. To reiterate, it is of the form

Ek =

√
ε0k(ε

0
k + 2nṼ (k)) (1.34)

Recall that Ṽ (k) is a function of g and gdd, and is given by

Ṽ (k) =
1√
2πlz

(
g + gddF

(
klz√

2

))
(1.35)

Therefore, the shape of the dispersion relation will be dependent on these two pa-

rameters g and gdd, and the two-dimensional density of the gas n. Changing these

parameters will give us different dispersion relations.

Different atomic species possess different values of g and gdd. But we are not simply

restricted to considering the pairs of {g, gdd} belonging to each element in turn.

For Bose gases, the s-wave scattering length (and therefore g) can be tuned as

desired using Fano-Feshbach resonance [16, 17]. Furthermore, it is proposed that the

dipole strength gdd can also be tuned by rapidly rotating the dipole orientation [18].

ϕ

x

θ

Figure 1.4: Tuning the strength of dipolar interactions. If the dipoles are rotated sufficiently
quickly via an external magnetic field, the time-averaged dipole strength can be weakened, or
even made negative, by changing the dipoles’ offset angle ϕ. We should admit that rotating
dipoles like this would very hard to implement experimentally. By tilting the dipoles relative
to the z-direction (but not rotating them) we can weaken the dipolar interaction, but this does
introduce anisotropy into the system and alters the character of the dipole-dipole interaction.
While not discussed here, this remains a very interesting problem. Figure taken from [9]

Given that we can tune these parameters, we can explore a range of “domains”, as

illustrated in Figure 1.5.
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Figure 1.5: Stability phase diagram and some associated dispersion relations for a quasi-2D
dipolar Bose gas. In the white and light grey regions, the gas is dynamically stable. In the white
region, the dispersion is monotonically increasing, with a linear dispersion at low k (phonons)
and quadratic at high k (free particle). In the light grey region dipolar interactions lead to
a local minimum, or “roton”. In the black region, low k excitations are unstable. (This is
represented by the dotted red line, indicating an imaginary Ek). In the dark grey region, the
dipolar interactions are so strong that the roton minimum becomes imaginary, and hence the
system becomes unstable. Figure adapted from [19].

Rotons

The idea of rotons first appeared in the study of superfluidity in 4He. Following its

discovery 1938, there was great interest in attempting to explain liquid helium’s un-

usual non-dissipative behaviour. Landau (among others) suggested that superfluidity

arose because a fraction of the system became BEC-like [20]. He therefore proposed

a two-fluid model to describe liquid 4He, with one fluid corresponding to the super-

fluid component, and the other to the non-superfluid component. He also suggested

that within the non-superfluid component there existed localised quantised vortices, or

“rotons”, and that these rotons experience quadratic dispersion.

Indeed, the dispersion of 4He has a roton feature, as shown in Figure 1.6.
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Figure 1.6: Dispersion curve for 4He. Note the linear phonon dispersion at small momenta,

and the roton at ∼ 2Å
−1

. Figure taken from [21].

It must be noted that the relation between the roton feature and local vorticity within

the fluid remains unclear. It is not even certain if the roton feature is at all associated

with vorticity. Nozières proposed an alternative viewpoint [22]. He suggested the roton

minimum in 4He is instead a precursor to crystallisation, eloquently describing the

roton as “the ghost of the Bragg spot”. In other words, it is the system “threatening”

to become crystalline.

Filinov et al. considered dipolar bosonic molecules in a pure-2D geometry (where all

of the dipoles are held tightly side-by-side in a plane). With these exceptionally strong

dipoles and very tight confinement, a crystalline phase appeared that seemed associated

with the onset of roton instability. So perhaps in this case, Nozières’ proposal may have

some truth to it.

In our case of a quasi-2D Bose gas, what exactly we mean physically by “rotons”

is even less clear. We must content ourselves with our fairly abstract idea of them

as elementary excitations at wave numbers corresponding to a local minimum in the

dispersion.

Although we may not know what exactly rotons are, it is this roton minimum that

leads to the novel physics of dipolar gases.



Chapter 2

The Projected Gross-Pitaevskii

Equation

In the previous chapter we considered a dipolar Bose gas at zero temperature. At zero

temperature an almost pure BEC forms, which is well described by the GPE, and we

were able to consider elementary excitations via Bogoliubov theory.

We now turn our attention to higher temperature cases where the GPE alone pro-

vides an inadequate description of the system. Experiments routinely operate at tem-

peratures well beyond the reaches of the Bogoliubov approximation, and we would like

to be able to consider these regimes theoretically.

Faced with this problem, we turn to a different description of Bose gases that does

not force us to make such strong assumptions, and yet for which the problem remains

tractable. These techniques are known generically as c-field methods. Implementation

of these methods is one of the primary achievements of this dissertation.

2.1 C-field Methods and the PGPE

Bogoliubov theory was derived by assuming that we have appreciable occupation of

the ground state. C-field methods recognise that at nonzero temperatures this will

not only be true of the ground state. Indeed, many other modes will also have an

occupation much greater than one quantum. These modes therefore behave somewhat

like a classical field - hence the name “c-field methods”.

Generically, c-field methods divide the system into two distinct regions:

• the c-field region (C-region) contains the condensate and all other highly

degenerate modes. This region is evolved using field equations of a similar form

to the GPE, but with a few key modifications.

• the incoherent region (I-region) contains the modes are sparsely occupied.

The modes in this region have a weak influence on the dynamics of the C-region.

16
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C-region

I-region
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C-region
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(thermalised reservoir)

possible coupling

(classical matter waves)

Figure 2.1: Schematic view of the system. The low energy modes of the C-region behave like
classical matter waves, whereas the I-region can be considered as a thermalised reservoir.

Formally, we suppose the occupation of a plane wave mode Nk is much greater than

[âk, â
†
k] = 1 for not just the ground state, but for some larger set of modes. This defines

our C-region. We can then define the c-field operator

ψ̂(x) := PΨ̂(x) =
∑
k∈C

âkϕk(x) (2.1)

where we choose {ϕk(x)} to be the plane-wave basis,1

ϕk(x) =
1

L
e ik·x (2.2)

Given that all C-region modes are appreciably occupied, quantum fluctuations are

negligible and we may set ψ̂(x) → ψ(x). This is done by making the replacement

âk, â†k → ck, in which case

ψ(x) =
∑
k∈C

ckϕk(x) (2.3)

It is also useful to define a second projector Q = 1 − P. This allows us to consider

the Bose field operator in the I-region, QΨ̂(x) = η̂(x). In this region, the average

occupation of the modes is less than one, so quantum fluctuations are important. For

this reason we do not make any substitutions for âk or â†k as we did in the C-region.

1Recall that to handle the “infinite” x-y plane of our quasi-2D system, we restrict our attention a
square cell of edge length L. Our choice of {ϕk(x)} therefore gives an orthonormal basis.
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As introduced in Section 1.3, the equation of motion for the full Bose operator is

i~
∂

∂t
Ψ̂(x, t) =

(
−~2∇2

2m
+

∫
dx′ Ψ̂†(x′, t)V (x− x′)Ψ̂(x′, t)

)
Ψ̂(x, t) (2.4)

We can now separate Ψ̂(x) into ψ(x) and η̂(x) in this equation of motion. Having

done this, we project into the C-region to look at the dynamics of ψ(x). The resulting

equation one would obtain is the finite temperature GPE (FTGPE). It is a complicated

and lengthy equation, and so is not included here.2

The FTGPE describes the full dynamics of the system ψ(x) and its coupling to a

thermal bath η̂(x), accounting for all of the coupling between the C- and I-regions. In

the equation, there appear five interaction terms. These are pictorially illustrated in

Figure 2.2.

(b) (c) (d)

I-r
eg
io
n

C-
re
gi
onEn

er
gy

(a) (e)

Figure 2.2: Processes accounted for in the FTGPE formalism: (a) interactions within the
C-region, with both particles remaining in the C-region; (b) growth/loss processes arising from
interactions within the C-region, leading to particle and energy exchange between the regions
(c) the so-called “anomalous” term, which cannot conserve energy and therefore cannot describe
real processes in and of itself (d) scattering processes, leading to energy but not particle exchange
between the C- and I-regions (e) growth/loss processes arising from interactions within the I-
region, leading to particle and energy exchange between the regions

Importantly, the only assumption we made in the derivation of the FTGPE was the

condition that the modes in the C-region were highly occupied. It should therefore be

valid whenever this condition is satisfied: we haven’t yet had to make many restricting

assumptions.

However, the FTGPE is hardly any simpler than the original equation of motion.

After all, all we have done is separate the field operator into two parts and replaced

2See [23] for a complete derivation of the FTGPE for a gas with contact interactions only. The
dipolar case is analogous, if a little more complicated.
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some operators. Furthermore, if we were to attempt to solve it, we would also need

an equation of motion for the I-region dynamics. To make the problem tractable, we

must therefore decide to ignore some of the interaction processes. The key difference

between different c-field methods lies in this decision.

In the remainder of this dissertation, I will describe two of these c-field methods,

how I implemented them numerically, and the behaviour I observed in subsequent

simulations.

The first c-field method I will consider is the projected GPE (PGPE). This treatment

considers near-equilibrium behaviour. In these regimes, we assert that all interactions

between the C- and I-regions (terms b to e) are sufficiently weak that we can ignore

them. Under this assumption, the FTGPE reduces to

i~
∂

∂t
ψ(x) =

(
−~2∇2

2m
+ gq2D|ψ(x)|2 + ΦD(x)

)
ψ(x) (2.5)

This is the PGPE. It is simply the GPE extended to cover the C-region. Since there are

no interactions between the C- and I-regions, the PGPE is a microcanonical system:

the energy and particle number of the C-region is conserved.

2.2 Implementing the PGPE

To explore what the PGPE predicts about the dynamical and equilibrium properties

of Bose gases, we must turn to numerical simulations. We are now in a position to do

this.

I had access to pre-existing MATLAB R© code that implemented evolution according

to the PGPE for a quasi-2D Bose gas with contact interactions only.

This code solves the PGPE using a 4-5 Runge-Kutta algorithm with an adaptive

step size. The C-region is chosen to be all plane-wave modes below a predetermined

cutoff k value. This allows us to implement the projection operator in Fourier space

easily.

I modified the preexisting MATLAB R© code to incorporate dipolar effects, by in-

troducing the additional term ΦD(x) that accounts for dipolar interactions, which was

defined as

ΦD(x) := F−1[Ṽd(kρ)n(kρ)] (2.6)

where F is the fourier transform, n(kρ) = F|(ψ(ρ))|2 is the momentum-space density,
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and

F (q) = 2− 3
√
πqeq

2
erfc(q) (2.7)

Care needs to be taken when numerically evaluating the complementary error function

for large q. We make use of an asymptotic expansion to overcome this problem (see

Appendix A.3).

Dimensionless Variables

It is useful to choose dimensionless units for computational purposes. Let us consider

the full time-independent GPE with contact and dipolar interactions (as found in Sec-

tion 1.4):

µψ(x) = −~2∇2

2m
ψ(x) +

(
gq2D|ψ(x)|2 + Φdd(x)

)
ψ(x) (2.8)

The units for the energy, length, and time scales we choose are

~ωz, lz =
√
~/mωz, τ = 1/ωz, T0 =

~ωz
kB

(2.9)

It is then helpful to make the coupling interactions dimensionless by defining

g̃ =
mg√

2πlz~2
(2.10)

in which case we obtain the dimensionless form of the GPE

µ̃ψ̃(x̃) = −∇̃
2

2
ψ̃(x̃) +

(
g̃|ψ̃(x̃)|2 + Φ̃D(x̃)

)
ψ̃(x̃) (2.11)

where all the quantities used are now with respect to our dimensionless variables.3

These are the units that I adopted for numerical computations, and are used in all the

figures. But unless otherwise noted, I do not adopt them for equations in the body of

this dissertation.

3Note that ΦD contains an interaction coupling constant gdd, which must be is scaled in the same
manner as g.
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2.3 Algorithm Validation

Having developed this code, it was critical to ensure it was properly evaluating the

PGPE. To do this, we conducted an extensive array of tests.

Firstly, as the wavefunction evolves according to the PGPE, its energy must be

conserved and it must stay normalised. In our dimensionless units, the energy and

number functionals are given in turn by

Ẽ[ψ̃(x̃)] =
1

2

∫
dk̃ k2|φ̃(k̃)|2 +

1

2

∫
dx̃

(
g̃|ψ̃(x̃)|4 + Φ̃D(x̃)|ψ̃(x̃)|2

)
(2.12)

Ñ [ψ̃(x̃)] =

∫
dx̃ |ψ̃(x̃)|2 (2.13)

where φ̃(k̃) = F(ψ̃(x̃)). We found for typical4 simulations that both energy and particle

number were conserved up to a factor of approximately 10−11.

Of course, these are simple checks but we would be gravely concerned if these

quantities changed with time. A less trivial test involves the chemical potential. If

we have pure and uniform condensate with density
√
n, then the time evolution of the

wavefunction is given by

ψ(x, t) = ψ0(x)e−iµt/~ =
√
ne−iµt/~ (2.14)

This can be calculated using the GPE. Furthermore, the chemical potential can be

explicitly calculated using the time-independent GPE and the k → 0 limit of Ṽ (k)

(equations 1.14 and 1.22). We find that

µ̃ = ñ(g̃ + 2g̃dd) (2.15)

This was compared to the phase evolution ascribed to the condensate by the PGPE

code, and these two values were found to match (up to machine precision).

410,000-step simulations with a Runge-Kutta error tolerance of 10−4
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Single Quasiparticle Excitations

Here we describe a further test where we show that linearised excitations of our system

reproduce the expected Bogoliubov quasiparticles.

Recall that at low temperatures, our system acts like a set of non-interacting quasi-

particles, as defined by

α̂k = ukâk + vkâ†−k (2.16)

and these quasiparticles have a dispersion relation given by

Ek =

√
ε0k(ε

0
k + 2nṼ (k)) (2.17)

Inspired by the form of the quasiparticle operator, we consider a wavefunction of the

form

ψ(x) = ψ0(x) +
λ

L

{
uqe

iq·x − vqe−iq·x
}

(2.18)

for some small constant λ. This wavefunction corresponds to a condensate with an

excitation in a single quasiparticle mode with wave vector q. If we substitute this

wavefunction into the time-dependent Gross-Pitaevskii (equation 1.11), we can derive

its evolution.5 We find to first order in λ that

ψ(x, t) = e−iµt/~
(
ψ0(x) +

λ

L

[
uqe

i(q·x−ωqt) − vqe−i(q·x−ωqt)
])

(2.19)

where ωq = Eq/~ is the corresponding frequency of the quasiparticle excitation as given

by equation 2.17.

To make this comparison, we proceeded as follows

1. We construct an initial wavefunction as per equation 2.18, for some chosen q

2. The wavefunction was then evolved using the PGPE code, and we measured the

phase ∓θq with which the ±q plane wave modes evolved. As this phase changed

linearly with time we could determine ωq via θq = ωqt

3. This was then repeated for an array of different q. In this manner, we amassed a

set of data points {(q, ωq)}

These data points ought to match the Bogoliubov dispersion of equation 2.19. The

results of these simulations are shown in Figure 2.3.

5This derivation is contained in Appendix A.5
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Figure 2.3: Quasiparticle phase evolution for three systems: (a) has only contact interactions
(g = 0.25), (b) is weakly dipolar (g = 0.05, gdd = 0.10) and (c) is strongly dipolar (g = −0.05,
gdd = 0.15). Each blue point shows a data point (q, ωq) — the oscillation frequency ωq of
a single quasiparticle with a given wave vector q, as found using a PGPE simulation. The
dispersion relation Eq obtained via a Bogoliubov approach is shown in red.

The quasiparticle phase evolution clearly matches the Bogoliubov dispersion relation,

and these results gave us confidence that the dipolar PGPE code was functioning cor-

rectly.

Getting our code to pass these tests took a considerable amount of time and was

instrumental in removing a number of bugs.

2.4 A Near-Equilibrium Wavefunction

A condensate with a small amplitude quasiparticle excitation lies within the linearised

region. Our interest lies in far more energetic systems where the quasiparticles are

highly occupied and can interact.

Previous studies have shown that systems evolving according to the PGPE can

thermalise [24]. By this, I mean that these systems tend towards and settle at some

equilibrium state. As mentioned already, the energy and particle number of our sys-

tem is conserved, so the equilibrium state should be determined by these macroscopic

constraints.

When we began to investigate the evolution of some contrived wavefunctions, it

quickly became apparent that wavefunctions evolving according to the PGPE are slow

to equilibrate. To minimise computation time, it was worthwhile putting some thought

into what initial wavefunction we chose to evolve. The three initial wavefunctions we

considered are shown in Figure 2.4
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Figure 2.4: Density plots of three choices for the initial wave function: (left) the “top hat”
has uniform occupation of all modes below some energy cut-off. What is not visible from this
figure is that each mode is also given a random phase; (centre) the “noisy top hat” is the
same as the previous case, but now the occupation of the modes below the cut-off are normally
distributed; (right) finally, we can make an educated guess for a near-equilibrium wave
function, as discussed below.

The “top-hat” wavefunction was used in [24] to directly study thermalisation. It this

study, it was shown to equilibrate after ∼50,000 time steps. In their case, this “top

hat” was a sensible choice for an initial wavefunction, as it makes thermalisation clearly

visible. Our interest, however, lies in the equilibrium properties of the gas, so we would

like to avoid having to wait that long before the system thermalises. With that in

mind, we will now construct an improved initial wavefunction.

In Appendix A.5 we show that the excitations of a ground state can be written as

ψ̂(x) = ψ0(x) + ϕ̂(x) = ψ0(x) +
∑
j 6=0

[
uj(x)α̂j − v∗j (x)α̂†j

]
(2.20)

where uk(x) and vk(x) are of the form

uk(x) = uk
e ik·x

L

vk(x) = vk
e ik·x

L

(2.21)

and uk and vk are the coefficients associated with the quasiparticles, that are defined

in equation A.27.
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We would expect that each of the quasiparticle modes would be approximately

occupied according to the Bose-Einstein distribution.

〈α̂†kα̂k〉 ≈
1

eβεk − 1
= NBE (2.22)

where εk is the energy of the mode k, as calculated by the Bogoliubov dispersion, and

β = 1/kBT . Of course, the Bose-Einstein distribution only holds for the case of non-

interacting modes. Our quasiparticle modes will be interacting, but equation 2.22 can

serve as an approximation. We also know that we have the ensemble averages

〈α̂k〉 = 〈α̂kα̂k〉 = 〈α̂†kα̂
†
k〉 = 0 (2.23)

Therefore, we generate a set of numbers {αk} by

αk =

√
NBE

2
(xR + ixI) (2.24)

where xR and xI are from a set of normally distributed random numbers. This choice

means that αk mimics the behaviour of the quasiparticle operators; namely

|αk|2 =
1

eβεk − 1
and αk = αk

2 = (α∗k)2 = 0 (2.25)

We can then use these random numbers αk to generate the “near-equilibrium” wave

function

ψ(x) = ψ0(x) +
∑
k

(
ukαk

e ik·x

L
− vkα∗k

e−ik·x

L

)
(2.26)

This wavefunction should be near to equilibrium, so it will serve as a better starting

point for our simulations than the highly contrived “top hats”. Of course, in its con-

struction we have ignored interactions between each quasiparticle mode, which is an

oversimplification. We should not be surprised if even this wavefunction takes some

time to equilibrate.
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2.5 System Behaviour

Now, we will examine the behaviour of this near-equilibrium wave function when it is

evolved according to the PGPE.

We will be considering cases with different interaction strengths. Unless otherwise

stated, we will be consider the three cases from Figure 2.3. I will refer to these as

simply the “contact only”, “weakly dipolar”, and “strongly dipolar” cases respectively.

All simulations had a particle number of N = 25600, a box length L = 80, and a cut-off

energy εcut = 5.

Firstly, let us examine the effects of introducing dipolar interactions to the system.
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Figure 2.5: The system after time 100τ in the three cases (a) contact interactions only (b)
weakly dipolar (c) strongly dipolar/rotonic, corresponding to the cases explored in Figure 2.3.
The main figure shows position space occupation N(x) = |ψ(x)|2dx, and the inset shows the
k-space profile log10N(k) = log10

(
|F(ψ(x))|2dk

)
. The near-equilibrium wavefunction with

T = 0.1 was chosen as the initial wavefunction.

The key difference of note is the “halo” in the k-space density of the strongly dipolar

case (c). This system had a shallow roton minimum at k ≈ 1, which matches the k at

which this halo appears. As expected, these low-energy rotonic modes become readily

occupied.

This halo manifests itself in the corresponding position space density, where we see

larger fluctuations. Furthermore, these fluctuations seem to be of a regular size. To

investigate this further, consider what happens when we stay rotonic, but tune the

parameters g and gdd to move the roton feature to different k values (Figure 2.6).
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Figure 2.6: The density of the system with different roton minima at time τ = 100. Again,
the main image shows the position space density, and the inset the k-space density. The
corresponding dispersion relations are shown on the right. T was chosen in each case to make
the roton modes weakly occupied (T = 0.01, 0.1, and 0.25 respectively).

It can be seen that the size of the real space fluctuations approximately correspond to

the rotonic wavelength.

We now consider what happens when we increase the energy of the initial wavefunc-

tion. After all, we introduced the PGPE as a tool for going to temperatures beyond

the validity of Bogoliubov theory.

In practice we increase the energy of our system by tuning the T parameter used

in constructing the initial wave function. To reiterate what was shown in the previous

section, we choose an initial wavefunction

ψ(x) = ψ0(x) +
∑
k

(
ukαke ik·x − vkα∗ke−ik·x

)
(2.27)

where {αk} was a set of numbers generated by

αk =

√
1

2

1

eεk/kBT − 1
(xR + ixI) (2.28)

It is critical to keep in mind that T is not the temperature of our system. When we

constructed this initial wavefunction at some “temperature” T , we were considering

non-interacting modes. Now, we have introduced interactions, so it is no longer clear

what the actual temperature of the system is.6

Since system energy and particle number are conserved, we implicitly specify these

parameters in our choice of the parameter T .7

6If we desire to determine the actual temperature of the system, we must infer it indirectly. Doing
this is not entirely straightforward (see [24]).

7With all these caveats, T may seem a poorly chosen parameter now. However, in later chapters it
will give us something to compare to.
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That note aside, let us consider the effect of increasing the energy of a rotonic

system.
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Figure 2.7: The position and k-space densities for the strongly dipolar system at time τ = 100
with the parameter T = 0.01, 0.05, 0.1, and 0.125.

This behaves as expected: at low temperatures, the gas is almost exclusively in the

condensate. As temperature increases, the higher k modes become more occupied as,

the gas fluctuates more, and the roton “halo” becomes clearly visible.

The energies we’ve considered here are still comparatively low. The condensate

fraction for these cases have been about 0.99, and we are interested in the behaviour of

systems with higher energies. However, when we tried to consider these more energetic

systems, something dramatic happened.
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Figure 2.8: The condensate fraction as a function of time for the strongly dipolar/rotonic case,
for different values of T (and hence different values of E). These simulations had N = 25600,
L = 80, and εcut = 5

For high values of the parameter T , the condensate fraction drops suddenly. Looking at

the lower temperature cases, there is no apparent reason why these higher temperature

cases would suddenly display such dramatically different behaviour.
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To clarify what is going on here, let us look at the position-space density during

one of these collapses.
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Figure 2.9: Position space density as the strongly dipolar system collapses for T = 0.15. The
lowermost plot displays again the condensate fraction, but now we additionally look at the
position space density at seven different times (a to g) during collapse. For the first seven tiles,
the bounds on the color range are fixed, as given by the upper colour bar. (For this reason,
the final images seem to be purely maroon and blue, because the density greatly exceeds the
bounds.) In the eighth and final tile I replot case g with new bounds.

An area of large local density, or a “pimple”, forms. By pulling nearby gas into itself,

the pimple grows in density (but not in size). And as it grows, neighbouring pimples

start to form, until this blight has spread throughout all of the system.

But while the first seven tiles give a good impression as to how this spreading occurs,

perhaps the eighth tile is the most illuminating as to what is going on: the gas seems

to be collapsing into local density spikes. But it is only natural to ask, is what we are

observing here physical?
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Soliton-Like Phenomena

It occurred to us that what we are witnessing could be the formation of solitons.

A soliton is a non-dissipative, self-reinforcing solitary wave. The concept of a “wave

of translation” was first noted by John Scott Russell in 1844 [25], who wrote

“...I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat suddenly

stopped — not so the mass of water in the channel which it had put in

motion; it ... rolled forward with great velocity, assuming the form of

a large solitary elevation, a rounded, smooth and well-defined heap

of water, which continued its course along the channel apparently

without change of form or diminution of speed...”

These observations of a single, stable wave seemed at odds with the hydrodynamic

theory of Newton and Bernoulli, and this disagreement was only resolved in the 1870s

by Boussinesq and Rayleigh [26, 27].

The nonlinearity of the physics of BECs lead to such local and stable waves. Solitons

have been experimentally observed in BECs (see [28], for example). Furthermore,

they have been predicted to form in dipolar Bose gases in the case where the dipolar

interaction gdd has been tuned to become weak and negative [29, 30]. Santos et al.

reported that if a phonon instability8 arose, a transient gas of solitons could form and

thus the system may avoid collapse.

In contrast, we observed these soliton-like features in regions nearing roton (not

phonon) collapse, since we consider positive values for gdd.

We used a variational ansatz to assess the stability of our features. We were unable

to locate any stable solutions (which is why I’ve been referring to the features as

“soliton-like”).

We therefore expect that these features are unphysical. Let us reconsider what

happens as the system collapses. During collapse, the system begins to occupy pro-

gressively higher energy modes. However, our system is restricted to the C-region; all

of the modes our system can access are below some cut-off energy. Once the highest

energy modes have become occupied, the cut-off energy will stabilise the system, re-

sulting in the formation of “pimples”. In this scenario, our separation of the system

into the C- and I-regions is invalid.

8That is to say, if the system crosses from the white to the black region in Figure 1.5



CHAPTER 2. THE PGPE 31

2.6 Leaving the PGPE

While these “pimple” features are unphysical, that does not mean that the collapse

itself is unphysical too. The existence of this instability is significant in and of itself.

Identifying this instability is one of the notable achievements of this chapter.

The reader may be justifiably concerned that these collapses occur at such low

energies. At these low energies, one would think that Bogoliubov theory would hold

— and Bogoliubov theory does not predict any instabilities. However, Boudjemâa

and Shlyapnikov proposed earlier this year that satisfying the conditions necessary for

Bogoliubov theory to apply is much harder in rotonic systems than in the contact case

[31]. This may explain why Bogoliubov apparently fails at such low temperatures.

Our interest in stability aside, these “pimples” were an obstacle. They first appeared

when we attempted to consider rotonic gases, thereby preventing us from studying this

regime. The interesting dynamics of dipolar gases will be the strongest here, so we

want to somehow reach these regimes, if possible.

Furthermore, the limited ability of the PGPE to thermalise was proving to be

a hindrance. When we compared the evolution of “top hat” wavefunctions to our

“near-equilibrium” wavefunction, they did not equilibrate over the time scales we were

considering. The PGPE requires nonlinear interactions in the C-region and an excess

of energy over the ground state to thermalise — and thus for “cold” systems the PGPE

did not equilibrate. This means that the dynamics we observed may have been affected

by the choice of initial wavefunction.

With this in mind, we decided to study a second and more advanced c-field formal-

ism: the stochastic PGPE.



Chapter 3

The Stochastic Projected Gross-

Pitaevskii Equation

In this chapter I describe the stochastic PGPE (SPGPE) and its successful implemen-

tation. This provides us with a second tool for studying dipolar Bose gases, and I go

on to explore what the SPGPE predicts about the behaviour of dipolar Bose gases at

high temperatures.

3.1 The SPGPE

When we were first developing c-field techniques, we were presented with a choice as

to which interactions we accounted for. Let us reconsider the possible interactions we

can have between the C- and I-regions.
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Repeat of Figure 2.2, which
depicted the interaction terms
that appear in the finite temper-
ature GPE

For the PGPE, we chose to only account for interaction (a). The stochastic PGPE

(SPGPE) is another c-field technique which accounts for interactions (a) and (e). In

essence, the SPGPE no longer ignores the incoherent region, but treats it as an “infinite”

thermal and particle reservoir. This requires the I-region to contain many weakly

populated modes, meaning that the SPGPE is valid for sufficiently large systems for

temperatures from about 0.5TC to TC . The SPGPE is a grand canonical approach: the

C-region is evolved coupled to a reservoir with a chemical potential µ and temperature

T .

Once a system has equilibrated via the SPGPE, it has no net particle or energy

exchange with the reservoir. In these cases, the SPGPE and PGPE are roughly equiv-

alent. However, the slow thermalisation of the PGPE was causing us difficulties in the

32



CHAPTER 3. THE SPGPE 33

previous chapter. Additionally, we now want to be able to consider wavefunctions that

are not necessarily near equilibrium. The SPGPE offers us a better tool for treating

these systems.

An additional advantage of the SPGPE is the parameters we can now control. When

using the PGPE, the temperature of the system was somehow related to the energy of

the chosen initial wave function. And as I mentioned in the previous chapter, determin-

ing the temperature of a system in the PGPE framework is not entirely straightforward.

In contrast, the SPGPE incorporates the temperature as a tunable parameter of the

system, which is a distinct advantage.

SPGPE Theory

Compared to the PGPE, the SPGPE has a lot more underlying theory. To treat the

interaction term (e), we must use Wigner phase space methods. I will not discuss this

formalism here in any detail, but a comprehensive discussion of the SGPGE can be

found in [32] and the precise details of the derivation are contained in [33, 34, 35, 36].

In brief, if we define the GPE operator

L = −~2∇2

2m
+ g|ψ|2 + ΦD (3.1)

then the (simple growth) SPGPE is

dψ(x, t) = P
{
− i
~
Lψ(x, t)dt+

γ

kBT
(µ− L)ψ(x, t)dt+

√
2γdW (x, t)

}
(3.2)

where γ, µ, and T represent the coupling, chemical potential, and temperature of the

reservoir and P is the C-region projection operator as before. But although we will not

discuss this equation formally, we can gain some insight into what it says.

The first term is the familiar Hamiltonian operator for a Bose gas, in the same form

as it appeared in the GPE and PGPE.

The second term contributes damping to the system. In the absence of the third

term1, the system would evolve until the chemical potential of the system is equal to

the chosen value for the parameter µ. Note that this damping term disappears when

(µ− L)Pψ(x, t) = 0, which is reminiscent of the time-independent PGPE equation.

The final term dW (x, t) has come from the Wigner formalism. It contributes com-

plex gaussian noise to the system from the reservoir, transferring energy and particles

1The case dW = 0 is known as the quiet PGPE
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from the I- to the C-region.

3.2 Algorithm Validation; Density Distributions

Computationally, the SPGPE is implemented using a 4-5 Runge-Kutta algorithm, with

an adaptive step size. At the end of each step, some noise is added using the Euler

method.

Our SPGPE code builds on the dipolar PGPE code in the previous chapter. The

main issues in validating the code are not whether the dipole-dipole interactions are

implemented correctly, as we verfied this already for the PGPE. We want to determine

is whether the noise and damping have been correctly implemented.

To do this, we considered the k-space density distribution of the gas when it is at

equilibrium. By “k-space density distribution”, I mean

N(k) = 〈|F(ψ(x))|2〉 (3.3)

Before we begin discussing results from simulations, let us first predict what we will

see at low temperatures.

In low temperature regimes, the Bogoliubov approximation is valid, and individ-

ual quasiparticle modes interact with the reservoir independently of one another. We

therefore expect each quasiparticle mode to have a mean occupation of2

〈α̂†kα̂k〉 =
kBT

εk − µ
(3.4)

where εk − µ is given by the Bogoliubov dispersion relation Ek =
√
ε0k(ε

0
k + 2nṼ (k)),

since the Bogoliubov energies are defined relative to the condensate chemical potential.

We must deduce what equation 3.4 implies for the plane-wave operators âk, as it is

in a plane-wave basis that we consider our system numerically. Recall that we defined

the quasiparticle operators as

âk =ukα̂k − vkα̂†−k
â†−k =ukα̂

†
−k − vkα̂k

(3.5)

2The reader may rightfully ask why we have not used the Bose-Einstein distribution here. The
SPGPE assumes that the occupation of the modes in the C-region have an occupation much larger
than unity. Because of this, we expect the mean occupation of any given mode to be given not
by the Bose-Einstein distribution, but by classical limit of the Bose-Einstein distribution — that is,
equipartition.
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It follows from these definitions that

â†kâk = u2kα̂
†
kα̂k − ukvk(α̂−kα̂k + α̂†kα̂−k) + v2kα̂−kα̂

†
−k (3.6)

Taking averages, we obtain

〈â†kâk〉 = 〈α̂†kα̂k〉u2k + (〈α̂†−kα̂−k〉+ 1)v2k (3.7)

The ensemble averages 〈α̂−kα̂k〉 and 〈α̂†kα̂−k〉 vanished because the quasiparticle oper-

ators were defined to remove non-diagonal terms from the Hamiltonian.

Additionally, in the classical limit the commutator [α̂†k, α̂k] is negligible, so using

equation 3.4 we arrive at the final result

N(k) = 〈â†kâk〉 ∼= (u2k + v2k)
kBT

Ek
(3.8)

This is the k-space density distribution we expect our system to obey. Since we used

Bogoliubov theory in its derivation, it should only hold at low temperatures, where

quasiparticle interactions are negligible.

The Noninteracting Gas

To confirm our SPGPE code was working correctly, we first considered the noninteract-

ing gas (g = gdd = 0). In this case the non-interacting plane wave modes are themselves

the quasiparticles.3 Thus the plane wave modes themselves should obey the distribu-

tion kBT
Ek

. Knowing this, we simulated the non-interacting gas at low temperatures.

The results of these simulations are displayed in Figure 3.2.

3One can show explicitly that in the noninteracting case we have uk = 1, vk = 0
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Figure 3.2: Mode occupation for a non-interacting gas
evolved using the SPGPE with µ = 10−4. The average
mode occupation as found by our code is plotted in red,
green and blue for three different low reservoir tempera-
tures. The black lines show the theoretical distributions
as given by equation 3.8, which are well matched by the
data.
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It is important to note that we would expect the SPGPE to predict a classical dis-

tribution even in those cases where the system has very few excitations. Recall that

c-field techniques assume that the modes in the C-region are macroscopically occupied.

In these low energy cases, this assumption is invalid, so when we apply the SPGPE

to these systems, we do so erroneously. This is reflected in the fact that the SPGPE

returns not the Bose-Einstein distribution, but its classical limit.

Because the SPGPE code returned the classical distribution we had confidence that

the algorithm was functioning correctly for the non-interacting case.

The Interacting Gas

With more confidence in my SPGPE implementation, we now reintroduce both contact

and dipolar interactions to the system, and consider the effect of temperature on N(k).

We did this for the three cases from Figure 2.3 — the “contact”, “weakly dipolar”,

and “strongly dipolar” cases we previously studied using the PGPE. The results for

the weakly dipolar case are shown in Figure 3.3.
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Figure 3.3: k-space density distributions N(k) in the weakly dipolar case.

From this figure, it is evident that the density profile does not significantly differ from

the Bogoliubov theory, at low temperatures, demonstrating that our SPGPE method

is working in the interacting regime. Furthermore, the theories continued to agree even

at high temperatures.

We saw good agreement with Bogoliubov theory for the contact and strongly dipolar

cases, too. The distribution was changed very little4 by dipolar interactions.

4We do see a “bump” in the strongly dipolar profile, corresponding to the “halo” we saw for rotonic
systems in Chapter 2. However, this bump was very small and would be incredibly hard to measure.
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3.3 Density Fluctuations

As we just discussed, the density distributions N(k) were not drastically affected by

introducing dipolar interactions. In light of this, we now turn to a quantity that should

be much more sensitive to interactions: density fluctuations. We define

δnk = F (n(x)− n) (3.9)

as the spatial spectrum of density fluctuations, which are characterised by the expec-

tation

S(k) =
〈|δnk|2〉
N

(3.10)

The quantity S(k) is a measure of the density fluctuations, and is known as the static

structure factor. The division by N (the total particle number) ensures it is conven-

tionally normalised. As it can be seen from its definition, the density fluctuations are

a k-space decomposition of the fluctuations in the system’s density.

It is already known that the density fluctuations of a gas differ notably between

contact and dipolar gases. Density fluctuations have been identified as a possible “sig-

nature” for dipolar interactions [37].

Importantly, density fluctuations have been experimentally measured using in situ

imaging [38] and by Bragg spectroscopy [39], so they are a reasonable parameter to

consider.

As always, we will want to compare our simulation results to preexisting theory, so

before carrying out simulations we will first consider some theoretical predictions.

Bogoliubov Treatment of Density Fluctuations

We now construct what Bogoliubov theory predicts for the density fluctuations. Again,

let us adopt the plane-wave basis

ψ̂(x) =
∑
k

1

L
e ik·xâk (3.11)

In this basis, the corresponding operator n̂(x) = ψ̂†(x)ψ̂(x) can be written as

n̂(x) =
1

L2

∑
q

eiq·xN̂q (3.12)
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where

N̂q =
∑
k

â†k−qâk (3.13)

Now, if we adopt the Bogoliubov prescription â0, â†0 →
√
N0, we can separate N̂q into

terms proportional to N0,
√
N0 and 1. Since N0 � 1, these terms get progressively

smaller. To order
√
N0, equation 3.13 becomes

N̂q ≈ N0 +
√
N0(â

†
−q + âq) = N0 +

√
N0(uq − vq)(α̂†−q + α̂q) (3.14)

If we substitute equation 3.14 back into equation 3.12, it can be seen that the density

fluctuations of the gas (in real space) are given by

δn̂(x) = n̂(x)− n =

√
N0

L2

∑
q 6=0

eiq·x(uq − vq)(α̂†−q + α̂q) (3.15)

where we have set n = N0/L
2. In Fourier space, these density fluctuations become

δn̂k =

∫
dx e ik·x δn̂(x)

=
√
N0(uk − vk)(α̂†k + α̂−k)

(3.16)

Thus

〈δn̂†kδn̂k〉 = N0(uk − vk)2〈(α̂k + α̂†−k)(α̂†k + α̂−k)〉 (3.17)

Noting that some of the ensemble averages disappear, we find that5

S(k) :=
〈|δn̂k|2〉
N0

= (uk − vk)2(〈α̂†kα̂k〉+ 〈α̂†−kα̂−k〉+ 1) (3.18)

In the classical limit the commutator is negligible and ensemble averages are given by

the limit of the Bose-Einstein distribution (much like when we were considering density

distributions). Therefore we obtain the final result

S(k) = (uk − vk)2
2kBT

Ek
(3.19)

5The reader may notice that I here divide by N0, but when I originally introduced density fluctu-
ations in equation 3.10, I divided by N . In the Bogoliubov case, N0

∼= N . But we will soon consider
higher temperatures where the condensate number will drop significantly below N . At these higher
temperatures, N is the appropriate divisor.
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Simulations

Having established a theoretical expression for density fluctuations in the Bogoliubov

regime, we are ready to consider some simulations.

Density fluctuations are ideally measured when the system is at equilibrium. We

therefore started with a “top hat” wavefunction, and allowed it to evolve until it equili-

brated. We then periodically measured δn̂k as the system evolved while in equilibrium.

The density fluctuations can then be calculated using the average of this set of accu-

mulated measurements {δn̂k}.
Figure 3.4 illustrates two typical density fluctuation results.

kx kx

kyky

S(k)

Figure 3.4: Density fluctuations at T = µ = γ = 1 for the “contact” (g = 0.25, gdd = 0) case
and a “moderately” dipolar system (g = 0, gdd = 0.125), averaged over a time of ∼ 200τ and
for a system with L = 80 and εcut = 5.

In contrast to the density distributions, there is a very clear difference between these

two sets of results. The contact distribution appears much like a “hill”, whereas the

dipolar distribution becomes a “volcano” with a peak in density fluctuations for near-

rotonic wavelengths. It seems that it is very favourable for these modes to fluctuate.

This volcano-like distribution is characteristic of dipolar systems. It is also important

to note that the maximum fluctuation value is more than three times larger in the

dipolar case.

Let us study these results in more detail. We are specifically interested how the

density fluctuations are dependent on temperature. At low temperatures, the SPGPE

and Bogoliubov theories should predict similar density fluctuations. However, at higher

temperatures the Bogoliubov treatment becomes invalid. In these regimes, the c-field



CHAPTER 3. THE SPGPE 40

predictions should begin to disagree with the predictions of Bogolibov theory, and the

SPGPE should provide some insight into the effects of quasiparticle interactions. We

examine the temperature dependence of density fluctuations in Figure 3.5.
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Figure 3.5: Density fluctuations as a function of k =
√
k2x + k2y for the contact (top row) and

weakly dipolar cases (bottom row). Each set of simulation data is simply the radial profile of
a distribution much like those of Figure 3.4. (One can picture rotating these graphs about the
k = 0 axis to recover “hills” and “volcanoes”.) The parameters chosen for these simulations
were µ = γ = 1, L = 80, and εcut = 5, and the fluctuations were measured over a time span of
∼ 200τ .

As suspected, we witness a departure of the SPGPE from Bogoliubov theory: in both

cases, the SPGPE predicts significantly lower density fluctuations at low k values.

These are the results for the “contact” and “weakly dipolar” case. As I attempted to

obtain the same results for the strongly dipolar case, we witnessed a familiar instability:

the “pimple” features resurfaced.
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For the strongly dipolar case, the simulations were incredibly temperamental, break-

ing down at temperatures as low as T = 0.1. As they did in the case of the PGPE,

these pimples prevented us from considering high temperature, strongly dipolar sys-

tems. As a concession, we weakened the dipolar effects to consider a system with a

“moderate” dipolar strength (lying in between the “weakly” and “strongly” dipolar

cases we’ve been considering). However, even this system showed some instabilities for

T & 1, which are shown in Figure 3.6.
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Figure 3.6: Snapshots of the position space density of a “moderately” dipolar gas evolving
via the SPGPE at T = 1.5. In the space of these three time steps, a “pimple” appears, and
very shortly after τ = 59 the code broke down.

Of course, one would not turn to the SPGPE to try to avoid these pimples forming (and

this was not our primary motivation for leaving the PGPE). The pimples, as we have

discussed, are regions of incredibly high density that grow dramatically, pulling more

of the surrounding gas into itself. Because the SPGPE has introduced coupling with

an “infinite” particle reservoir, this growth is now even more dramatic; the pimple can

grow even faster by drawing particles from the reservoir. This made the appearance

of pimples even more calamitous; upon pimple formation, the Runge-Kutta algorithm

almost immediately broke down (no step size, no matter how small, would return a

result within the the algorithm’s error tolerance).

We will not pursue the strongly dipolar (rotonic) regime here.6

6We note that by working in the larger condensate regime (keeping µ = n(g + 2gdd) constant but
increasing n and decreasing g + 2gdd we expect the instability to be less troublesome.
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3.4 An Upper Bound on the Dispersion

As already discussed, the density fluctuations of a gas are dramatically affected by

dipolar interactions and thus serve as a signature of the dipole-dipole interaction.

Furthermore, the usefulness of knowing S(k) extends beyond knowing how the gas

will fluctuate.

When we considered elementary excitations of the zero temperature dipolar Bose

gas in Section 1.5, we acquired the dispersion relation

Ek =

√
ε0k(ε

0
k + 2nṼ (k)) (3.20)

where ε0k = ~2k2
2m is the single particle energy, n is the particle density and Ṽ (k) is the

interaction potential in Fourier space.

This expression for the dispersion only holds where the Bogoliubov approximation

is valid (namely, when the thermal depletion is small). As we push upwards to higher

temperatures, the dispersion relation itself will be affected and we cannot expect equa-

tion 3.20 to be accurate.

Calculating the dispersion relation at non-zero temperatures is a difficult task. How-

ever, because we know how S(k) behaves at higher temperatures, we are in a position

to gain some insight into how the dispersion relation has shifted. This is what we will

investigate now.

In his studies of liquid helium, Feynman proposed [40] that the dispersion relation

has an upper bound given by

Ek 6
ε0k
S(k)

(3.21)

(He obtained this result via a variational approach.) Equation 3.21 only applies at zero

temperature, but it can be generalised to nonzero temperatures [41] as

ω(k) 6 ωF (k) where ~ωF (k) tanh

(
~ωF (k)

2kBT

)
=

εk0
S(k)

(3.22)

which in the classical limit (leading to equipartition) becomes

~2ω2
F (k)

2kBT
=

εk0
S(k)

(3.23)

To get an appreciation as to where this is coming from, let us reconsider the Bogoliubov
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prediction for density fluctuations. This was given by equation 3.19 as

S(k) = (uk − vk)2
2kBT

Ek
(3.24)

where Ek is the Bogoliubov dispersion. We know explicitly what uk and vk are in

terms of ε0k and nṼ (k) (see equation A.27). Using these definitions, we can expand

these coefficients to show that

(uk − vk)2 =
ε0k
Ek

(3.25)

and thus equation 3.24 becomes

S(k) =
2ε0kkBT

E2
k

=⇒ Ek =

√
2εk0kBT

S(k)
(3.26)

Note that this matches equation 3.23. However, in that result ωF (k) was an upper bound

on the dispersion, not the dispersion itself. It just so happens that in the Bogoliubov

limit the dispersion ω is equal to the upper bound ωF .

In conclusion, we can infer an upper bound for the system’s dispersion relation

given by

Ek 6

√
2εk0kBT

S(k)
(3.27)

In the previous section, we obtained a new (and hopefully improved) S(k) via SPGPE

simulations. We can now use those results to derive a new upper bound on Ek (see

Figures 3.7 and 3.8).
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Figure 3.7: Dispersion relations for the contact (top row) and weakly dipolar cases (bottom
row). The Bogoliubov dispersion relation is plotted in red, while in black we have the new upper
bound as calculated using the SPGPE density fluctuation results. These plots were obtained
for the same parameters as Figure 3.5.

For the contact and weakly dipolar cases, the “pimples” did not trouble us, and we were

able to consider the high temperature regimes of interest. As expected, the Bogoliubov

and SPGPE Feynman limit agree at low temperatures, and at higher temperatures, they

part, with the SPGPE predicting upper bounds that are higher than what Bogoliubov

theory proposes. Interestingly, the dipolar case is closer to the Bogoliubov dispersion

than the contact case.
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Unfortunately, the appearance of the instabilities completely prevented us from

studying the strongly dipolar regime. However, we did investigate the “moderately

dipolar” case; the results for which are shown in Figure 3.8.
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Figure 3.8: Dispersion relation for the moderately dipolar case. These were obtained for the
same parameters as Figure 3.5, but with g = 0, gdd = 0.125.

These results are still for low temperatures, so by T = 1 we do not yet see substantial

change in the dispersion. However, what small disagreements we do see hint at a

possible increase in the dispersion for low k modes, whcih would suggest these modes

are more robust than Bogoliubov theory indicates. But more importantly, we also see

suggestions of a decrease at more energetic modes, suggesting these modes are softened

by their interaction with other quasiparticles. This is quite different from the raised

dispersions in the contact and weakly dipolar cases, where the higher modes increased

in energy. In light of this, one might boldly speculate that for stronger dipolar cases

the dispersion will lower at high k.



Conclusion and Future Work

In summary, the significant achievements of this work are as follows:

Implementation of the PGPE and SPGPE for quasi-2D dipolar systems

We successfully made the first implementation of the PGPE and SPGPE for quasi-

2D dipolar gases. In this dissertation, I have described this implementation and the

extensive validation of our algorithm that we carried out.

Having read this dissertation, it may appear to the reader that the only options for

theoretically considering Bose gases are either Bogoliubov theory or c-field techniques.

Of course, this is not the case. There are a number of methods for considering these

systems1.

A standard procedure for treating non-zero temperature BECs is the Hartree-Fock-

Bogoliubov-Popov (HFBP) formalism. The HFBP is an improvement upon the Bogoli-

ubov approximation, and has been widely used in the case of Bose gases with contact

interactions. However, incorporating long-range interactions into the HFBP is a chal-

lenge. It is particularly difficult to incorporate the thermal exchange interaction2 For

this reason, the HFBP is not ideal for considering the dipole-dipole interaction.

We encountered no such difficulties when using c-field techniques — these methods

are better suited to handling long-range interactions. For this reason, our success in

implementing these c-field methods for dipolar interactions is an important achieve-

ment.

Identifying Roton Regime Instability

Having implemented c-field techniques, we explored the behaviour of dipolar gases, and

quickly discovered system instabilities. In the rotonic regime, the system appears highly

sensitive to thermal fluctuations, even for systems with very small thermal fractions.

This behaviour is not apparent from Bogoliubov theory.

These instabilities, which appeared in both the PGPE and SPGPE simulations,

are of substantial interest. Currently, there is a lot of attention in the dipolar BEC

1For an in-depth discussion about some of these techniques, see [42]
2Recall that the exchange interaction is the interaction between two identical particles arising from

symmetrisation of the wavefunction. The thermal exchange interaction is concerned with the exchange
interaction of particles outside the condensate (hence “thermal”).

46



CONCLUSION AND FUTURE WORK 47

community focused on the stability of these condensates. With experiments currently

searching for evidence of rotons in dipolar BECs, our initial findings suggest it may be

difficult to obtain equilibrium systems in the roton regime.

Study of Density Fluctuations

We obtained the density fluctuations for the contact and weakly dipolar regimes, and

there were dramatic differences in the density fluctuation profiles for these two cases.

Furthermore, we also found that c-field techniques suggested density fluctuations will

be smaller than Bogoliubov theory predicts. These differences are something that

experiments could explore.

The density fluctuations we obtained also provided some insight into the dispersion

relation of the system.

From here, there are a number of possible avenues for further work.

We identified system instabilities of significant interest — but we have only noted

their appearance. Characterising collapse and studying the lead-up to collapse could

be worthwhile. This may allow us to assess the time window in which it might be

practical to detect rotons.

In further study of the instabilities, it would be interesting to incorporate three-

body loss terms into our equations of motion. Three body loss leads to particle loss in

regions of high density, and this action may combat the local density peaks seen during

collapse.

It would also be worthwhile to consider better methods for inferring the dispersion

relation of our system. The Feynman limit we considered is an upper bound, and can

be a fairly poor estimate for the actual dispersion. If we are indeed witnessing rotonic

collapse, the dispersion ought to be approaching zero. There exist better methods for

extracting the dispersion relation of the system, and these improved dispersions may

tell a different story.

If we were not interested in the collapse, but instead desired to study the density

distributions and dispersions for the rotonic regime, we could avoid the instabilities

by working in the larger condensate regime (for example, by keeping µ = n(g + 2gdd)

constant but increasing n and decreasing g + 2gdd). This way, we should be able to

obtain stable rotonic systems.

It would also be worthwhile comparing our results found in this dissertation (such

as density fluctuations) to other non-zero temperature theories such as HFBP. Making
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these comparisons could verify what we have seen — or possibly force us to consider

and resolve any differences between the two theories, should they arise.

Finally, our system may provide a method for evaluating thermal exchange inter-

actions for large systems. As such, existing studies using self-consistent mean field

calculations have only been able to consider small systems and are computationally

very expensive [43, 44]. Our techniques can treat large systems and make including

thermal exchange interactions tractable.
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[26] J. Boussinesq, “Théorie de l’intumescence lliquid appelée onde solitaire ou de trans-

lation, se propageant dans un canal rectangulaire,” Compte Rendus Acad. Sci.

Paris, vol. 72, pp. 755–9, 1871.

[27] Lord Rayleigh, “On waves,” Philosophical Magazine (5), vol. 1, pp. 257–79, 1876.

[28] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A. Collins, J. Cubizolles,

L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I.

Schneider, and W. D. Phillips, “Generating solitons by phase engineering of a

Bose-Einstein condensate,” Science, vol. 287, no. 5450, pp. 97–101, 2000.

[29] P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose-Einstein

condensates,” Phys. Rev. Lett., vol. 95, p. 200404, Nov 2005.

[30] R. Nath, P. Pedri, and L. Santos, “Phonon instability with respect to soliton

formation in two-dimensional dipolar Bose-Einstein condensates,” Phys. Rev. Lett.,

vol. 102, p. 050401, Feb 2009.
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Appendices

A.1 The Limitations to Quasi-2D

Quasi-2D geometry is really a limiting case of the oblate spherical trap — experimen-

tally, the condensate necessarily needs to be confined in all directions. We make a

number of assumptions in adopting a quasi-2D geometry. It is therefore important to

know the applicability and limitations of these assumptions.

To have a quasi-2D geometry, recall that we required the following conditions to

hold

kBT � ~ωz (A.1)

µ ≈ nc(g + 2gdd)� ~ωz (A.2)

In this case, we asserted that ψ(x) = χ(z)ψ(ρ), where χ(z) is the ground state of the

harmonic oscillator

χ(z) =
1

lz
1/2π1/4

exp

(
− z2

2lz
2

)
(A.3)

However, this ansatz is not entirely valid. Current dipolar experiments with flat “pan-

cake” trap geometries do not quite satisfy these assumptions.

Furthermore, the conditions A.1 and A.2 are often pushed, if not broken, in many

situations. In fact, in the case of repulsive contact interactions, roton collapse can only

occur once the quasi-2D assumptions have already been violated [45].

All of this paints a fairly gloomy picture for quasi-2D, and any hope for obtain-

ing useful information from quasi-2D models would appear faint. However, quasi-2D

systems can in fact be qualitatively good models. Wilson et al. [46] considered an

ultracold dipolar Bose gas in a one-dimensional lattice, as illustrated in Figure A.1.
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Figure A.1: A one-dimensional lattice, consisting of stacked oblate wells. This is a typical
experimental trap.

Wilson et al. then considered the validity of this ansatz by considering an alternative

ansatz for the axial wavefunction

χ(z) =
1√

1− λ2
(χ0(z, lz) + λχ2(z, lz)) (A.4)

where lz was now allowed to vary, χ0 and χ2 are the ground and second excited states of

the harmonic potential, respectively, and λ is some parameter that defines the fraction

of the wavefunction in the second excited state. This new anzatz allows the axial

wavefunction to deform symmetrically. (They did not consider the first excited state,

as its introduction would instead lead to translation.)

They then compared the results of simulations of three cases

• λ = 0 and lz fixed (the standard quasi-2D assumption)

• both λ and lz treated variationally

• full three-dimensional modelling

They found that while quantitatively the results of these simulations differed, they

exhibited the same behaviour qualitatively.

This vindicates our choice to work in a quasi-2D geometry. So long as we keep in

mind that our results may not be quantitatively accurate, quasi-2D models are very

useful. Full three dimensional simulations of systems such as ours would be compu-

tationally very expensive. With quasi-2D models, we remove one dimension from the

problem completely, which enormously reduces the computational demands of any sim-

ulations.

It is telling that, having studied this variational ansatz for χ(z), Wilson et al.

returned to consider quasi-2D systems in subsequent publications.
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A.2 Dipole-Dipole Potential

Here, we evaluate the dipole interaction potential as it appears in the GPE (equation

1.14) and elsewhere. The term we want to evaluate is∫
dx′ ψ∗(x′)Vd(x− x′)ψ(x′) (A.5)

Since we are in quasi-2D, we can also integrate out the z direction to remove the z

dependence from the problem∫
dz χ∗(z)

{∫
dx′ ψ∗(x′)Vd(x− x′)ψ(x′)

}
χ(z)

=

∫
dz χ∗(z)

{∫
dρ′
∫
dz′ ψ∗(ρ′)χ∗(z)Vd(x− x′)ψ(ρ′)χ(z′)

}
χ(z)

=

∫
dρ′ |ψ(ρ)|2

∫
dz

∫
dz′ χ∗(z)χ∗(z′)Vd(x− x′)χ(z′)χ(z)︸ ︷︷ ︸

Vd(ρ−ρ′)

(A.6)

To evaluate this integral, let us consider the interaction potential of identical dipole

moments aligned along the z direction.

Vd(x) =
d2

x3

(
1− 3(x̂ · d̂)2

)
(A.7)

The fourier transform of Vd(x) is given by

Ṽd(k) = gdd

(
3

(
kz
k

)2

− 1

)
(A.8)

Now, for reasons that will be apparent in a moment, let us consider the following

integral

Ṽd(kρ) =

∫
dkzñ(kz)

2Ṽd(k) (A.9)

To calculate ñz(kz), recall that in the quasi-2D regime we assume the axial wavefunction

takes the explicit form χ(z) given in equation 1.4. From this, we find

ñz(kz) = F(|χ(z)|2) = exp

(
−1

4
k2z l

2
z

)
(A.10)
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so we can evaluate the integral A.9 to give

Ṽd(kρ) = gdd

∫
dkz e

− 1
2
kz

2lz
2

(
3

(
kz
k

)2

− 1

)

=
gdd√
2πlz

F

(
kρlz√

2

) (A.11)

where

F (q) = 2− 3
√
πqeq

2
erfc(q) (A.12)

We are interested in this integral because it is the Fourier transform of Vd(ρ− ρ′), the

term that we were interested in equation A.6. (I will not prove that this is the case,

but I refer the reader to Appendix A of [9].)

Seeing that we have acquired the Fourier transform of Vd(ρ − ρ′), we can now

evaluate equation A.6 using the convolution theorem, to obtain∫
dz χ∗(z)

{∫
dx′ ψ∗(x′)Vd(x− x′)ψ(x′)

}
χ(z) =

∫
dρ′ n(ρ′)Vd(ρ− ρ′)

= F−1
(
ñ(kρ)Ṽd(kρ)

) (A.13)

where n(kρ) = F(|ψ(ρ)|2). This is the explicit form for the interaction integral that

we desire. For brevity, we define ΦD(x) := F−1
(
ñ(kρ)Ṽd(kρ)

)
A.3 Asymptotic Limit of the Complementary Error Func-

tion

When implementing dipolar interactions, we must consider the interaction potential in

k-space. As discussed already, it takes the form

Ṽd(kρ) = gd,q2DF

(
kρlz√

2

)
where F (q) = 2− 3

√
πq expq

2
erfc(q) (A.14)

MATLAB R© handles F (q) badly for large q since the exponential term grows very, very

quickly while the complementary shrinks oppositely. MATLAB R© tries to evaluate these

two terms separately, and soon returns infinities. This can be resolved as follows.
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For large q, the complementary error function is given by

erfc(q) =
e−x

2

q
√
π

(
1 +

∞∑
n=1

(−1)n
(2n− 1)!!

(2x2)n

)
(A.15)

where (2n− 1)!! is the double factorial: the product of all odd numbers up to 2n− 1.

Using this, F (q) can be computed as

F (q) = 2− 3

(
1 +

∞∑
n=1

(−1)n
(2n− 1)!!

(2x2)n

)
(A.16)

Casting the complementary error function in this form resolves all the difficulties

MATLAB R© had in evaluating it.

A.4 Bogoliubov Quasiparticles in Dipolar Gases

In Section 1.5, we presented the results from diagonalising our system’s Hamiltonian.

In this appendix, we explicitly carry out this diagonalisation process. As found in that

section, the Hamiltonian of a quasi-2D system in a plane wave basis is given in by

Ĥ =
∑
k

~2k2

2m
â†kâk +

1

2L2

∑
k1,k2,q

Ṽ (q)â†k1+qâ†k2−qâk1 âk2 (A.17)

Recall that having restricted ourselves to an ultracold gas that is almost exclusively in

the condensate, we have N0 � 1, and thus

â0|N0, 0, 0, ...〉 ≈
√
N0|N0, 0, 0, ...〉 â†0|N0, 0, 0, ...〉 ≈

√
N0|N0, 0, 0, ...〉 (A.18)

In light of this, Bogoliubov suggested the approximation â0, â†0 →
√
N0 [15].

By employing this approximation, the Hamiltonian separates into terms propor-

tional to N0
2, N0

3/2, N0, and so on. Since N0 � 1, these get progressively smaller. We

use this approach to simplify the Hamiltonian of equation A.17. Keeping only terms

up to order N0, the kinetic part can be written as

Ĥkin =
1

2

∑
k 6=0

ε0k

(
â†kâk + â†−kâ−k

)
(A.19)
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Meanwhile, the interaction part of the Hamiltonian becomes

Ĥint ≈
1

2L2

[
N0

2Ṽ (0) + 2N0

∑
k 6=0

Ṽ (0)
(

â†kâk

)
+N0

∑
k 6=0

Ṽ (k)
(

â†kâk + â†−kâ−k

)

+N0

∑
k 6=0

Ṽ (k)
(

â†kâ†−k + âkâ−k

)]
(A.20)

We’ve kept only the terms of N2
0 and N0 (the N

3/2
0 terms vanish). The three sums are

called the direct, exchange, and pairing interactions respectively.

It is worthwhile writing N0 as

N0 = N −
∑
k 6=0

â†kâk (A.21)

because N (the number of particles in our cell) is fixed. Substituting this into A.20

gives

Ĥ =
1

2
nNṼ (0) +

1

2

∑
k 6=0

[
(ε0k + nṼ (k))

(
â†kâk + â†−kâ−k

)
+ nṼ (k)

(
â†kâ†−k + âkâ−k

)]
(A.22)

We’ve neglected terms like (
∑

k 6=0 âkâ†k)2, which will be comparatively small. Also note

that the direct interactions have been cancelled entirely by introducing A.21.

This Hamiltonian is a quadratic form in the creation and annihilation operators. We

can therefore diagonalise the Hamiltonian by introducing the “quasiparticle” operators

α̂†k and α̂k, where

âk = ukα̂k − vkα̂†−k
â†−k = ukα̂

†
−k − vkα̂k

=⇒ α̂k = ukâk + vkâ†−k
α̂†−k = ukâ†−k + vkâk

(A.23)

where uk and vk are some real coefficients. This transformation is canonical provided

the Bose commutation relations are satisfied,

[α̂†k, α̂k′ ] = δkk′ =⇒ u2k − v2k = 1 (A.24)
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Directly substituting this into the Hamiltonian gives

Ĥ =
1

2
nNṼ (0) +

∑
k 6=0

(
(ε0k + nṼ (k))v2k − nṼ (k)ukvk

)
+

1

2

∑
k 6=0

(
(ε0k + nṼ (k))(u2k + v2k)− 2nṼ (k)ukvk

) [
α̂†kα̂k + α̂†−kα̂−k

]
+

1

2

∑
k 6=0

(
nṼ (k)(u2k + v2k)− 2(ε0k + nṼ (k))ukvk

) [
α̂†kα̂

†
−k + α̂kα̂−k

]
(A.25)

This is diagonal in α̂†kα̂k provided we choose uk and vk to satisfy

nṼ (k)(u2k + v2k)− 2(ε0k + nṼ (k))ukvk = 0 (A.26)

We can incorporate u2k − v2k = 1 by writing uk = cosh θk and vk = sinh θk, so it follows

that

tanh(2θk) =
nṼ (k)

ε0k + nṼ (k)
=⇒ θk =

1

2
tanh−1

(
nṼ (k)

ε0k + nṼ (k)

)
(A.27)

From this, we can easily calculate uk and vk. This choice of uk and vk gives the

Hamiltonian

Ĥ =
1

2
nNṼ (0) +

1

2

∑
k 6=0

(
Ek − ε0k − nṼ (k)

)
+

1

2

∑
k 6=0

Ek

(
α̂†kα̂k + α̂†−kα̂−k

)
(A.28)

where we define

Ek =

√
(ε0k + nṼ (k))2 − (nṼ (k))2 =

√
ε0k(ε

0
k + 2nṼ (k)) (A.29)

Now, this Hamiltonian is diagonal. Of course, we have neglected higher order terms so

the quasiparticles do not truly diagonalise the full Hamiltonian. It is also worthwhile

noting that the form of the Hamiltonian makes it apparent that Ek is the dispersion

relation of the gas.

A Note on Conventions

There are multiple conventions as to how the quasiparticle operators are defined. How

we defined them, in equation A.23, is by no means unique. I have chosen to be consistent
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with [47], as opposed to the conventions used by [12, 48, 49]

What is more noteworthy, however, is a subtlety of a common method for solving

for uk and vk. Some authors provide the following solution:

v2k = u2k − 1 =
1

2

(
ε0k + nṼ (k)

Ek
− 1

)
(A.30)

However, this approach only works properly if uk and vk are positive. (The authors

who use this approach are usually treating a situation with contact interactions only,

in which case nṼ (k) = ng, so this assumption is quite reasonable.) For a dipolar gas,

it is possible for uk and vk to run negative while the gas remains stable. In this case,

we must use the the solution involving θk.

A.5 An Alternative Approach; the Bogoliubov de Gennes

Equations

Consider again the Gross-Pitaevskii Equation

i~
∂

∂t
ψ(x, t) =

(
Ĥ (1) +

∫
dx′ ψ∗(x, t)V (x− x′)ψ(x, t)

)
ψ(x, t)

In Section 1.5 we treated excitations of this system by considering quasiparticles, whose

introduction diagonalised the Hamiltonian to first order. I claimed that this is equiva-

lent to linearising small oscillations in the Gross-Pitaevskii Equation.

Here, I want to demonstrate this equivalence. The following linearisation procedure

offers an intuitive way of considering the Bogoliubov approximation, and equips us with

a few results I called on in this dissertation.

In the ultra-cold regime, the system is almost fully condensed, so N0/N ≈ 1. There-

fore, we can make the approximation that the field operator can be separated into a

large condensate fraction and a small fluctuation operator

ψ̂ ∼= ψ0 + ϕ̂ (A.31)

where ψ0 is normalised to N0 and ϕ̂ satisfies the bosonic commutation relations[
ϕ̂(x), ϕ̂†(x′)

]
= δ(x− x′)

[
ϕ̂(x), ϕ̂(x′)

]
=
[
ϕ̂†(x), ϕ̂†(x′)

]
= 0 (A.32)
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This approximation can be used to rewrite the Hamiltonian. Unfortunately, this pre-

scription means that particle number is no longer conserved, so we must introduce a

grand canonical Hamiltonian K̂ = Ĥ − µN̂ with the chemical potential µ. The chem-

ical potential acts as Lagrange multiplier that ensures that the number of particles is

conserved.

We can express K̂ perturbatively as K̂ = K0 + K̂1 + K̂2 + ... where K̂i contains the

terms of ith order in the fluctuations ϕ̂(x). In this expansion, the zeroth order term is

K0 =

∫
dx ψ∗0(x)

(
Ĥ (1) − µ

)
ψ0(x) +

1

2

∫ ∫
dx dx′ ψ∗0(x)ψ∗0(x′)V (x− x′)ψ0(x

′)ψ0(x)

(A.33)

If we demand that ψ0(x) minimises K0, we obtain

µψ0(x) =

(
Ĥ (1)(x) +

∫
dx′ ψ∗0(x′)V (x− x′)ψ0(x

′)

)
ψ0(x) (A.34)

which is the Gross-Pitaevskii equation. We can easily see that this is satisfied by

ψ0(x) =
√
n0 where n0 =

N0

L2
=

µ

g + gdd
(A.35)

However, we are also interested in the higher order terms for our “Kamiltonian”. The

next non-zero term is the second order term

K̂2 =

∫
dx ϕ̂†(x)

(
Ĥ (1) − µ

)
ϕ̂(x) +

1

2

∫ ∫
dx dx′ V (x− x′)

×
{
ϕ̂†(x)ϕ̂†(x′)ψ0(x

′)ψ0(x) + ϕ̂†(x)ψ∗0(x′)ϕ̂(x′)ψ0(x) + ϕ̂†(x)ψ∗0(x′)ψ0(x
′)ϕ̂(x)

+ ψ∗0(x)ϕ̂†(x′)ψ0(x
′)ϕ̂(x) + ψ∗0(x)ψ∗0(x′)ϕ̂(x′)ϕ̂(x) + ψ∗0(x)ϕ̂†(x′)ϕ̂(x′)ψ0(x)

}
(A.36)

If we now define L = Ĥ (1)−µ+
∫
dx′ ψ∗0(x′)V (x−x′)ψ0(x

′), and assume that V (x−x′)

is symmetric in x and x′, this can be rewritten as

K̂2 =

∫
dx ϕ̂†(x)Lϕ̂(x) +

1

2

∫ ∫
dx dx′ V (x− x′)

×
{
ϕ̂†(x)ϕ̂†(x′)ψ0(x

′)ψ0(x) + 2ϕ̂†(x)ϕ̂(x′)ψ∗0(x′)ψ0(x) + ϕ̂(x)ϕ̂(x′)ψ∗0(x′)ψ∗0(x)
}

(A.37)
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The dynamical equations for the fluctuation operators are

i~
∂ϕ̂

∂t
= [ϕ̂, K̂2] and i~

∂ϕ̂†

∂t
= [ϕ̂†, K̂2] (A.38)

From equations and , it is straightforward to find the equations of motion

i~
∂ϕ̂(x)

∂t
=
(
L+ D̂

)
ϕ̂(x) + Ĉϕ̂†(x) (A.39)

−i~∂ϕ̂
†(x)

∂t
= Ĉ∗ϕ̂(x) +

(
L+ D̂∗

)
ϕ̂†(x) (A.40)

where we have defined the operators

Ĉf(x) :=

∫
dx′ψ0(x

′)V (x− x′)f(x′)ψ0(x) (A.41)

Ĉ∗f(x) :=

∫
dx′ψ∗0(x′)V (x− x′)f(x′)ψ∗0(x) (A.42)

D̂f(x) :=

∫
dx′ψ∗0(x′)V (x− x′)f(x′)ψ0(x) (A.43)

D̂∗f(x) :=

∫
dx′ψ0(x

′)V (x− x′)f(x′)ψ∗0(x) (A.44)

We now assume ϕ̂(x) can be expanded as

ϕ̂(x) =
∑
j 6=0

[
uj(x)α̂je

−iωjt − v∗j (x)α̂†je
iωjt
]

(A.45)

where α̂ and α̂† are some annihilation and creation operators that obey the Bosonic

commutation relations, and uj(x) and vj(x) are some (as of yet unspecified) functions.

Since we know that ϕ̂ satisfies the bosonic commutation relations, it follows that uj(x)

and vj(x) must satisfy ∫
dx (u∗i (x)uj(x)− v∗i (x)vj(x)) = δij (A.46)

Substituting equation A.45 into equations A.39 and A.40 yields the Bogoliubov de
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Gennes equations:

~ωjuj(x) =
(
L+ D̂

)
uj(x)− Ĉvj(x) (A.47)

−~ωjvj(x) = Ĉ∗uj(x)−
(
L+ D̂∗

)
vj(x) (A.48)

I have been deliberately suggestive in my use of the notation uj(x) and vj(x). In fact,

the Bogoliubov de Gennes equations have the solutions

uj(x) = uj
eikj ·x

L
(A.49)

vj(x) = vj
eikj ·x

L
(A.50)

where uj and vj are the coefficients associated with the quasiparticle of wavevector kj .
1

Specifically,

uj = cosh

(
1

2
tanh−1

(
nṼ (kj)

ε0q + nṼ (kj)

))

vj = sinh

(
1

2
tanh−1

(
nṼ (kj)

ε0q + nṼ (kj)

)) (A.51)

To prove that A.49 and A.50 give a solution to A.47, we proceed as follows. Firstly,

note that we have

Le
ikj ·x

L
=

(
Ĥ (1) − µ+

∫
dx′ ψ∗0(x′)V (x− x′)ψ0(x

′)

)
eikj ·x

L

=
(
ε0q − µ

) eikj ·x

L
+
n0e

ikj ·x

L

∫
dx′V (x− x′)

=
(
ε0q − µ

) eikj ·x

L
+
n0e

ikj ·x

L
Ṽ (k = 0)

=
(
ε0q − µ+ n0(g + 2gdd)

) eikj ·x

L

= ε0q
eikj ·x

L

(A.52)

1In the previous section, we denoted these u and v according their corresponding wavevector. To
simplify notation here, I will instead refer to them by using indices.
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and

Ĉ
eikj ·x

L
=

∫
dx′ψ0(x

′)V (x− x′)
eikj ·x′

L
ψ0(x)

=
n0
L

∫
drV (r)

eikj ·(x+r)

L

=
eikj ·x

L
n0Ṽ (kj)

(A.53)

and

D̂
eikj ·x

L
=

∫
dx′ψ∗0(x′)V (x− x′)

eikj ·x′

L
ψ0(x)

=
n0
L

∫
drV (r)

eikj ·(x+r)

L

=
eikj ·x

L
n0Ṽ (kj)

(A.54)

We can then evaluate the right hand side of A.47:(
L+ D̂

)
uj(x)− Ĉvj(x) =

{(
ε0q +

n0
L
Ṽ (kj)

)
uj −

n0
L
Ṽ (kj)vj

}
e iq·x

=
{
ε0q + n0Ṽ (kj)(1− vj/uj)

} uj
L

e iq·x
(A.55)

We can evaluate the ratio vj/uj using A.51 to show that

vj
uj

= tanh

{
1

2
tanh−1

(
n0Ṽ (kj)

ε0q + n0Ṽ (kj)

)}

=
1

n0Ṽ (kj)

(
ε0q + n0Ṽ (kj)−

√
(ε0q + n0Ṽ (kj))2 − (n0Ṽ (kj))2

) (A.56)
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in which case we can rewrite A.55 as(
L+ D̂

)
uj(x)− Ĉvj(x)

=

{
ε0q + n0Ṽ (kj)−

(
ε0q + n0Ṽ (kj)−

√
(ε0q + n0Ṽ (kj))2 − (n0Ṽ (kj))2

)}
uj(x)

=
√

(ε0q + n0Ṽ (kj))2 − (n0Ṽ (kj))2uj(x)

= ~ωjuj(x)

(A.57)

so equation A.47 is indeed satisfied. The proof to show that A.48 is satisfied is entirely

analogous.

Single Quasiparticle Dynamics

In Subsection 2.3 I claimed that

ψ(x, t) = e−iµt/~ (ψ0(x) + λϑ(x, t))

= e−iµt/~
(
ψ0(x) +

λ

L

[
uqe

i(kq ·x−ωqt) − vqe−i(kq ·x−ωqt)
])

satisfies the time dependent GPE equation. Here, I will prove that this is the case.

Firstly, we have

i~
∂

∂t
ψ(x, t) = µψ(x, t) + ~ωq

λ

L

[
uqe

i(kq ·x−ωqt) + vqe
−i(kq ·x−ωqt)

]
e−iµt/~ (A.58)

The kinetic term gives

− ~2∇2

2m
ψ(x, t) = λε0qϑ(x, t) (A.59)

and finally, the interaction term yields(∫
ψ∗(x′, t)V (x− x′)ψ(x′, t)dx′

)
ψ(x, t)

=

(∫
ψ∗0(x′, t)V (x− x′)ψ0(x

′, t)dx′
)
ψ0(x, t)

+ λ

(∫
ψ∗0(x′, t)V (x− x′)ψ0(x

′, t)dx′
)
ϑ(x, t)

+ λD̂ϑ(x′, t) + λĈϑ∗(x′, t)

(A.60)
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The zeroth order terms amount to the GPE, which is satisfied. The first order terms

are

~ωq
[
uqe

i(kq ·x−ωqt) + vqe
−i(kq ·x−ωqt)

]
= Lϑ(x, t) + D̂ϑ(x, t) + Ĉϑ∗(x, t) (A.61)

Equating coefficients of e±iωqt gives

~ωquqeikq ·x =
(
L+ D̂

)
uqe

ikq ·x − Ĉvqeikq ·x

−~ωqvqeikq ·x = Ĉ∗vqe
ikq ·x −

(
L+ D̂∗

)
uqe

ikq ·x
(A.62)

Recognising these as the Bogoliubov de Gennes equations, we know these are satisfied

for uqe
ikq ·x and vqe

ikq ·x, as shown the previous Appendix. Therefore the proof is done:

to first order, our “single quasiparticle” evolves as claimed in equation 2.19.

A.6 Calculating Density Fluctuations in MATLAB R©

I spent a lot of time working out how to properly calculate the density fluctuation in

MATLAB R© of a quasi-2D gas. I include here an outline of what I found.

Firstly, consider the one dimensional Fourier transform. To implement the one-

dimensional Fourier transform we use the MATLAB R© commands fft, fftshift and

ifftshift, which give

g[m]= ifftshift(fft(fftshift(f [j])))

=

N∑
j=1

f [j]exp[−2πi(j −N/2− 1)(m−N/2− 1)/N ]
(A.63)

Note j and m are discrete indices, and f [j] and g[m] are N ×1 vectors. The continuous

transform we are trying to calculate is

g(k) =

∫
f(x)e−ikx dx (A.64)

(Note that we use the non-unitary transform to remain consistent with the Fourier



APPENDICES 68

transform used in equation 3.16). If we discretise x and k as

xj = (−N/2,−N/2 + 1, ..., N/2− 1)∆x (A.65)

kj = (−N/2,−N/2 + 1, ..., N/2− 1)
2π

N∆x
(A.66)

we can rewrite the Fourier transform approximately as

g(km) = ∆x

N∑
j=1

f(xj)e
−iklxj

=⇒ g[m] = ∆x
N∑
j=1

f [j] exp[−2πi(j −N/2− 1)(m−N/2− 1)/N ]

= ∆x ifftshift(fft(fftshift(f [j]))

(A.67)

Now, let’s turn to the problem at hand: calculating density fluctuations. The density

fluctuations are given by

S(k) =
〈|δnk|2〉
N (A.68)

where N is the total number of particles (written here in script to avoid confusion with

the grid size) and

δnk = F (n(x)− n)

=

∫ (
|ψ(x)|2 − |ψ(x)|2

)
e−ik·xdx

=

∫ ∫ (
|ψ(x, y)|2 − |ψ(x, y)|2

)
e−ikxxe−ikyy dx dy

(A.69)

Calculating the two-dimensional Fourier transform involves no more than successive

one-dimensional Fourier transforms in the x and y directions, and can be implemented

via the command fft2. Consider N × N position and momentum grids constructed

analogously to equations A.65 and A.66. Then we can calculate the transform as

g(k, q) =

∫ ∫
f(x, y)eikxxeikyy dx dy

=⇒ g[m,n] = (∆x)2ifftshift(fft2(fftshift(f [j, l]))

(A.70)



Therefore the density fluctuations are calculated by

S[m,n] =
(∆x)4

N

〈∣∣∣ifftshift(fft2(fftshift(|ψ[j, l]|2 − |ψ[j, l]|2
)))∣∣∣2〉 (A.71)
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