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Abstract

Optical confinement of particles in 1998 allowed all hyperfine spin levels
of a boson to be trapped and condensed in one system. Since this year the
properties of these spin gases have opened new areas of exploration for theo-
rists and experimentalists alike. In this dissertation I take new code designed
to simulate the evolution of ultra-cold, spin-1 gases and test and validate it
against information already known about spin-1 condensate systems. I then
go on to demonstrate ways of applying the code to simulate experimental
results and obtain a qualitative agreement with one particular experiment in
doing so.
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Chapter 1

Introduction

A brief overview of the particles and system I am simulating and the reasons
for wanting to do research in this area.

1.1 Bosons

A boson is any particle or composite particle (e.g. atom, molecule) with
an integer amount of spin (f = 0,1,2...). These obey Bose statistics and
any number of identical bosons can occupy the same single particle state
at the same time. The multiple occupation of a single particle state is rare
at temperatures in everyday life as usually there are too many high energy
states to choose from for the number of particles in question (i.e. there is low
phase/momentum space density). However when a gas of identical bosons is
cooled to ultra-cold temperatures (typically in the realm of nanokelvins) the
number of possible states to choose from decreases dramatically. When the
temperature drops below a specific critical temperature there are significantly
more bosons than accessible states many bosons will enter the lowest energy
single particle state (i.e. the ground state). In doing so the individual par-
ticle wave-functions combine and acquire an identical phase, breaking U(1)
symmetry and causing the onset of a state of matter known as Bose-Einstein
Condensation.

1



CHAPTER 1. INTRODUCTION 2

1.2 Spin-1

I am simulating the evolution of spin-1 bosons. When the spin of a particle
along an axis is measured it can take on any value from +f to −f in integer
steps. So for a spin-1 boson a measured value can take 1, 0 or -1 as its result.
These are the hyperfine spin levels of the boson. The matrix operators that
measure the spin of a spin-1 boson are given by the following spin-1 matrices,

fx =
1√
2

 0 1 0
1 0 1
0 1 0

 , fy =
i√
2

 0 −1 0
1 0 −1
0 1 0

 , fz =

 1 0 0
0 0 0
0 0 −1

 ,

(1.1)
where the spin is measured in the x, y and z axes respectively for the nor-
malised spinor of a boson, ζ, quantized in the z axis,

ζ =

 ζ+1

ζ0
ζ−1


z

, ζ∗ζ = 1. (1.2)

The spin of a particle gives it a magnetic moment which can be affected by a
magnetic field. In the absence of a magnetic field the three spin levels along
an axis are degenerate in terms of their energy, but with a magnetic field the
energies of the spin levels can be shifted. This can cause changes in the way
the one or many particles behave.

1.3 Spin-1 Condensation

Bose and Einstein first predicted the phenomenon of a macroscopic num-
ber of identical bosons falling to their ground state at low temperatures ap-
proaching absolute zero in 1924-5 [1, 2]. It was not until Anderson et al. [3]
in 1995 that a Bose-Einstein Condensate (BEC) was first realised at JILA
using a magnetic trap. Because of the magnetic nature of the trap only one
spin state of the bosons could be trapped, with any others either being un-
affected or repulsed by the trap. In 1998, Stamper-Kurn et al. [4] succeeded
in trapping several million ultra-cold, spin-1 23Na bosons in an optical trap.
The optical trap was able to trap all the hyperfine spin states of the boson
equally meaning there could be spin degrees of freedom within the system
and a spinor BEC was realised. To date 87Rb is the only other spin-1 boson
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to have been condensed [5]. Many experiments since [6–10] have demon-
strated novel effects of the spin-1 BEC, such as spontaneous magnetisation
causing axial symmetry breaking and domain formation, while theory has
been developed [11–16] to describe the evolution of a spinor condensate and
its low energy excitations.

1.4 Research Area and Motivation

While much research has been done on the zero temperature equilibrium
dynamics of spin-1 bosons there is little theory for the influence of ther-
mal effects on the condensate and its dynamics. The spin dependent energy
(causing spin/magnetic ordering) is typically of the order of ∼ 1 nK, while
the coldest spinor BEC that has been achieved is ≈10 nK and in most of the
experiments I have read about it is ≈ 50 nK which suggests thermal effects
are significant in the evolution of spin-1 bosons in condensate experiments.
Experiments have also explicitly cooled a system through the critical tem-
perature for condensation meaning initially the system is completely thermal
and has significant influence on the evolution of the condensate as it grows.
These facts have motivated my research as I attempt to develop previously
created code to a level where it can simulate similar effects to experimental
results and be used at higher temperatures, up to the critical temperature
for condensation, to predict the behaviour of spin-1 bosons above zero tem-
perature.



Chapter 2

Spin-1 Classical Field Theory

In this chapter I discuss and develop the theory of spin-1 bosons to reach
the equation governing their evolution, the Spin-1 Gross-Pitaevskii Equation
(S1-GPE). I then go on to discuss the implications of the S1-GPE and in-
troduce different versions of it, namely the reduction to a 2D dimensionless
equation and the inclusion of damping and noise terms for the purpose of
simulating finite temperature dynamics.

2.1 Evolution of Zero Temperature Spin-1 Bosons

2.1.1 Single Particle Evolution

The evolution of a single boson is governed, as with any particle1, by the
Schrödinger equation,

i~
∂Ψ(x, t)

∂t
=

(
− ~2∇2

2M
+ V (x)

)
Ψ. (2.1)

In the case of the spin-1 boson we consider the wave-function to be a three
component complex vector field of spatial wave-functions (c.f. equation 1.2),

Ψ(x, t) =

 ψ+1 (x, t)
ψ0 (x, t)
ψ−1 (x, t)

 , (2.2)

1Ignoring massless and other relativistic particles

4



CHAPTER 2. SPIN-1 CLASSICAL FIELD THEORY 5

representing the three separate hyperfine spin states in the z axis and we
take the trapping potential, V (x), to be spatially dependent only, so it has
no dependence on spin as expected of the optical traps described in section
1.3. The effect a magnetic field has on spin causes the potential for different
spin levels to be Zeeman shifted by a magnetic field through the system.
I consider a magnetic field along the z axis. At low magnetic fields there
are two significant Zeeman energy shifts, the linear Zeeman energy, p, which
shifts the energy levels proportional to the hyperfine spin of the particle along
the field axis, and the quadratic Zeeman energy, q, which shifts the energy
levels proportional to the square of the hyperfine spin of the particle along
the magnetisation axis. These effects are shown visually in Figure 2.1. These

(a) No shift (b) Linear (c) Quadratic

Figure 2.1: The energies of the hyperfine spin levels are shifted under the influence
of a magnetic field. These energy shifts can be separated into two types, linear
shifts (b) and quadratic shifts (c)

shifts compete with interaction effects and can change the behaviour of the
system dramatically in ways that will be discussed more later. Including
Zeeman terms in the Schrödinger equation for the single particle dynamics
gives,

i~
∂ψm(x, t)

∂t
=

(
− ~2∇2

2M
+ V (x)− pm+ qm2

)
ψm, (m = 1, 0,−1), (2.3)

where ψm is the m-component of the spin vector. This is the complete single
particle equation of motion for a spin-1 boson. Because bosons can share
the same single particle state, they can share the same wave-function. The
vector field, Ψ, is the classical field; it represents all of the low energy bosons
in the field with a total density given by normalising the wave-function to
the density of the system,

Ψ∗Ψ =
(
ψ∗+1 ψ∗0 ψ∗−1

) ψ+1

ψ0

ψ−1

 = n(x). (2.4)
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Table 2.1: The scattering lengths for spin-1 23Na and 87Rb are given in units of
the Bohr radius (aB = 0.0529nm). Values taken from [15].

Atom F = 0 scattering length F = 2 scattering length
(aB) (aB)

87Rb a0 = 101.8± 0.2 a2 = 100.4± 0.1
23Na a0 = 47.36± 0.80 a2 = 52.98± 0.40

However it now becomes necessary to include the effects of interactions be-
tween the bosons.

2.1.2 Spin Interactions

In BEC work only dilute gases are generally considered meaning only two
body interactions are significant. At low energies these interactions can be
approximated as an energy independent contact interaction2 determined by
the s-wave scattering length. When considering the collision of two identical
particles with spin f , the total spin of the collision, F, can take on any value
from zero to 2f in integer steps and is conserved is the collision process. For
bosons F is restricted to even values due to symmetry considerations [15].
For the case of considering spin-1 bosons this means the possible total spins
in a collision can be 0 or 2 and the only allowed collisions for which there
is a change in the hyperfine spin populations is between two m = 0 bosons
to produce one each of m = ±1 or the time reversed of this process. For
all other collisions hyperfine spin population is conserved. F = 0 or F = 2
collisions each have their own scattering length; the scattering lengths of
87Rb and 23Na are given in table 2.1. The difference between the F = 2 and
the F = 0 scattering lengths is of particular importance to the system and is
discussed later in this chapter.

2Both 23Na and 87Rb have long range dipolar interactions, but these are far smaller
than the contact interactions. They are not considered here but have been considered in
experiment [17] and appear to influence evolution in specific circumstances (see appendix
B).
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The pseudo-potential for a collision of total spin F is proportional to an
effective coupling constant, gF, related to the scattering length as follows,

gF =
4π~2

M
aF. (2.5)

It can be shown [11] that the effect of the interactions can then be incorpo-
rated by augmenting the Schrödinger equation with two interaction terms,

gnnψm, → gn = g0+2g2
3

,

gs
∑m

m′=−1 F · fmm′ψm′ , → gs = g2−g0
3
,

(2.6)

where gn and gs are known as the density and spin interaction terms respec-
tively, n = n(x) is the total number density and F is the spin density given
by,

F(x) =

 Fx(x)
Fy(x)
Fz(x)

 , Fν =
(
ψ∗+1 ψ∗0 ψ∗−1

)
fν

 ψ+1

ψ0

ψ−1

 (2.7)

which takes the dot product with fmm′ to account for the allowed collisions;
fmm′ is a vector of the mm′ component of each of the spin-1 matrices (c.f.
equation 1.1),

fmm′ =

 fxmm′

fymm′

fzmm′

 (2.8)

The density term, gn, must be nonnegative to avoid collapse of the condensate
system, but gs, being proportional to the difference in the scattering lengths,
can be positive or negative indicating that the boson in question favours
antiferromagnetic or ferromagnetic interactions respectively. This selection
leads to different sets of ground states available to the system and highlights
gs as one of the most significant factors in the spin-1 system.

With the interaction terms as the second addition to the Schrödinger
equation the Spin-1 Gross-Pitaevskii Equation (S1-GPE) for a system of
interacting spin-1 bosons is given as follows,

i~
∂ψm(x, t)

∂t
=

(
− ~2∇2

2M
+ V (x)− pm+ qm2

)
ψm

+ gnnψm + gs

m∑
m′=−1

F · fmm′ψm′ , (m = 1, 0,−1).

(2.9)
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2.1.3 Ground States of the Homogeneous S1-GPE

Consider the ground states of the S1-GPE for a homogeneous (V = 0)
system with fixed density, n0. The wave-function solution is assumed to be
proportional to the spatially independent normalized spinor, ψ1

ψ0

ψ−1

 =
√
n0

 ζ1
ζ0
ζ−1

 , (2.10)

and the stationary states of the system are found. The ground state is then
found to be the solution that minimizes the energy per particle,

ε =
1∑

m=−1

(−pm+ qm2)|ζm|2 +
1

2
gnn+

1

2
gsn|f |2, (2.11)

where,

f =
F

n
, (2.12)

is the spin expectation value per particle. This analysis produces five different
stationary state magnetic phases each with their own unique properties. The
state with the lowest energy is determined by the sign of gs and the ratios
of p and q to gsn, giving five different phases available to the spin-1 GPE
as shown in Figure 2.2. Three phases are available to both a positive and
negative gs and correspond to a ground state with all the bosons in a single
hyperfine spin level, m = ±1, known as the ferromagnetic ground states
(ζ = (eiχ, 0, 0)T or ζ = (0, 0, eiχ)T , where χ is an arbitrary phase factor),
or m = 0, known as the polar state (ζ = (0, eiχ, 0)T ). Because they only
have occupation in a single hyperfine spin level these states exhibit similar
behaviour to a BEC with no spin interactions and no further symmetry
additional to the U(1) symmetry has been broken. If gs is greater than
zero (i.e. a2 > a0, such as for 23Na) then the boson has antiferromagnetic
interactions, favours a minimised spin density and the Anti-Ferromagnetic
(AF) phase appears. This phase occurs for q < 0 and |p| < gsn and has
a population mixed between the m = ±1 states, with the density ratio,
|ζ+1|2 : |ζ−1|2, changing continuously in linear fashion from 0 : 1 to 1 : 0 as
p shifts from −gsn to gsn. If gs is less than zero (i.e. a2 < a0, such as for
87Rb) then the boson has ferromagnetic interactions, favours a maximised
spin density and a different phase appears known as the Broken Axis (BA)
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(a) (b)

Figure 2.2: Phase diagrams of spin-1 Bose-Einstein condensates for (a) gs > 0
and (b) gs < 0. Regions I, II are the Ferromagnetic phases and IV is the Polar
phase. The SO(2) rotational symmetry about the magnetic field is broken in the
shaded regions, with III known as the Anti-Ferromagnetic phase and V known as
the Broken-Axis phase. Figure adapted from [15]

phase. The BA phase occurs for values of q greater than |p| in a region shown
in Figure 2.2. It has population spread over all three hyperfine spin states
and is dependent on both the linear and quadratic Zeeman. The AF and
BA phases are of particular interest in spinor systems as they break axial
symmetry, SO(2), around the z-axis of magnetisation. This is most obvious
in the BA phase as the magnetic alignment of the spin tilts away from the z-
axis of the magnetic field causing anisotropic magnetisation in the xy-plane.
In the AF phase this symmetry is broken by the tensor density becoming
anisotropic in the xy-plane [15] but magnetisation stays aligned with the
z-axis.

2.2 Different Forms of the S1-GPE

2.2.1 Reduction to Two-Dimensions

Spin-1 experimental systems can be constructed in a way that is considered
to be quasi-2D by increasing the trap frequency, ω, of one of the axes. The
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main criteria to be quasi-2D is that the characteristic length,

lν =
√
~/Mων , (ν = x, y, z) (2.13)

of the trap in the tight axis, ν, is less than the spin healing length,

ξs =
~√

2M |gs|n
, (2.14)

of the condensate. This means the variation in spin along this axis is es-
sentially nullified and can be taken to be constant. The assumption is also
made that the energy level gap of the tight harmonic trap, ~ων , is signifi-
cantly greater than any other energy being considered in the system so that
all the bosons are thought to be in the ground harmonic state of the tight
axis and that this state is the same for each of the hyperfine spin levels. For
most of the experiments I have looked at [6–10] quasi-2D is the regime in
which they work. I give the full reduction in appendix A but the general ideas
needed are given here. For the reduction the wave-function components, ψm,
are split into 2D, time dependent, wave-functions multiplied by the ground
state of the tight axis harmonic oscillator. I take the tight axis to be the
y-axis3 which gives,

ψm(x, t) = ψxzm (x, z, t)φy(y), (2.15)

φy(y) ≈ φho(y) =

(
1

πl2y

) 1
4

exp

(
− y2

2l2y

)
. (2.16)

These equations are then substituted into the S1-GPE (2.9) for the wave-
function. This is then all multiplied by φy∗ and integrated with respect to y
(neglecting the zero point energy along y) to give,

i~
∂ψxzm
∂t

=

(
− ~2∇2

xz

2M
+ V (x, z)− pm+ qm2

)
ψxzm

+
gn√
2πly
|Ψxz|2ψxzm +

gs√
2πly

m∑
m′=−1

Fxz · fmm′ψxzm′ , (m = 1, 0,−1).

(2.17)
Here,

|Ψxz|2 = n(x, z), (2.18)

3Taking the tight axis to be the y axis avoids any Zeeman shifting of the harmonic
oscillator ground state. In most experiments I have read about this is also the case.
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Is the total areal density. So the S1-GPE stays much the same in two di-
mensions except the interaction terms get scaled by a factor 1/

√
2πly. This

gives an obvious definition for the 2D interaction terms,

g2Dn =
gn√
2πly

, g2Ds =
gs√
2πly

. (2.19)

2.2.2 Non-Dimensionalisation of the S1-GPE

For computational purposes, dimensions can be time consuming and some-
times difficult to work with as using numbers with far different scales can
introduce large computational errors. For this reason when simulating many
systems it is easier to undimensionalise the equations of evolution first. In
my simulations I consider a 2D system of bosons with uniform potential
across the condensate (V (x, z) = 0). I then reduce the 2D S1-GPE by first
introducing the dimensionless variables,

t = t̃t0, (x, z) = (x̃, z̃)x0, → ψxzm =
ψ̃xzm
x0

, (2.20)

and subbing them in to 2.17, having removed the x, z superscripts,

i~
x0t0

∂ψ̃m

∂t̃
=

(
− ~2∇̃2

2Mx20
− pm+ qm2

)
ψ̃m
x0

+
g2Dn
x20x0

ñψ̃m +
g2Ds
x20x0

m∑
m′=−1

F̃ · fmm′ψ̃m′ , (m = 1, 0,−1),

(2.21)

recognising that ∇, n and F all have a dependence on ψm. Multiplying
through by x0t0/~ gives,

i
∂ψ̃m

∂t̃
=

(
− t0~∇̃2

2Mx20
− t0

~
pm+

t0
~
qm2

)
ψ̃m

+
t0g

2D
n

~x20
ñψ̃m +

t0g
2D
s

~x20

m∑
m′=−1

F̃ · fmm′ψ̃m′ , (m = 1, 0,−1).

(2.22)

Setting,

t0 =
x20M

~
, (2.23)
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allows the defining of several dimensionless parameters,

q = E0q̃, p = E0p̃, E0 = ~2
x20M

,

g2Dn = G0g̃n, g2Ds = G0g̃s, G0 = ~2
M
.

(2.24)

Subbing these back into equation 2.22 gives,

i
∂ψ̃m

∂t̃
=

(
− ∇̃

2

2
− p̃m+ q̃m2

)
ψ̃m

+ g̃nñψ̃m + g̃s

m∑
m′=−1

F̃ · fmm′ψ̃m′ , (m = 1, 0,−1),

(2.25)

which is the dimensionless, 2D S1-GPE. From now on I will refer to this
equation as the S1-GPE and drop the tilde from the dimensionless parame-
ters.

2.2.3 The Spin-1 Stochastic GPE

The S1-GPE works as a mean field description of a T = 0 condensate or
as a multimode description of the condensate and its excitations (with added
energy causing fluctuations). Without modification the S1-GPE can provide
a description of a condensate system that is isolated and hence conserves par-
ticle number and energy, known as a micro canonical system, but attributing
temperature and other entropy derivatives to this becomes challenging. To
provide a simpler way of implementing a description of these terms it is useful
to define the low energy single particle modes in the simulation as a classical
region and considering all modes of higher energy to be part of an Incoherent
region. For this classical field approximation we require the following from
the two fields:

Classical (c) field region

This is the low energy region of appreciably occupied energy modes. It
includes all modes with an energy less than a chosen cut-off energy. This
region is evolved according to the S1-GPE, but now includes a projection
term which excludes any modes that are considered to be outside the c-field
region (εn > εcut).
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Figure 2.3: A model of the classical and Incoherent regions. The classical field
stores information on the occupation of every energy mode within it and evolves
according to the S1-GPE (2.9). The Incoherent region stores information on a
thermal reservoir with a set chemical potential µ and temperature T . The two
regions are coupled together by a coupling constant, γ, which allows the exchange
of particles and energy.

Incoherent (I) region

This is the high energy region. Particles here are not simulated by the
S1-GPE but are considered to be in equilibrium at some chosen temperature
and density. The I-region couples with the c-field region through select in-
teractions that introduce a temperature and chemical potential to the c-field
dynamics, thus altering the S1-GPE.

The c-field region and I-region are demonstrated visually in Figure 2.3.
The coupling between the regions can come through three different realistic
mechanisms demonstrated in Figure 2.4. The code I am using only considers
one interaction term, the two body I-region one, where particle interactions
in the I-region lead to an exchange of particles and/or energy between the
regions (Figure 2.4c). This simple growth is implemented into the system via
additive noise terms in the evolution of the system. The exchange of particles
and energy causes the I-region to act as a particle and energy reservoir to
the c-field region meaning the c-field becomes grand canonical. The simple
growth, stochastic (and nondimensional) S1-GPE (S1-SGPE) used in simu-
lation is given below (equation 2.26). For a full description of the derivation
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Figure 2.4: The allowed physical interactions between the c-field region (blue) and
the I-region (red) are shown. They are (a) between two c-field atoms causing one to
leave the c-field, (b) between a c-field atom and an I-region atom in which number
in which the c-field number is conserved (scattering) and (c) between two I-region
atoms causing one to drop into the c-field (growth). Figure adapted from [18].

and details of this algorithm see [19].

dψm = −(γ + i)

[(
− ∇

2

2
− pm+ qm2 − µ

)
ψm

+ gnnψm + gs

m∑
m′=−1

Fxz · fmm′

]
dt+ i

√
γT · C(noise)

√
dt√

dV
,

(2.26)

where the µ and T are the chemical potential and temperature respectively
and γ is a term that controls the coupling of the c-field and I regions and
triggers the growth of the system towards an equilibrium described by µ
and T . It then dampens any shift from equilibrium once reached. A high γ
will cause the system to reach equilibrium quickly, whereas a low γ can be
used to examine growth effects. For γ = 0 this reduces to the S1-GPE and
energy, number and magnetisation in the c-field becomes conserved. The
noise introduced is complex in nature and scaled according to the purely
computational terms, simulation step size, dt, and volume of the grid spacing,
dV .



Chapter 3

Important Background
Literature

The single most important text I have read this year is a Physics Report
review by Yuki Kawaguchi and Masahito Ueda, titled “Spinor Bose-Einstein
condensates” [15]. Published in 2012 Kawaguchi and Ueda collected all the
current knowledge of the spinor Bose systems into one article. It is an au-
thoritative reference on spin-1 condensates (as well as for spin-2 and spin-3)
and has been of great help to me during my research.

3.1 The Berkeley 87Rb Experiments

From 2005 the group at the University of California, Berkeley, did a series
of experiments on spin-1 87Rb condensates that began with demonstrating
an in-situ technique of imaging the condensate and subsequent applications
of this technique to study the dynamics of this system. All their experiments
were conducted in quasi-2D and they imaged along this tight axis, which they
generally called the y-axis (for this dissertation I adopt this convention also).
Typically they achieved condensates with a population of two to four million
bosons with peak densities of around 2 × 1014cm−3. Much of my introduc-
tion to this area of physics was done through reading this series of papers to
understand the basic cold atom physics and the properties of spinor conden-
sates. My research led on from this as I attempted to develop the code to a
point where it could be used to simulate their results on finite temperature
domain formation. Here I briefly describe three of the experiments, the first

15
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two describing the onset of the idea and techniques for trapping and explor-
ing the mechanics of the spin-1 system and the third talking about one of
their experiments that involved reaching equilibrium from an uncondensed
initial state, the results of which I attempt to simulate in my work.

3.1.1 J.M. Higbie et al. “Direct Nondestructive Imag-
ing of Magnetization in a Spin-1 Bose-Einstein
Gas” [6]

This was their first experiment and its main goal was to demonstrate their
technique for imaging the magnetisation of the spin-1 87Rb without destroy-
ing the condensate. They prepared their sample to have all the population
in the m = −1 hyperfine spin level with a magnetic field along the z-axis
of the system defining the quantisation axis. The systems spin vector was
then tipped using a π/2 rf pulse, to be transverse to the magnetic field. This
caused the spin to undergo Larmor precession around the z-axis at about 38
kHz. Using dispersive imaging they measured the y-component of magneti-
sation along a thin strip of the condensate as the spin precessed around the
magnetic field. An example of this imaging, sampled at 20 kHz, is shown in
Figure 3.1. The Larmor precession amplitude decayed with time indicating a
decay in the number of particles having a transverse magnetisation. To find
whether this effect on the condensate was purely due to loss of particles or a
mix of loss of particles and particles rotating back to a longitudinal polariza-
tion the group compared a tip and hold method with a hold and tip method

Figure 3.1: The y-axis magnetisation is imaged in 31 consecutive shots. The
image shows the Larmor precession as a periodic modulation of the intensity of
the response. 38 kHz Larmor precession is aliased with the 20 kHz causing an
oscillation of the peak signal strength. From ref. [6].
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for both a condensate and a thermal cloud. The tip and hold method in-
volved tipping with the rf pulse at t = 0 and allowing evolution of the system
to occur before measuring the Larmor precession amplitude, thus allowing
for decay via number loss and spin rotation, whereas the hold and tip method
let the system evolve before tipping and measuring, thus measuring the pre-
cession amplitude for only loss of number. Their results are shown in Figure
3.2. The Larmor precession amplitude decay rate of the condensate was very
close between the hold and tip and tip and hold methods suggesting that in
the condensate the only loss of particles with spin in the transverse plane
was to particles leaving the system. In the thermal cloud the decay rate was
an order of magnitude faster in the tip and hold method than the hold and
tip method suggesting the opposite to the condensate, that there are many
particles in the thermal cloud returning to a longitudinal spin orientation.
This shows that the condensate is key in the process of keeping the particles
in the transversely magnetised state. The group concludes that the imaging
technique they use opens up many opportunities to investigate unexplored
properties of spinor condensates.

(a) (b)

Figure 3.2: The decay of the Larmor precession amplitude is shown for (a) a BEC
and (b) a thermal cloud. Tip and hold (filled circles) and hold and tip (open
circles) are compared. The decay of Larmor precession in a BEC is almost the
same for the tip and hold and hold and tip methods, whereas in the thermal cloud
the tip and hold decays by almost a factor of 10 faster. From ref. [6].
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3.1.2 L.E. Sadler et al. “Spontaneous symmetry break-
ing in a quenched ferromagnetic spinor Bose-
Einstein condensate” [7]

This paper was published in Nature. In it they described the phase transi-
tion between the polar phase and the BA phase and demonstrated the broken
rotational symmetry in the BA phase. Their system is prepared, using a 2 G
magnetic field aligned in the transverse plane, as a condensate deep in the
polar phase (q � 2|gs|n), where almost all of the bosons occupy the m = 0
hyperfine spin level. At t = 0 they lower the quadratic Zeeman energy, by
orienting the magnetic field in the z-axis and shifting it linearly over 5 ms
to 50 mG, to quench the system deep into the BA phase (q � 2|gs|n, see
fig. 2.3). The linear Zeeman shift is neglected due to spin conservation.
The system’s magnetisation in the y-axis was imaged as in [6]. The spa-
tial distribution of magnetisation was detected by finding the amplitude,
A, and relative phase, φ, of the Larmor precession across the condensate
(A(x) exp(iφ(x)) = in(x)(Fx(x) + iFy(x)). At the time of the quench there
is no magnetisation in the system, longitudinal or transverse. Sometime after
the quench (> 50ms) they found transverse magnetisation that varied in di-
rection across the condensate had spontaneously developed, thus indicating
the breaking of SO(2) rotational symmetry around the z-axis. The effect this
had on the system was to form domains of like transverse spin that grew to fill
the condensate, with different domains separated by unmagnetised domain
walls or continuous variation of spin from one domain to another, as shown
in Figure 3.3. They then gave a reason for the spontaneous magnetisation of
the condensate and formation of domains, the reason being that the m = 0
initial state in the z-axis is a superposition of mtransverse = ±1 states. Be-
cause of the ferromagnetic property of 87Rb (gs < 0) any m = ±1 states are
immiscible, meaning a small fluctuation in the transverse magnetisation will
cause oppositely magnetised bosons to separate, influence other bosons and
hence neighbouring domains grow that have oppositely oriented transverse
magnetisation. Domain walls can then be described as overlaps between the
neighbouring regions, hence they have no net magnetisation. The rest of the
paper is devoted to showing features of the magnetised condensate. They
showed that in the BA phase any longitudinal magnetisation is small and
does not grow after the quench, that the spatial correlation of the transverse
magnetisation grows from uncorrelated to alternating positive and negative
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Figure 3.3: (a) The transverse magnetisation density of the condensate at variable
times is shown with orientation of magnetisation given by the colour and strength
by the brightness as shown by the colour wheel on the left. The magnetisation
density (b) and orientation (c) are shown separately for the t = 206ms case.
Gradual change of the orientation can be seen in region I whereas small domains
at region II are separated by domain walls with zero magnetisation. From ref. [7].
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correlations over short distances, supporting the observation that neighbour-
ing domains have opposite magnetisation. Lastly they showed examples of
spin vortices, points with unmagnetised cores about which the direction of
transverse magnetisation rotates by 2π. They finish by describing that do-
main walls are not stable and may decay through the formation of spin
vortex-antivortex pairs, but that some domain walls survive the lifetime of
the condensate. Because of this they suggested that in future experiments
they would take a closer look at the dynamical evolution of the domain walls
and vortices and suggested that slowing down the quench could uncover other
dynamics of the phase transition.

3.1.3 J. Guzman et al. “Long-time-scale dynamics of
spin textures in a degenerate F=1 87Rb spinor
Bose gas” [10]

This paper was published in 2011. In this work they looked at the effect
of cooling atoms to the desired parameters from different spinor populations
in an initial uncondensed thermal cloud. The thermal cloud was prepared
above the critical temperature for condensation to have a fraction of the
population in each of the m = ±1 states, f±1, equal to 1/3, 1/4 or 0, so
that the net longitudinal magnetization was 0. It was then cooled to well
below the critical temperature so that a condensate could form and grow.
They did this for a range of quadratic Zeeman, −45Hz < q/h < 45Hz
(2|gs|n ≈ h × 8Hz). They studied the length of time the system took to
evolve towards the expected equilibrium states from the original population
differences. What they found was that inside a range −5Hz < q/h < 5Hz
the system evolved towards the expected state in approximately two sec-
onds. Even up to |q| < h × 10Hz the populations were seen to be heading
towards the expected population distribution. Outside this region however
the original spin populations are maintained throughout the lifetime of the
condensate. Their results are demonstrated in Figure 3.4. They suggest
that the reason for the strong mixing dynamics at low |q| occurs because
spin-mixing is primarily happening in the condensed part of the system and
has little influence on the thermal part of the system. Following this they
present results showing the spatial distribution of magnetisation in both the
longitudinal axis and transverse plane for low values of q. Their images are
shown in Figure 3.5. The phase change from the BA phase to the Ferromag-
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Figure 3.4: The population fraction in each of the m = ±1 hyperfine spin levels
at 2 s is shown for original fractions 1/3 (green triangles), 1/4 (blue circles) and
0 (yellow squares). In the shaded region the populations have evolved towards
a common steady state in agreement with mean field predictions (black line).
Outside that region the initial population fractions persist for the lifetime of the
condensate. From ref. [10].

Figure 3.5: Transverse (top) and longitudinal (bottom) magnetisation is shown
after variable evolution time up to 2 s for the quadratic shifts shown above the
figures (note: the group changed their magnetic field axis to the x-axis for this
experiment. This is now the longitudinal axis). For late times there is a spin
space anisotropy; for positive q the transverse magnetisation is brighter whereas
for negative q the longitudinal magnetisation appears brighter. From ref. [10].
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netic phases is demonstrated by the change from a large amount of transverse
magnetisation for q > 0 compared to a large amount of longitudinal magneti-
sation for q < 0. At the boundary, q = 0 there is a mix of both transverse
and longitudinal magnetisation as one would expect at the phase transition.
Lastly they note that spin domains form and grow from the spontaneous
magnetisation to sizes reaching 40µm in 2 seconds. They suggest that the
domain length plateaus here although their data (Figure 3.6) does not ap-
pear to be entirely conclusive. To conclude they stated the four trends they
had observed: a redistribution of hyperfine spin level populations from initial
fractions, the development of spontaneous magnetisation, the development
of spin space anisotropy and the coarsening of spin domains. All of these
trends occur for small |q| and on a similar 1-2s timescale. They note that for
larger q equilibrium is not reached within the timescale of the experiment but
note that the spin-mixing time, τ = h/(2|gs|n) is significantly smaller than
the seconds long equilibrium times. The interpretation and understanding
of these results is hampered by a lack of theory for the thermal dynamics.

Figure 3.6: Evolution of domain length within the system for a quadratic shift
of 0 Hz and original fraction f±1 = 1/3. The domain length grows smoothly as a
function of the evolution time with final values of around 40µm being observed
within 2 s. From ref. [10].



Chapter 4

Validating and Exploring the
Code

For simulating the system of spin-1 bosons I have inherited a new Stochas-
tic GPE code developed over summer by a project student. The code is for
general use in a variety of cold bosonic systems, not primarily spinor cases.
It had not yet been well tested and required extensive testing and validation
before it could be properly used. The code is expected to behave in certain
ways that reflect the true evolution of spin-1 bosons at low temperatures.
This means it has to adhere to certain conservation laws such as number and
spin conservation in an isolated system. It must also behave in particular
ways in terms of the ground state solutions of the S1-GPE expected at low
temperatures. This chapter highlights the development of the tools and test-
ing of the code I went through to verify everything was working correctly.
All equations in this chapter are for dimensionless units.

4.1 Validation

4.1.1 Conservation Laws

In an isolated system one would expect there to be no loss or gain in number
of particles or energy. As mentioned in section 2.1.2 the spin interactions
between two particles conserve total spin. This gives us another conservation
law where the difference between the population in the m = 1 to m = −1
hyperfine spin levels (i.e. total z magnetisation) must remain a constant in an

23



CHAPTER 4. VALIDATING AND EXPLORING THE CODE 24

(a) (b)

Figure 4.1: The original code had violated number conservation (a) caused by the
loss (or gain) of one m = 0 boson for the gain (or loss) of one each of m = ±1
bosons. As can be seen (b) this causes a change in energy in the system also.
[Each step has dt = 0.05, gs(gn) = −0.5(0.5) and p(q) = 0.05(0)]

isolated system. Isolating my system by setting γ to zero, and thus preventing
any interaction with the incoherent region, I can test the conservation laws
and confirm that they are working. Figure 4.1 shows an example of this, with
energy calculated as the energy per particle given in equation 2.11 added up
across the whole system, plus the total kinetic energy in the system calculated
by summing the kinetic energy over the occupation of the momentum space
grid for each hyperfine spin level, Ek = dVk

∑
m,k |φmk(k)|2k2/2, where dVk

is the areal grid spacing. As can be seen there was a problem with the
conservation of number (Figure 4.1a) and energy (Figure 4.1b). It appeared
as though for each m = ±1 pair of bosons being created there was only
one m = 0 boson being lost, causing the number to increase or decrease
depending on during the spin oscillations. This was fixed by identifying a
missing factor of 2 in an interaction term in the code. Past this fix we observe
that in the isolated system number and energy conservation laws are obeyed
(Figure 4.2).

4.1.2 Grand Canonical Ensemble

As discussed in section 2.2.3, the simple growth S1-SGPE (γ 6= 0) is subject
to a grand canonical description. To test this we consider an ideal (non-
interacting, gs = gn = 0) case, where the occupation of the single particle
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(a) (b)

Figure 4.2: The figures show conservation of number and energy. The z mag-
netisation is also a constant, shown here as the difference between the m = ±1
populations. [Same parameters as Figure 4.1]

energy modes (i.e. the momentum modes on the computational grid) can
be predicted [20]. In grand canonical equilibrium the mean occupation of a
mode of energy, ε, is given by the Bose-Einstein distribution,

NBE(ε) =
1

exp
(
ε−µ
T

)
− 1

, (4.1)

where µ and T are the chemical potential and temperature respectively. How-
ever this assumes integer occupied microstates whereas in the classical ap-
proximation we are not restricted to this and the distribution is given by the
classical limit known as equipartition,

Neq(ε) =
T

ε− µ
. (4.2)

In my simulations the possible energy states are given by the momentum
modes on the simulation grid. Because of the periodic boundary conditions
these modes can take on particular momentum values that match with wave-
lengths across the classical field. As a first test we consider no Zeeman shifts,
p = q = 0, so that all spin states have the same energy modes and we can
neglect spin in our analysis. We would expect the momentum modes to have
an average occupancy given by 4.2 with energy, εk = k2/2. To test this we
ran a stochastic S1-GPE simulation where we evolve a system from random
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(a) (b)

Figure 4.3: Ideal tests of the stochastic S1-GPE are shown. (a) p=q=0, the
hyperfine levels are degenerate and the system behaves as if it is a scalar Bose gas.
The momentum mode occupations are shown for T = 0.5, 1 and 2 and all achieve
good fit with the predictions (black lines). (b) 2q = p = 1, the momentum mode
occupations are satisfied at T = 1 for each spin level. Results were calculated
using µ = −0.7 and γ = 1. Note the c-field limit at k > 6.2 where occupation
drops to zero.

initial conditions for long enough to equilibiate, i.e. the c-field atom num-
ber stops growing predictably and varies around some mean value. We note
that identifying equilibrium is difficult as the system keeps fluctuating. After
equilibrium we evolve for the system for 104 time steps and find the average
occupancy of the momentum modes. The momentum mode amplitudes (φ)
of the field can be found by finding the Fourier transform of the spatial rep-
resentation of the wave-function. Plotting the kinetic energy, εk, of each of
the momentum modes against the time averaged occupation of the mode,

Nk = |φ(k)|2dVk, (4.3)

where,

dVk =

(
2π

L

)2

, (4.4)

is the momentum cell volume. I could then compare the predictions with
the results shown in Figure 4.3a. The single particle energies are shifted by
the Zeeman effects, hence the energy of a momentum mode depends on the
kinetic energy of the mode and the hyperfine spin level it acts in, εk,m =
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εk − pm+ qm2. This means each of the hyperfine spin levels are expected to
have a different occupation distribution,

Neq(ε,m) =
T

εk − pm+ qm2 − µ
. (4.5)

Comparing the different spin predictions again gets good agreement between
the mean occupation and the predicted occupation, with an example shown
in Figure 4.3b.

4.1.3 Ground State Phases

The phase diagrams in Figure 2.2 predict the ground state spinor at zero
temperature under different conditions. To validate the interaction effects of
the code we can investigate whether the known ground states are obtained
for T = 0. To do this we solved the S1-GPE with T = 0, but µ and γ
non-zero. This case is known as the damped S1-GPE and should evolve to a
ground state that satisfies,

µψm =

(
−∇

2

2
−pm+qm2

)
ψm+gnnψm+gs

m∑
m′=−1

F·fmm′ψm′ , (m = 1, 0,−1),

(4.6)
with the hyperfine population fractions as given by the ground state spinor.
In the following I took γ = 10, µ = 10, gn = 0.05 (which gives n ≈ µ/gn =
200) and evolved an initially even share of population among the hyperfine
spin levels to t = 30. This was done for various combinations of p, q and
gs where different ground states are expected (see Figure 2.2 for the phase
diagram)

Ferromagnetic and Polar Phases

These phases exist for both positive and negative values of gs and hence can
be tested for either value. Each phase predicts a ground state with all of
the bosons in a single hyperfine spin level. During evolution I would expect
the fractional population of only the appropriate level to go up to 1 and the
population of the others to go to zero. The results of such a simulation are
shown in Figure 4.4.
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(a) Ferromagnetic +1 (b) Ferromagnetic −1 (c) Polar

Figure 4.4: The Ferromagnetic and Polar ground states are satisfied by the damped
S1-GPE. The appropriate hyperfine spin population quickly gains all the popula-
tion. For a,b,c, |gs| = 1 × 10−4 with the sign being − + − respectively, and
q (p) = 0 (|gs|n), −|gs|n/2 (−2|gs|n) and 3|gs|n (0) respectively.

Anti-Ferromagnetic Phase

In the AF ground state there is predicted to be occupation of both of the
m = ±1 hyperfine spin levels with the fraction of the total population in
each given as follows [15]:

|ζ±1|2 =
1

2

(
1± p

gsn

)
. (4.7)

This is seen to be obtained in Figure 4.5a.

Broken-Axis Phase

The BA phase has a ground state population that occupies all three hyperfine
spin levels. The predicted population fractions are given in equations (4.8)
and (4.9) [15].

|ζ±1|2 =

(
q ± p

2q

)2(−p2 + q2 + 2gsnq

2gsnq

)
(4.8)

|ζ0|2 =
(q2 − p2) (−p2 − q2 + 2gsnq)

4gsnq3
(4.9)

The results of simulations in this phase match the predictions as shown in
Figure 4.5b.
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(a) Anti-Ferromagnetic (gs > 0) (b) Broken-Axis (gs < 0)

Figure 4.5: The AF and BA ground states are satisfied by the damped S1-GPE.
The fractional populations (lines) evolve towards their predicted amounts (circles)
for each of the phases. It takes longer than the singly occupied phases, with the BA
phase in particular taking almost the whole time to reach the expected population
spread. For the AF run (a) gs = 1 × 10−4 and q (p) = −|gs|n (−|gs|n/2) and for
the BA run (b) gs = −1× 10−4 and q (p) = |gs|n (|gs|n/2)

4.2 Multiple Chemical Potentials

Having performed a range of code validations I went on to consider con-
trolling the spin populations. The motivation was that in the experiment by
Guzman et al. [10], the initial spin populations of the above critical temper-
ature states were varied and we would like to have this control. I decided
to consider the effects of giving each hyperfine spin level its own chemical
potential. What this involves is replacing µ in the stochastic S1-GPE (equa-
tion 2.26) with µm, where (µ+1, µ0, µ−1)

T is a vector of the three different
chemical potentials. I found that any shift in the chemical potential affected
the spin level populations that would evolve, but more importantly shift-
ing it by amounts significantly more than the Zeeman differences essentially
removed the effects of the Zeeman energies and the chemical potential con-
trolled how the population was divided among the spin levels. A comparison
between a single µ example and a multiple µ example is shown in Figure 4.6,
where the multiple µ are shifted by an amount equal to the linear Zeeman,
up for m = ±1 and down for m = 0. While this seems like it’s not a good
thing there are some advantages to this. Systems can be prepared in thermal
clouds to have particular (non-equilibrium) fractional populations in each of
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the spin levels, the experiment by J. Guzman et al. [10] described in section
3.1.3 is one such example. While I can prepare my c-field region to have
particular spin level populations, having only one chemical potential means
we cannot produce equilibrium initial conditions similar to those initial (non-
equilibrium) states prepared in experiments. Making use of multiple chemical
potentials may be a way around this.

(a) Single Chemical Potential µ = 10 (b) Multiple Chemical Potentials
[µ+1, µ0, µ−1] = [10.01, 9.99, 10.01]

Figure 4.6: The figures show typical examples of evolution of the hyperfine spin
populations as a fraction of the total population for T = 10, γ = 0.25 and
gn, gs, p and q as they were in the BA phase test earlier (section 4.1.3). The
shift in chemical potential is exactly equal to the linear Zeeman energy, shifting
up for m = ±1 and down for m = 0. As can be seen the m = 0 population fraction
goes way down whereas the m = +1 fraction goes way up.



Chapter 5

Comparison to Guzman et al.

Here we aim to apply the S1-SGPE as a simplified finite temperature
qualitative model of the experiments of Guzman et al. [10], discussed in
chapter 3.

5.1 Initial State

To simulate the cooling quench we need to find initial conditions for the S1-
SGPE that are similar to that of the experimental conditions. In particular
the experiment began at high temperatures far above the critical temperature
with the fractional population in the m = ±1 states given by,

|ζ+1|2 =
N+1

N
= |ζ−1|2 =

N−1
N

, (5.1)

so there is no magnetisation present.

5.1.1 Parameters

They use 87Rb atoms in the experiment for which the values of gn and gs
are known [15]. Their tight axis trap frequency was ωy = 2π× 480 Hz, which
gives a characteristic harmonic oscillator length of ly = 0.492µm. Table
5.1 gives the experimental values considered and the corresponding values in
computational units from chapter 2, with x0 = 1µm; e.g. measurements in
the experiment are made on timescales in the range t = 0.2 → 4 s, in our
computational units this corresponds to t = 146→ 2920.

31
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Table 5.1: Typical experimental values are given for the parameters in the Guz-
man experiment along with the dimensionless units chosen for my simulations and
the corresponding computational values. The experimental gn and gs are the 3D
interaction terms calculated from the scattering lengths for 87Rb given in Table
2.1 using equations 2.5 and 2.6. The computational gn and gs are for a 2D system.

Parameter Experimental Dimensionless Computational
Range or Value Unit Range or Value

Length 1→ 120µm 1µm 1→ 120
Time 0.2→ 4 s 1.37× 10−3 s 146→ 2920
Quadratic Zeeman 0→ 8 Hz×h 116 Hz×h 0→ 0.0687
gn 5.17× 10−51 Jm3 9.52× 10−50 Jm3 0.0543
gs −2.48× 10−53 Jm3 9.52× 10−50 Jm3 −2.60× 10−4

Temperature 50→ 350 nK 5.59 nK 8.95→ 62.7

Discrepancies

I obtained the mean areal density I would need for the computational system
by looking at the quadratic Zeeman shift quoted for the phase transition for
the polar to the BA phase, qt = 8 Hz→ 0.0687 in dimensionless units. I then
used the relationship that is satisfied at the phase transition, 2|gs|n = qt,
to find the areal density I would need to match the experiment. This gave
n = 132. I then found an appropriate chemical potential that produced the
right density (µ = 7.1 ≈ gnn). The critical temperature Tc for condensation
of the Berkeley experiments is quoted as being around 350 nK [9] which
equates to ∼63 in dimensionless units. I ran simulations to find the critical
temperature for my system. These simulations were run until they reached
equilibrium with γ = 0.25. From there they were allowed to run for t = 200
and the mean population and mean condensate population during this time
were found. This was done for T = 0 → T = 80. We are considering a
uniform potential approximation to the experiment, therefore we expect the
critical temperature will be different to the 63 given above. What I expected
to see was the condensate population to show a trend towards zero near this
value. My results are shown in Figure 5.1. There is a discrepancy. Although
I expected a little bit of difference between the expected Tc and the Tc I
found, this difference seems very large. Going back to the paper I looked at
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Figure 5.1: The mean total population and condensate population is shown for a
variety of temperatures. Error bars are calculated as twice the standard error of
the data in each direction. The expected trend was for the condensate population
to drop to zero around T = 60, this appears to go to zero around T = 40.

the density they had quoted as their average density in the y-direction after
2 s, 〈ny〉 = 1.85 × 1014 cm−3, which is the value they use in the relationship
qt = 2|gs|〈ny〉 = h×8 Hz. Working backwards I find gs = −1.433×10−53 Jm3,
almost a factor of two less than what I got from the scattering lengths.
This can occur because there is some uncertainty in the s-wave scattering
lengths. Therefore, gs, which is given by the difference between the scattering
lengths has a large uncertainty. Because of this uncertainty I have taken a
dimensionless value for gs (= 1.51×10−4) that matches with the experimental
value found in this paragraph and a chemical potential that gives a critical
temperature around 63, µ = 10. The new temperature trend is shown in
Figure 5.2.

5.1.2 The Incoherent Region

The last section has been considering c-field population only. To understand
our entire system it is necessary to account for all of the atoms above the
c-field region in the I-region. Because the I-region atoms have a high kinetic
energy and a low phase space density, interaction effects are less important
and the I-region population can be approximated by the ideal Bose-Einstein
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Figure 5.2: The condensate population now has a trend towards zero around 60
as expected.

distribution (equation 4.1).

Finding the Incoherent Region Population

To find the I-region population I need to know the allowed states in the
I-region and the expected occupation of them. To do this I find a den-
sity of states and calculate the expected occupation of these states with the
Bose-Einstein distribution. For a full derivation of the density of states see
appendix C. My system is a 2D square of width w with periodic boundary
conditions. This means there are only certain allowed wavelengths in each
axis,

λν = 2w,w,
2w

3
, ...,

2w

nλ
, ν = x, z. (5.2)

The total number of states with an energy less than εk is,

G(εk) ≈
w2εk
2π

, (5.3)

which approximates the discrete kinetic energy levels as continuous. This
can then be differentiated with respect to εk to give the density of states in
our computational units,

g(εk) =
w2

2π
. (5.4)
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Figure 5.3: Including the population assumed to be in the Incoherent region causes
the mean population to rise with temperature.

Notably in 2D it is constant. Combined with the distribution of particles
an expected population for a range of energies can be found by multiplying
the two together and integrating with respect to εk. The total number of
incoherent atoms for a spin level is given thus,

NIm =

∫ ∞
εcut

g(εk)NBE(εk − pm+ qm2) dεk

=
w2

2π

(
εcut − pm+ qm2 − T log

[
exp

(
εk − pm+ qm2 − µ

T

)
− 1

])
.

(5.5)
Figure 5.3 shows the same data as in Figure 5.2 with the added I-region
population. The total population goes up with temperature, this is expected
as the chemical potential is the same for every temperature. To produce a
result for constant total number would require iterated adjustment of the
chemical potential for each temperature. Keeping the total number constant
with temperature is not important for us, we are more concerned with the
condensate and spin level population fractions. I am now in a position to
examine at what temperature the condensate fraction shows a trend towards
zero and find a critical temperature for my system. Figure 5.4 shows a linear
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Figure 5.4: This figure shows the mean fraction of the population that occupies the
condensate (blue circles) and a linear fit (CF) to all but the last five temperatures
(red line, green lines indicate twice the standard error), hence excluding points
that have error bars that reach or very nearly reach zero. The fit goes to zero
at 60 suggesting the critical temperature for condensation in this computational
system is Tc = 60.

trend towards zero condensate at T = 601.

Comparison to expected hyperfine populations

As a simple prediction I proposed that in the condensate the population
fractions would match with the predicted ground state fractions given in
equations 4.7, 4.8 and 4.9, whereas the thermal cloud, neglecting Zeeman
effects, would exhibit no spin ordering and be evenly distributed across the
three spin levels, giving the following relationship for a spin level fractional
population,

|ζm|2 = CF |ζGm|2 + (1− CF )/3, (5.6)

where CF is the condensate fraction and G indicates the ground state. Figure
5.5 compares the systems behaviour from the same data used in Figure 5.3
up to and above Tc. We observe reasonable agreement between the simulated

1The condensate population does not go completely to zero as the S1-SGPE assumes
T < Tc at all times.
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Figure 5.5: The hyperfine spin fractions are given for individual runs at each
temperature (circles) as well as the simple prediction given in the text.

populations and our simple model.

5.1.3 Finding the Initial Wave-Function

Initially the Berkeley group start with a sample of 87Rb that is at a tem-
perature � Tc. They put this population into a state where there is no
longitudinal magnetisation and a particular fraction of the population in
each hyperfine spin level (|ζ±1|2 = 1/3, 1/4, 0). They then cool it through
the critical temperature down to a final temperature of 50 nK. We take t = 0
to be at the end of the cooling. Due to time constraints I only considered one
initial case, |ζ±1|2 = 1/3. To simulate the cooling quench I created a ther-
mal wave-function and used it as the initial wave-function for simulations at
t = 0. This essentially considers the cooling to occur instantaneously. To
make the thermal wave-function I assume that equilibrium is reached quickly
in the thermal cloud meaning the cooling effects are not significant until just
above the critical temperature. This means that I only need to find an initial
wave-function at a temperature a small amount above the critical temper-
ature. The chemical potential goes to zero in this regime and I take the
Zeeman terms to be zero also so the hyperfine spin levels are degenerate and
should, on average, be equally occupied. With these parameters I allow the
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(a) (b)

Figure 5.6: Figure (a) shows the total (light blue) and individual hyperfine spin
level populations from finding the initial wave-function. There is an 1/3, 1/3,
1/3 share of population between the levels as was wanted. Figure (b) shows the
distribution of magnetisation within the system. It is highly unmagnetised and
randomly oriented right across the system.

system to run until it is in equilibrium and use this as the initial thermal
wave-function. Having established the initial conditions for my simulation I
am now in a position to find the correct growth rate of the system.

5.2 Growth Rates

Guzman et al. quenched their system down to a final temperature, T =
50 nK for a range of quadratic Zeeman. Figure 3.6 shows the growth of the
domain length in the experimental system for zero quadratic Zeeman. To
get similar results I want to adjust gamma so that the system grows similar
domains on the same sort of time scales. In principle the value of γ could be
determined by a detailed understanding of the I-region. In practice this is
not well understood for a spinor system in 2D. For this reason we take γ as a
parameter to be determined by ensuring the quench behaviour, i.e. domain
growth, occurs over a similar timescale in the simulations as it does in the
experiment. To measure the domain size the group measured the spatial
correlation of the x, y and z-axis magnetisation and then measured the area,
A, of the central positive region of the sum of these three correlations. They
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then defined the typical domain length of the system as,

l =

√
4A

π
, (5.7)

the diameter of a circle of area A. They claimed that the domains grew to
around 40µm in about 2 s and then stayed around this value for the rest
of the experimental time. By adjusting γ I can change the growth of the
system to match their domain sizes. What I am looking for is a particular
gamma for the parameters in my system that causes the domains to grow to
the expected size in the equivalent of 2 s and then stay this size for the rest
of the simulation.

5.2.1 Measuring the Domain Size

I measure the domain length up to a maximum of 50µm in my system by
finding the spatial correlation, C, of the spin density for each of the axes,

Cν(dx, dz) =
∑

fν(x, z)× fν(x+ dx, z + dz), (ν = x, y, z), (5.8)

adding them up for each shift and then counting the number of shift points
within 25 of the centre point that has positive (greater than noise) correlation.
A fully ordered gas will produce a domain length of 50 counting this way.
This correlation function and domain size procedure was chosen to match
with what they used in the Guzman experiment as closely as possible. An
example of how the domain length is found is given in Figure 5.7.

Initially I had no idea what value for γ was going to be suitable other than
it was going to be small, so I tried a range of γ from 10−2 to 10−5. I found
γ ≈ 10−2 was most suitable as the domain growth appeared to occur on a
similar timescale to experiments, see Figure 3.6. Exploring γ values around
10−2 yielded the results in Figure 5.8 There appeared to be a problem with the
domain length increasing to lengths beyond my maximum measurement of 50
no matter what γ was and not reaching a plateau as observed in experiment.
Looking at the xy spin of the system (Figure 5.9) it appears to be because the
system may not have been big enough to handle domain sizes of 40 without
them consuming the system due to the periodic boundary conditions causing
them to interfere with themselves. I had been using a system that had a
width of twice the expected domain length. Figure 5.10 gives the results
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for a system of width 120, three times the expected domain size. Again the
domain length appeared to not plateau (Figure 5.11 shows a system nearly
filled by one domain). There appeared to be a problem with the way I was
working with the code. I had assumed it was the temperature that would
cause the domains to not get any larger as I assumed the noise would put
a ceiling on how large the domains could get. But a potential issue is that
when the system has cooled, i.e. significantly condensed with domains, that
the approximation of the I-region as a reservoir may break down.
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(a) (b)

(c)

Figure 5.7: An example showing how the domain length of the system is measured.
The spatial correlation function is calculated with shifts measured from the centre
(a). Every point with a correlation more than 10% is then found (red sections in
(b)). The area of these correlations that does not have a shift of more than 25 from
the centre (green circle in (b)) is then found. The domain length is considered to
be the diameter of a circle that has this area. Figure (c) shows an example of what
the domain size looks like on the transverse plane.
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Figure 5.8: The domain length versus time for various values of γ, other simulation
parameters are mentioned in the text. Note that t = 1000 corresponds to 1.37 s.
(c.f. experimental result in Figure 3.6)

Figure 5.9: The system may be too small to handle the domain size. Two domain
circles are shown at the expected size and they fill just about the whole system.
This spatial spin distribution is
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Figure 5.10: Increasing the size of the field did not help. The domain length still
goes past 40 to saturation at 50.

Figure 5.11: Shows a single domain to have almost consumed the condensate. This
is for the last recorded time in the γ = 0.07 run shown in Figure 5.10. A circle of
diameter 40 is superimposed to show the expected range of the domains.
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5.2.2 Introducing a Cut-Off Time

In the last section I allowed a thermal wave-function to evolve under the
influence of a reservoir and found that a single domain would completely
fill the system, contrary to the experimental example where it is expected
to plateau around 40. We proposed that once the system has cooled that
considering an I-region may become invalid. The only reason I really want
the gamma there is to introduce the correct population to the system with
the correct energy for the temperature being simulated. After that it is no
longer needed and can be cut off, i.e. setting γ = 0 at some time into the
simulation to mimic the I-region becoming depleted. The system then evolves
according to the non-linear dynamics in the c-region alone.

Because I know that a γ of 0.01 is nearly appropriate I use it and try cutting
it off at four values, equivalent to 200 ms, 500 ms, 1 s and 1.5 s, before the
domains are fully formed. The resulting domain lengths are shown in Figure
5.12. The domains length appears to be limited. At the very least the growth
time of the domains have been slowed by the cut off. Two of the cut-off times
reach the domain length of 40 being sought after and one (cut-off at t = 1100)
stays around that length for the remainder of the simulation. Figure 5.14
shows the change in the amount of particles in the c-field region for each of the
cut-offs. Each of the cut-off simulations reaches the equilibrium population
before being cutoff, after which the population loss can be put down to
computational loss.
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Figure 5.12: Evolution of the system from an initial thermal state is shown for an
initial γ = 0.01 getting cut off at various times given in the legend. The vertical
coloured lines indicate the time each sample was cut off and the black vertical
line indicates 2 s, the time the system is expected to reach domain lengths of 40.
Domain growth has decreased considerably from before suggesting the cut-off is
preventing the system from becoming fully magnetised. This simulation was run
with p = q = 0.
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Figure 5.13: To give an idea of what a system with the expected domain length
looks like the distribution of transverse spin at 2 s is shown for γ = 0.01, having
been cut- off at 1.5 s (red x in Figure 5.12 that intersects with the black line)

Figure 5.14: The c-field population of the simulations. As shown γ is kept on for
long enough to allow the population to rise to the equilibrium value. Any loss
after γ is set to zero is down to computational loss. The vertical lines indicate the
same as they did for Figure 5.12
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Conclusion and Future Work

The major achievements of this research are as follows:

The validation of the S1-SGPE

The code I received at the start was relatively new and had not been tested
extensively or validated for the spin-1 case. We were able to take the code and
run it through a series of tests to ensure satisfied required criteria. This was
done for an isolated system, which showed the code had a significant error,
and after being fixed it then satisfied conservation laws for total number,
energy and magnetisation; an ideal system, where energy mode occupations
without interactions were shown to obey grand canonical theory as expected;
and the damped S1-GPE, which showed that the system at zero temperature
did evolve towards the expected spinor ground states.

Development of a method to simulate a temperature quench

By making a few assumptions we were able to develop a method for sim-
ulating an experiment that quenched a system down from a high tempera-
ture to below Tc. We assumed the gas at high temperature would thermalize
quickly meaning we only consider the dynamics from when the system passed
through the critical temperature. Allowing a simulation to run just above the
critical temperature, with no Zeeman or chemical potential, until it reached
equilibrium then gave us a thermal spatial wave-function with a third of the
population in each of the hyperfine spin levels, just as in the experiment.
We then assumed the quench from to T = 50 nK, was instantaneous by

47
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putting the thermal wave-function as an initial condition and evolving with
the stochastic S1-GPE with the final temperature and chemical potential.

Qualitative agreement with experiments using a new technique

We showed that the code could qualitatively demonstrate some of the
features of the experiment, most notably the growth of the domains. We
explored the range of γ values to ensure the domain growth was quantita-
tively similar to experiments. The use of a cut-off time for γ limited the
influence the reservoir could have on the c-field region and this translated
into restricting the growth of the domains.

Our results suggest the stochastic S1-GPE is a feasible approach for study-
ing finite temperature quench dynamics in this system, in fact it is currently
the only easily controllable method for these regimes. Future work will be
to explore more experimental observations, e.g. the effect of different initial
population fractions prior to a quench; testing effects of the energy cut-off on
simulations, thus increasing the extent of the c-field; exploring the quadratic
Zeeman dependence of the quench, as was done by Guzman et al. (Fig-
ure 3.4); and implementing scattering interaction terms into the stochastic
S1-GPE theory, terms that simulate interaction (b) in Figure 2.4.
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Appendix A

Reduction to Two-Dimensions

–

We begin with the wave -function, ψm, in three dimensional form and the
S1-GPE as in equation 2.9,

i~
∂ψ(x, t)

∂t
=

(
− ~2∇2

2M
+ V (x)− pm+ qm2

)
ψm

+ gnnψm + gs

m∑
m′=−1

F · fmm′ψm′ , (m = 1, 0,−1).

(A.1)

We then assume that all the particles are in the ground state of the y-
axis harmonic trap and that this does not change with time. The wave-
function can then be decomposed into an xz time dependent part and a time
independent y part as follows,

ψm(x, t) = ψxzm (x, z, t)φy(y) (A.2)

where,

φy(y) ≈ φho(y) =

(
1

πl2y

) 1
4

exp

(
− y2

2l2y

)
, (A.3)∫ ∞

−∞
|φ(y)|2 dy = 1. (A.4)

For the system I consider the potential is taken to be uniform in the xz-plane
hence the trapping potential energy becomes,

V (x) =
Mω2

yy
2

2
(A.5)

a
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Plugging A.2 and A.5 into A.1, multiplying φy(y)∗ and integrating with re-
spect to y, remembering that n and F depend on ψ, gives,

i~
∂ψxzm
∂t

= −~2(∇xz)2

2M
ψxzm − pmψxzm + qm2ψxzm

+
1

2
ψxzm

(
− ~2

M

∫ ∞
−∞

φy∗
∂2

∂y2
φy dy +Mω2

y

∫ ∞
−∞

y2|φy|2 dy

)

+ gn(nxz)2ψxzm

∫ ∞
−∞
|φy|4 dy + gs

m∑
m′=−1

Fxz · fmm′ψxzm′

∫ ∞
−∞
|φy|4 dy, (m = 1, 0,−1).

(A.6)
Because we know φy we can evaluate the integrals.

∂2

∂y2
φy(y) =

y2

l4y
φy − 1

l2y
φy, (A.7)

(
− ~2

M

∫ ∞
−∞

φy∗
(
y2

l4y
φy − 1

l2y
φy
)

dy +Mω2
y

∫ ∞
−∞

y2|φy|2 dy

)

=

(
− ~2

Ml4y

∫ ∞
−∞

y2|φy|2 dy +
~2

Ml2y
+Mω2

y

∫ ∞
−∞

y2|φy|2 dy

)
.

(A.8)

Subbing back in expression 2.15 for ly the two remaining integrals cancel and
we are left with a constant ~ωy/2. This is the zero point energy along the
y-axis and hence can be ignored and removed from the equation. The final
integral, ∫ ∞

−∞
|φy|4 dy =

1√
2πly

, (A.9)

gives us this two dimensional form of the GPE,

i~
∂ψxzm
∂t

= −~2(∇xz)2

2M
ψxzm − pmψxzm + qm2ψxzm

+
gn√
2πly

(nxz)2ψxzm +
gs√
2πly

m∑
m′=−1

Fxz · fmm′ψxzm′ , (m = 1, 0,−1).

(A.10)
Two dimensional interaction terms can then also be defined as such,

g2Dn =
gn√
2πly

, g2Ds =
gs√
2πly

, (A.11)
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leaving us with the two dimensional uniform S1-GPE,

i~
∂ψxzm
∂t

=

(
− ~2(∇xz)2

2M
− pm+ qm2

)
ψxzm

+ g2Dn (nxz)2ψxzm + g2Ds

m∑
m′=−1

Fxz · fmm′ψxzm′ , (m = 1, 0,−1).

(A.12)



Appendix B

Dipolar Effects in a Spin-1
System

B.1 M. Vengalattore et al. “Spontaneously

Modulated Spin Textures in a Dipolar

Spinor Bose-Einstein Condensate” [17]

For this paper the Berkeley group showed that the dipolar interaction of the
87Rb atoms can have an influence on the evolution and equilibrium states of
the spin-1 system. The dipolar interaction may be parametrised by a length,
ad ≈ 0.4|a2 − a0|, that is comparable to the difference in s-wave scattering
lengths, which implies the dipolar interaction could have a significant impact
comparable to the spin interaction. To test this they prepared their system
in a similar way to [6], preparing all the bosons in the m = −1 hyperfine
spin level and then tipping them into the transverse plane. However they
make one change now by comparing the evolution of a system where all
bosons have been tipped to have the same spin to one where the spin varies
in helical fashion along the z-axis of the condensate. Figure B.1 shows the
results. The uniform spin remains essentially homogeneous for the lifetime of
the condensate, whereas the helical structure breaks up into small domains
similar to that of the quench in the Nature paper [7]. They also note that
during the breakup of the helical structure the kinetic energy per particle
increased dramatically to levels far higher than the initial energy stored in
the helix due to accounted for energies (thermal, spin and potential). They

d
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Figure B.1: Spontaneous breakup of helical structure in a 87Rb spin-1 Bose-
Einstein Condensate. A system of all bosons tipped in the same direction causing
a uniform spin texture is shown in (b) whereas a system prepared in helical fashion
is shown in (c). (a) demonstrates the rotation of the spin orientation along the
z-axis of the condensate. Trasverse magnetisation is measured for various times.
The uniform texture remains uniform for long evolution times whereas the helical
structure dissolves into short range order over short times ∼200 ms

state that this apparent deficit can be accounted for by including dipole-
dipole interactions. To test if the dipole-dipole interactions were causing the
breakup of the helical structure they re-ran the helical tests but this time
introduced rapid spin rotations during the evolution. These rotations were
intended to cause the anisotropic dipole interactions to average out to zero
while leaving the isotropic contact interactions unaffected. Figure B.2 shows
some of the effects of attempting to nullify the dipole interactions. They did
not achieve perfect removal of the breakup of the system but noted that it
was significantly hampered suggesting that the long range dipolar forces were
being diminished. This suggests that the dipolar forces do have a significant
effect on the system and thus cannot always be ignored when studying spinor
systems.
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Figure B.2: The evolution of the helical structure with (white squares) and without
(green circles) rapid spin rotation. The number of vortices counted in the system
at various evolution times is lowered significantly and the fractional power of short
range modulations is lowered when rapid spin rotations are applied. This suggests
the short range spatial modulations of the condensate have been suppressed by
nullifying the dipolar effects.



Appendix C

Deriving the Density of States

For the 2D periodic boundary system only certain waves are allowed that
satisfy the boundary conditions. The width of the box must contain an
integer number of half wavelengths, meaning the possible wavelengths along
each axis are given by,

λν = 2w,w,
2w

3
, ...,

2w

nλν
, ν = x, z, nλν = 1, 2, ... (C.1)

where w is the width of the system and nλν is the number state attributed
to the wave. The possible momentums, k = 2π/λ are then,

kν =
π

w
,
2π

w
,
3π

w
, ...,

nλνπ

w
(C.2)

All the possible momentum modes can then be represented by a point in
momentum space. As shown graphically in Figure C.1. The total number of
momentum states, G, with less momentum than k can then be approximated
by calculating the momentum space area enclosed by the quarter circle of
radius k and dividing by the momentum space area between four adjacent
points, ak = w2/π2. This gives,

G(k) =
w2k2

4π
. (C.3)

The kinetic energy of a state, εk = k2/2, can then be substituted in for k to
give the total number of states up to a certain kinetic energy,

G(εk) =
w2εk
2π

. (C.4)

g
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Figure C.1: The momentum space representation of the density of states. Each
point represents a possible pair of k-values relating to an allowed wave through
the system. The area of a square with four adjacent points as its corners is given
by w2/π2. The total number of states with a magnitude of momentum less than
k can be approximated by the area of the quarter circle divided by the area of the
individual squares.

The density of states, g, for the system is then given by the derivative of the
total number with respect to εk,

g(εk) =
w2

2π
, (C.5)

this is the number of states per unit energy in the two dimensional system.


