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Abstract

The Kuramoto model is the most studied and comprehensive framework of classical
synchronization. It describes a large number of weakly coupled oscillators with a phase
transition between synchronized and incoherent states at a critical coupling strength.
We construct a quantum Hamiltonian that collapses to the Kuramoto model in the
appropriate limit. Using the truncated Wigner formulation we analyze the behaviour
of this system and its classical limit. We find that with both number and coherent
initial states only transient synchronization is possible. However, when comparing the
systems where this transient synchronization can occur with synchronization in the
classical model we find that the critical coupling strengths match for both systems.
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Chapter 1

Introduction

Synchronization is a phenomenon that describes objects with a periodic motion lock-
ing in phase with one another. It is an emergent phenomenon of spontaneous order in
a universe where things tend towards disorder. A surprising number of things in our
lives are governed by this phenomenon, ranging from our own circadian rythm[1] to
laser beams[2].

A canonical model of synchronization is the Kuramoto model, which deals with
similar, weakly sinusoidally coupled oscillators.

There is currently a lot of interest in quantum synchronization. It has recently
become possible to construct nano-scale, mechanical oscillators that are governed by
the laws of quantum mechanics[3]. In the last few weeks there have been a couple
of papers released that cover dissipative quantum Kuramoto synchronization[4] and
measures of synchronization[5] respectively. As the Kuramoto model is such a well
understood canonical model of classical synchronization, we ask whether or not there
exists a quantum analogy to it.

In this thesis I will take you on a journey through the history of synchronization,
eventually constructing and exploring a fully quantum Kuramoto model. This will be
broken up into several chapters that will cover different material.

The background chapter will cover several of the important studies in the history
of sync and eventually cover the Kuramoto model itself. I have covered the history in
such a way as to slowly introduce, and make you comfortable with the key features of
synchronization so that I may later compare them with my results.

In the last section I will talk in more detail about the motivation and aims of my
project.

Chapter 3 will cover the background theory that I had to use in order to complete
this project. This includes quantum mechanics and phase space formalism. The final
section will cover common examples of initial states that I will use in chapter 5

The numerical methods are covered in chapter 4. Here I will describe what sacrifices
that I made in order to be able to utilize my computational resources efficiently.

In the results chapter I will present my findings in two sections again. Firstly I
will look at the classical limit, show that it is analogous to the Kuramoto model and
simulate the dynamics. This was done because the majority of work that I have read
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CHAPTER 1. INTRODUCTION 2

in the field is done in the classical limits of their respective models, so this will provide
a useful comparison. Then I will simulate the full quantum behaviour of my system
and go through the results of that.



Chapter 2

Background

In this chapter I will cover the history of synchronization as a field of research up until
the Kuramoto model. Section 2.1 is heavily drawn from the book Sync [2] and then
section 2.2 is based on reference [6] both of which are by Steven Strogatz.

2.1 The History of Sync

Figure 2.1: Fireflies use their biolumi-
nescence to attract mates through a se-
ries of flashes.[7]

In the year 1915 a fierce debate started in the scientific community over the fireflies
of Southeast Asia. For over 300 years western travelers had been returning from there
with stories of thousands of fireflies flashing in unison, lighting up whole sections of a
riverbank or forest at a time. But it was only in the early twentieth century that a
fully fledged investigation began.

What springs to mind when one thinks
about synchronized behavior are things like
musicians playing in time with the beat,
dancers keeping in step and various other
things with one crucial link: intelligence. For
intelligent humans synchronous behaviour is
almost second nature, but we still have to
consciously try to achieve it. For this rea-
son one might think that synchronization is
a phenomenon that requires intelligence and
yet these simple, “unintelligent” insects were
managing to pull it off. You can see why scien-
tists around the world were arguing over this
for decades, as Philip Laurent summed up so nicely for the 1917 issue of Science;
“I could hardly believe my eyes, for such a thing to occur among insects is certainly
contrary to all natural laws.”

As the century progressed the sheer number of systems that behave in a synchro-
nized manner became apparent, each raising more questions. Why do yeast cell suspen-
sions metabolically synchronize[1]? How do menstrual periods sync up in women[1]?
How is it that tiny cells connected together, each with oscillating electric potentials,
work together to create brain waves and conscious thought[1, 8]? What was even more
baffling to the scientists involved was that some cases were found in non-living systems.
The first study of non-living synchronization goes all the way back to the year 1665[2].

3



CHAPTER 2. BACKGROUND 4

2.1.1 Huygens Pendulum Clocks

Christiaan Huygens was a Dutch physicist and inventor of the pendulum clock.
Pairs of these clocks were taken aboard ships so that they could accurately measure
the ship’s current longitude by comparing the time from a known longitude with the
local midday. They took pairs so that if one failed, there would be a back up, but
this had an interesting side effect. Huygens himself noticed that: “...these two clocks
hanging next to one another separated by one or two feet keep an agreement so exact
that the pendulums always oscillate together without variation.”[2]

To determine the cause of this synchronization Huygens performed a series of ex-
periments and found the results to be surprising. The clocks would only synchronize
when sufficiently close and similarly oriented, so there must have been some local in-
teraction between the pendulums. He then hung the clocks from a board supported by
two chairs. When he disrupted the pendulums from their synchronized state the chairs
stated shaking and would continue to do so until the clocks had re-synchronized. From
this he concluded that the pendulums moving made the clocks wobble slightly, causing
the wooden planks to jiggle, shaking the chairs. But when the clocks were perfectly
anti-synchronized the forces canceled and thus the chairs were still. This formed what
is called a negative feedback loop: if one of the pendulums desynchronizes slightly, then
the forces will become unbalanced in such a way that the pendulum is knocked back
into perfect anti-sync.

Huygens had discovered non-living sync. He had shown, without realizing its signif-
icance at the time, that things do not have to be living to have synchronous behaviour,
flying in the face of many twentieth century ideas. Discoveries like this eventually
swayed the opinions of the scientific community to see sync in a new light: intelligence
was not required at all! In fact, it seemed as though very simple systems could exhibit
synchronous behaviour. This and the numerous applications in health-care and biology
prompted some to start making theoretical models of this phenomenon.

2.1.2 Modeling Sync

One of the first to model sync was Charlie Paskin[9], applied mathematician at
New York University’s Courant Institute. In 1975 Peskin was already well known for
his detailed analysis of three-dimensional blood flow patterns in the heart when he
decided to turn his attention to the heart’s pacemaker.

The pacemaker is a collection of about 10,000 cells that controls the beat of the
heart. It is an amazing example of how evolution can produce unorthodox, but im-
mensely robust structures. Where an engineer may create a single device to maintain
a pace, perhaps with a backup, our pacemakers are democratic systems of thousands
of cells that collectively set a pace. They are so good at this that they manage to
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beat together reliably for the entire span of our life, all three-something billion beats of
it, and they do all of this without any oversight from the brain. Peskin posed similar
question to those before him: How do these cells, with no leader or outside instructions,
manage to get in sync?

To investigate this he modeled each cell as an identical capacitor in parallel with
a resistor. The charge would build up on the capacitor at a decreasing rate, due to
the resistor, until it reaches a threshold voltage when it would discharge to repeat the
process again (figure 2.2). He then took the cardiac pacemaker to be a collection of
these cells that would only interact when the capacitor discharged. Those close to
discharging would be kicked closer to it. Those further away from discharging would
be knocked further away.

Figure 2.2: The voltage across the Paskin’s cells increased like an RC circuit until a
threshold voltage is reached. The cell then fires, nudging up the voltage across other
cells while returning back to zero. This repeats ad infinitum.

Straight away you can see that this is a tricky system to analyze, especially when
all of the capacitors are at different points in this cycle. However, Paskin persisted and
conjectured that this system would always synchronize, no matter how it was initially
started. That is, eventually and inevitably all of the cells would discharge in unison,
ad infinitum.

This was proved 15 years later for a more general system[10]. The proof applies to
any system whose “readiness to fire” - analogous to the voltage across the capacitor
- builds up slower the closer it is to fire, i.e., the second derivative with respect to
time is negative. The proof is also only for systems where cells1 only knock other cell’s
readiness up, not down.

This analysis was a huge landmark for synchronization, proving that many biological
systems did indeed synchronize, and in fact had to synchronize. This result attracted
the attention of many scientists in various fields such as in neurobiology and geology

1Here we are talking about a cell as a general pulse coupled oscillator, not necessarily a biological
cell.
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because pulse-coupled oscillators described their systems more accurately than older
models. However the analysis was a general proof and didn’t describe the dynamics of
any one system, only the end result. Further work was required.

A more qualitative approach was taken in the 1950s by one Norbert Wiener, an MIT
professor in mathematics, while looking into brain waves[11]. Individual brain cells have
an oscillating potential difference across them, but are imprecise and inconsistent when
it comes to maintaining a steady pace. Yet when many are grouped together, like
in the brain, one can detect a very consistent sinusoidal oscillation across the entire
system. These are called brain waves and they come in different frequencies. Weiner
was interested in alpha waves that oscillate at about 10Hz - associated with a relaxed
conscious brain.

He argued that, like any biological population, brain cells are diverse and that there
would be a Gaussian distribution (bell curve) of frequencies ranging from, say 8Hz to
12Hz with the majority in the center at 10Hz. If these cells had the ability to “pull”
the frequencies of other cells towards them then they would spontaneously synchronize.
He continued to say that if the distribution was too large, then the cells near the 10Hz
center would be pulled inwards but the ones on the outskirts would not be as they are
too dissimilar from the developing mass in the middle. Thus if one was to graph the
resulting distribution there would be a large peak in the center with two side fringes.
He concluded that this would be a good way to determine whether or not a system
was governed by synchronization. This description proved true and was demonstrated
numerically in 1967 by Art Winfree, a senior engineering physics student at Cornell[12].
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Figure 2.3: Weiner’s pulling pattern. He predicted that any partially synchronized
system would display a similar shape to this one.

Winfree decided to consider a system general enough to apply to any population
of oscillators. He considered a large group of oscillators, each with their own natural
frequency and with both a level of pulling influence dependent on the stage of its cycle,



CHAPTER 2. BACKGROUND 7

or phase, and a level of sensitivity also dependent on its phase. Both of these functions
are very general and can be positive or negative to cover the full range of dynamics. In
the fireflies’ case, the influence function is a single pulse per cycle. However for Huygens’
clocks, these two functions would combine such as to make the phases repulsive unless
anti-synchronized.

Then Winfree had to make a few approximations in order to make this problem
approachable. The first of which is that that all of the oscillators were identical in
all but natural frequency. That is, all of their influence and sensitivity functions are
identical. Secondly, he assumed that all oscillators were connected weakly and equally
to every other oscillator in the system. So with the fireflies again, each firefly can see
every other firefly’s flash equally. The closer ones don’t have any more or any less
influence than those far away.

This does make the model no longer an exact representation of many systems,
for example neurons have a limited number of connections, but it does simplify the
mathematics immensely without sacrificing much of the actual dynamics of the system.
While fireflies do see closer flashes as being brighter, when there are thousands of them
we can neglect the few that are close as most of the influence would come from the
distant masses. Like an audience clapping at a concert; if there are thousands of people
clapping your neighbors will be drowned out by the masses.

Mathematically, for N oscillators, this is written as:

θ̇i = ωi +
( N∑
j=1

X(θj)
)
Z(θi), i = 1, ..., N (2.1)

where θi is the phase of the ith oscillator, ωi its natural frequency and Z(θi) and X(θi)
are the sensitivity and influence functions respectively. The dot denotes the derivative
with respect to time and N is assumed to be a large number.

Several interesting things come from his analysis. Looking first at the case where
the oscillators are non-interacting, the second term vanishes and each oscillator evolves
at its own pace. This is what we call an incoherent system: a blur of fireflies’ flashes or
a crowd’s applause. Winfree discovered that the system tended toward this incoherent
state for some combinations of functions. Even when started in a perfectly synchronized
state the system would become incoherent. Other combinations, however, led to the
system to spontaneously synchronize no matter the initial state. An incoherent mass
of oscillators would end up clumped together in some manner.

In the cases where the oscillators did synchronize it would start with just a few
grouping together by chance. Then their cooperative influence becomes more dominant
than the incoherent mass, pulling a few more nearby oscillators into the fold. This would
continue until all but those with too extreme natural frequencies were assimilated into
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the synchronized blob, resulting in a peak in frequencies with two side bands. This was
just as Weiner predicted.

However his most important discovery was found when looking at combinations of
X and Z that allowed for sync to occur. What Winfree found was that if he made
the distribution of natural frequencies even a tiny bit too large, then the system would
spontaneously become incoherent. He had found a very discrete phase transition be-
tween synchronization and incoherence. As the distribution is decreased in size the
state will remain incoherent until a critical value is reached when suddenly oscillators
will lock together in synchrony.

This is a temporal analogy to a phase transition, say, in water, when cooling it down.
At a critical temperature the state changes from water to ice, in this case the melting
point. When slightly above this temperature it is a liquid with molecules bouncing
around but as soon as you pass this critical temperature all of the molecules snap
together into an ordered state. For us the oscillators snap from a disordered, incoherent
state into a synchronized, ordered state as the distribution becomes narrower than the
critical value. This is a temporal analogy because instead of lining up in space, like the
ice, they line up in time.

2.2 The Kuramoto Model

It was in 1975 that Yoshiki Kuramoto discovered Winfree’s work and would spend
the next few decades developing it further. He managed to show that for any system
of similar, weakly coupled oscillators in their limit cycles, the interactions could be
described by a single function of the relative phases between them. This instantly
simplifies the system by combining the sensitivity and influence functions into a single
function of a single variable. With this, the equations in 2.1 become:

θ̇i = ωi +
N∑
j=1

Γij(θj − θi), i = 1, ..., N (2.2)

where Γij is a general function for the interaction between the ith and jth oscillators.
This is still too general to extract useful dynamics from as the type of connections be-
tween oscillators are unspecified. To obtain some tangible, applicable results Kuramoto
then took a page out of Winfree’s book. He decided to look at the mean field case with
equally weighted all-to-all coupling. The Kuramoto model is the simplest possible case
where the coupling is a sine function. That is:

Γij(θj − θi) =
K

N
sin(θj − θi), i = 1, ..., N (2.3)
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The Kuramoto model can then be written as:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, ..., N (2.4)

where K ≥ 0 is the coupling strength and we divide by the number of oscillators, N , so
that in the N → ∞ limit the system is well behaved. The frequencies are distributed
by some probability density g(ω) that Kuramoto assumed to be symmetric about a
mean frequency Ω, i.e. g(Ω + ω) = g(Ω− ω) for any ω.

For simplicity’s sake we can redefine θi 7→ θi + Ωt which yields the same set of
coupled differential equations 2.4, but with g(ω) now an even function, centered about
0. This corresponds to switching to a rotating frame and can be done because of the
rotational symmetry in the system. Even functions are those with the property that,
for any ω, g(ω) = g(−ω) and includes Gaussian or Lorentzian distributions, which will
be the most commonly used distributions in this thesis2.

2.2.1 Order Parameter

To clearly and simply describe the behaviour of thousands upon thousands of os-
cillators Kuramoto introduced a complex order parameter.

Figure 2.4: A depiction of the order
parameter for three oscillators.

If we project this system onto the complex
unit circle, then all of the oscillators become
points running around this circle at different
speeds. With this one can easily read off the
phase of any individual oscillator by merely look-
ing at its position on the circle at any one in-
stant. When the system is incoherent, all that
we would see is a mass of dots flying around the
circle with an approximately even distribution.
Conversely when the system is in perfect sync
we would see all of the dots rotating as a sin-
gle point on the circle. Kuramoto, in an intu-
itive step, summed these projections to gain a
description of the overall behaviour.

reiψ =
1

N

N∑
j=1

eiθj (2.5)

2The only other distribution used will be a uniform distribution. This shall be used for the phase
of oscillators in order to create incoherent initial states.
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Here we sum over the complex phases of each oscillator and normalize to obtain
the mean phase, ψ, and the phase coherence or order parameter, r ∈ [0, 1]. It is easy
to see that in the synchronized state, with all the dots on a single point, ψ will be the
same as the phase of any individual oscillators and r will be exactly one. When all of
the oscillators are evenly distributed around the circle r will be exactly zero. Because
the incoherent system is constantly fluctuating very closely to this even distribution,
the order parameter will be fluctuating between zero and some small number much less
than one when in this state. Thus, r can be viewed as a measure of how ordered the
system is, hence the name.

Kuramoto’s next step was to rewrite his model in terms of this order parameter.
Multiplying both sides of equation 2.5 with e−iθi we obtain

rei(ψ−θi) =
1

N

N∑
j=1

ei(θj−θi) (2.6)

Equating the imaginary parts yeilds

r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi) (2.7)

Then we substituting this into 2.4 to get what we are after:

θ̇i = ωi +Kr sin(ψ − θi), i = 1, ..., N (2.8)

It is easy to see the mean field character of the Kuramoto model when written in
this form. All of the originally coupled differential equations become coupled only to
the mean field quantites r and ψ, and hence the system is drastically simpler.

All of the qualitative behavior discussed in section 2.1.2 can now be seen in equation
2.8. A key point is that the effective coupling strength is proportional to the order
parameter. So if the state starts with an uniform phase distribution then, initially,
there is no effective coupling at all. Then the distribution in natural frequencies will
cause some fluctuation in r and suddenly all of the other oscillators are slightly attracted
to this mean. This creates a positive feedback loop as the effective coupling grows when
more of the oscillators are drawn towards the mean phase, thus drawing them in faster
and faster. This will happen until all of the oscillators that can synchronize for a given
coupling strength have synchronized. The order parameter, r, will have stabilized at
some constant value, r∞, with some small fluctuations. There still might be some
oscillators that cannot synchronize because of their extreme natural frequencies as
described earlier.

Numerical simulations show that every combination of coupling strength with some
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Figure 2.5: An incoherent initial state will spontaneously synchronize if the coupling
strength, K, is large enough. In this case K = 3 with ∆ω = 1 for 10,000 oscillators
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Figure 2.6: The system will spontaneously desynchronize if K is too low. Here you can
see the system starts with all oscillators having the same phase, but then the system
quickly becomes incoherent. This happens because K = 0.4Kc for ∆ω = 1. There are
10,000 oscillators in this simulation.

distribution of frequencies has a unique value for r∞. For K less than a critical value
for the specific distribution, Kc, the system will end up incoherent. That is, r∞ ≈ 0.
For K > Kc, the incoherent state is no longer stable and the system at least partially
synchronizes with r∞ > 0. This is an alternate form of the phase transition discussed
in section 2.1.2.
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Figure 2.7: The phase transition between incoherent and synchronized. Once K is
beyond the critical value the system synchronizes in part and r∞ tends towards 1.

2.2.2 Solutions of the Kuramoto Model

The Kuramoto model reproduces the results of both Winfree and Wiener’s theories:
the pulling patterns in a partially synchronized state and the phase transition. But
what makes it stand out as a powerful tool is that it is exactly solvable. To emphasize
how amazing this is, remember that this is a huge, potentially infinite set of non-linear
coupled differential equations. But still there are exact solutions for both Kc and
r∞(K). Stable solutions for r are given implicitly by[6]:

r = Kr

∫ π

−π/2
cos2(θ) g

(
Kr sin(θ)

)
dθ (2.9)

The trivial solution of r = 0 is the incoherent state. This applies even for all K,
but is unstable when K > Kc when the system bifurcates. So, we can find the explicit
value for Kc by taking the limit of r → 0 from above. This gives

Kc =
2

πg(0)
(2.10)

The value of the r > 0 branch can be approximately gained by expanding the
integrand in equation 2.9 in a power series. Doing this we find that the bifurcation is
supercritical only when g′′(0) > 0 and subcritical when g′′(0) < 0. This means that
the r > 0 branch is only stable if the distribution g has a negative second derivative
at ω = 0, like all smooth, unimodal, even densities, such as Gaussian and Lorentzian
distributions.



CHAPTER 2. BACKGROUND 13

Taking the second order expansion of the integral in (2.9) we find that r∞ initially
scales like a square root. So just above Kc,

r∞(K) ≈

√
16 (K −Kc)

−π K4
c g
′′(0)

(2.11)

Equation 2.9 can be solved exactly for some probability distributions. Kuramoto
solved this for a Lorentzian distribution and found that:

r∞(K) =

√
1− Kc

K
(2.12)

for all K ≥ Kc.

Note that equation(2.9) is not exactly solvable for Gaussian distributions, but they
will be what is used throughout this thesis for reasons discussed in A.1 However they
yield similar dynamics as Lorentzians.

2.3 Motivation for a Quantum Model

The Kuramoto model and related research has led to a deeper understanding of
many different systems in our world ranging from earthquakes to the brain. As syn-
chronization becomes more and more understood technologies that either harness or
deal with these phenomena can be developed to a much higher level. These can include
timekeeping devices, communications and power networks and even medical technolo-
gies and processes. A simple, and yet life changing example has been treating circadian
desynchronization in blind people. Eighty percent of blind people are not effected by
the synchronizing effect that the sun has on us and therefore find it very challenging
to keep a sleep cycle like the rest of us[2]. Now that we understand why the symptom
of insomnia is common in blind people we can treat it more effectively.

However, technologies that utilize quantum mechanics are becoming prevalent in
our society so, scientific curiosity aside, it is important to increase our understanding of
synchronization in a quantum context. This will help others design or identify things
that utilize synchronization to further our understanding and level of technology.

Quantum synchronization has been observed in several systems, the most common
of which is between optomechanical resonators[13, 14, 5]. They consist of an optical
cavity with one of the mirrors connected to a spring. Light of intensity E is shone into
this cavity which is detuned by a frequency ∆j(t), where j denotes the jth oscillator.
As the light transfers momentum to the cavity, the spring of coefficient k begins to
oscillate. This can be coupled together through the transfer of phonons through the
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surface that fixes the springs in place.

Figure 2.8: An optomechani-
cal resonator

Systems like this have been shown to exhibit syn-
chronization [13, 14], but are theoretically difficult to
deal with. Most people consider only a pair of cou-
pled oscillators and take the classical limit to create
a ”Kuramoto-like” pair of differential equations. For
example, [13] uses a purely classical analysis and [14]
looks at a classical Hamiltonian3.

The current trend in the field of quantum synchro-
nization is to create an analogy to Huygens pendulums
and groups have done this with both optomechani-
cal systems[13, 5] and light coupled atomic clocks[15].
Again, these systems have been shown to be capable
of synchronizing, but are only between two oscillators.

Another thing to consider is that classical Ku-
ramoto synchronization is an irreversible process. Once synchronization has been
obtained, random fluctuations will never cause it to desynchronize. This is because
equation (2.8) is not the full Hamiltonian description of the system. However, a lot
of quantum mechanics is governed by Hamiltonian evolution which is necessarily time
reversible. There are some quantum systems that are dissipative and therefore time
irreversible do exist.

Reference [4] starts from the Hamiltonian of the Kuramoto model, which is the
standard system of oscillators coupled to a thermal bath. They then introduce a term
for the quantum noise and quantize the system. They have shown that this system can
synchronize in some cases. However this is still a “top-down” approach, starting with
the classical system and then working down to a microscopic description. Note also
that this is a dissipative system; In this thesis we consider a purely Hamiltonian model.4

The question that I pose in this thesis is: can a Hamiltonian quantum analogy to
the Kuramoto model synchronize at all? If it can synchronize, is it only transient or is
it permanent? To the best of my knowledge there is no microscopic system that can
map to the Kuramoto model.

The goal of this project is to work from the ground up to construct a microscopic
model that will map to the Kuramoto model in the classical limit. I will then proceed
to analyze the behaviour of said model. As most of the studies to date have been using
a Kuramoto-like classical limit, my work will provide a platform for further work to

3This Hamiltonian includes an external light field, so synchronization of the oscillators is possible.
4This paper came out three days from the due date for this thesis, so I have not been able to

incorporate it into my work.



CHAPTER 2. BACKGROUND 15

continue with clear microscopic foundations.



Chapter 3

Quantum Theory

In the previous chapter we have covered the history of sync, building up to the Ku-
ramoto model. Then we discussed why we are constructing a microscopic model. This
leads us nicely into the quantum theory required for a quantum Kuramoto model.

3.1 Quantum Mechanics and Hamiltonian Evolution

A Hamiltonian quantum system can be represented by a state vector (or ket) |ψ, t〉,
containing all of the information of the current state, and a Hamiltonian H, which
describes the system’s evolution and energy. The vectors lie in a Hilbert space, so there
exists an inner product, and they are normalized such that 〈ψ, t|ψ, t〉 = 1. Information
contained by the state vector can be extracted by taking the expectation value of some
hermitian operator, for example, the expectation value of some operator Â is given by:

〈A(t)〉 = 〈ψ, t|Â|ψ, t〉 (3.1)

=

∫ ∞
−∞

∫ ∞
−∞

dx dx′〈ψ, t|x〉〈x|Â|x′〉〈x′|ψ, t〉

In order to calculate these expectation values one generally projects the system a
basis, as done in (3.1) where it was projected onto the continuous basis of position
space. The time evolution of |ψ, t〉 is given by Schrodinger’s equation:

i~
∂

∂t
|ψ, t〉 = Ĥ|ψ, t〉 (3.2)

Another way to represent the state is by constructing a density operator defined by
the outer product:

ρ̂ = |ψ, t〉〈ψ, t| (3.3)

which also contains all measurable information, as the expectation value of any operator
Â is

〈A(t)〉 = 〈ψ, t|Â|ψ, t〉 = Tr{Aρ(t)} (3.4)

and is thus equivalent to a state vector. This has a several important properties1, but
for our purposes we only need look at the equation of motion. In the Schrodinger

1For further details, see [16]

16
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picture this is given by the Von Neumann Equation:

ρ̇(t) = − i
~

[H, ρ(t)] (3.5)

Note again that Hamiltonian evolution is time reversible. That is, setting t → −t
will reproduce the same equations and dynamics. This is in contrast to dissipative
systems as in reference [4], which can experience time irreversible behaviour.

Another important effect that quantum mechanics brings to a system is that there
is a limitation on how accurately we can describe a system. This is encapsulated in the
Heisenberg uncertainty principle, which for two operators Â and B̂, is given by:

∆A∆B ≥ 1

2
|[Â, B̂]| (3.6)

with
∆A =

√
〈A2〉 − 〈A〉2 (3.7)

The specific case of position and momentum is the one that people are more familiar
with. This looks like:

∆x∆p ≥ ~
2

(3.8)

where x and p are the position and momentum variables respectively.
What this boils down to is that for any operators that do not commute, there is a

minimum uncertainty in a system. Where a classical system may be represented as a
point in a phase diagram with p and x as the axes, a quantum system will be represented
by a distribution with widths related in some way to its uncertainty. Furthermore this
uncertainty can at times manifest as a form of noise[16].

3.2 The Wigner Function

A coherent state is the closest a quantum oscillator state can get to a classical
oscillator and exhibits similar dynamics[16]. These states are defined as an eigenvector
of the annihilation operator, â, i.e.

â|β〉 = β|β〉 (3.9)

As we are looking to compare with the classical limit, it makes sense to look at
coherent states in our quantum system. Because of this I will use the Wigner represen-
tation for my analysis. It is just one of many phase space representations of the density
operators, but it is the most useful when dealing with coherent states and therefore the
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one that is appropriate for us to consider.

For a classical probability distribution, the Fourier transform is called the character-
istic equation2 and is denoted as χ. The moments of the distribution are proportional
to the derivatives of this function.

These ideas can be generalized to the quantum density operator. The symmetrically
ordered characteristic function for a single bosonic mode is defined to be

χW (λ, λ∗) = Tr{ρ̂eλâ†−λ∗â}, (3.10)

where λ is a complex variable.
The symmetrically ordered moments of the annihilation and creation operators are

given by 〈{
âs(â†)r

}〉
=

(
∂

∂λ

)r (
− ∂

∂λ∗

)s
χW (λ, λ∗)

∣∣∣∣
λ=0

(3.11)

where
{
âs(â†)r

}
refers to the symmetrically ordered product of the operators, e.g.

{
â2(â†)2

}
=

1

6

[
(â†)2â2 + â†ââ†â+ â†â2â† + â(â†)2â+ ââ†ââ† + â2(â†)2)

]
. (3.12)

The Wigner function is defined as the Fourier transform of the symmetrically or-
dered quantum characteristic function and it exists for any density operator. That
is,

W (α, α∗) =
1

π2

∫
d2λeλâ

†−λ∗âχW (λ, λ∗) (3.13)

where α is the complex phase space variable and (3.11) becomes simply〈{
âs(â†)r

}〉
=

∫
d2ααs(α∗)rW (α, α∗) = αs(α∗)r. (3.14)

As you can see, equation (3.14) behaves like a probability density and the bar
in f(α, α∗) denotes the average of a function, f in phase space. However, W (α, α∗) is
called a quasi-probability density because it is not necessarily positive, but still contains
all the information of a standard probability density.

Note that the phase space variables α and α∗ are treated as independent variables,
despite being complex conjugates of one another. Much like a traditional phase diagram
represents a system with x and p, α = a + ib and it’s complex conjugate contain
equivalent information to x and p. Therefore, we can use phase space variables to
represent our system and is the equivalent to projecting our system onto a new basis like

2Not to be confused with the interaction strength in chapter 5
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in 3.1. The Wigner function can be viewed as the phase space distribution representing
a quantum system in phase space, where a classical system would be a point.

Another thing to note about α is that is has the following relation to the occupation
number of a state:

|α|2 = n+
1

2
(3.15)

where n is the number of bosons in the mode.

This can easily be generalized to n multiple modes with each αj lying on orthogonal
bases3. So,

W (α, α∗)→W (α,α∗) =

N∏
j=1

Wj(αj , α
∗
j )

and

|αj |
2

= nj +
1

2
(3.16)

Now in order to find how the Wigner function changes in time we need to find an
equivalent of the Von Neumann equation (3.5). There is a direct mapping found by the
following[16]:

âj ρ̂ 7→
(
αj +

1

2

∂

∂α∗j

)
W (α,α∗) (3.17a)

â†j ρ̂ 7→
(
α∗j −

1

2

∂

∂αj

)
W (α,α∗) (3.17b)

ρ̂âj 7→
(
αj −

1

2

∂

∂α∗j

)
W (α,α∗) (3.17c)

ρ̂â†j 7→
(
α∗j +

1

2

∂

∂αj

)
W (α,α∗) (3.17d)

There are then ways to deal with the resulting equations given in [16], provided the
system is second order or lower. The noise from the quantum effects only comes into
play through the second order terms and the initial conditions. If the system is only
first order, then it is entirely deterministic and the only quantum effects are from the
fact that there is uncertainty in the initial conditions.
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Figure 3.1: The Vacuum state. As
stated above; coherent states are this
same Gaussian distribution translated
by β. Source of picture: [17]

Figure 3.2: A number state. For large
n, the outer ring becomes the dominant
feature an can be approximated as a
step function. Source of picture: [17]

3.2.1 Common Examples of Wigner states

There are several important examples of Wigner states:

• Vacuum state (Figure 3.1). This state is an oscillator with the lowest possible
energy such as an empty optical cavity with only the zero point energy. This is
a Gaussian distribution given by:

W (α, α∗) =
2

π
exp

(
−2|α|2

)
. (3.18)

• Coherent state. This is what we have been looking at up until now. The
state the closest resembles a classical harmonic oscillator behaviour and has the
lowest uncertainty possible. This is the state that lasers emit and Bose-Einstein
condensates are readily approximated to be in. This is given by

W (α, α∗) =
2

π
exp

(
−2|α− β|2

)
, (3.19)

where β is the coherent amplitude (given by (3.9)). As you can see this is just
the Vacuum state translated by the coherent amplitude.

For both this and the vacuum state the phase space variables are sampled with

3Here we have assumed that the state is separable and therefore, not entangled.
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the initial conditions

α = β +
1

2
(η1 + iη2) (3.20)

where the ηj ’s are real, normally distributed variables.

• Number or Fock state (Figure 3.2). A state with an exact number of bosons.
This is given by

W (α, α∗) = 2
(−1)N

π
exp

(
−2|α|2

)
LN

(
4|α|2

)
, (3.21)

where LN is the Laguerre polynomial of order N. However, for large N this can
be approximated as a step function centered at p = 1

2(2N + 1 + 2
√
N2 +N)1/2,

with
|αj | = p+

ηj
4p

(3.22)

where ηj is a normal Gaussian random variable. These are then multiplied by a
uniformly distributed random phase in the complex plane.

• Squeezed state. A coherent state with one of the quadratures “squeezed”. By
the uncertainty principle the other quadrature must expand. Can be viewed as a
coherent state that has been squeezed, hence the name.



Chapter 4

Numerical Methods

As this project is primarily a numerical one it is important to make sure that
the numerical methods we use are appropriate and will return accurate results. How-
ever, since we will be only solving coupled ordinary differential equations (ODEs), the
straight-forward “ode45” function is all that we will require.

What I will be focusing on in this section is how to implement my numerical sam-
pling and what compromises I have made in my simulations.

4.0.2 Sampling a Wigner Function

In the previous section we ended up with the time evolution of a quasi-probability
density, the Wigner function (5.6). But how does one evolve this numerically? We do
this through a process called sampling.

Say that we have a probability function with some rule governing how it behaves
in time. If we wanted to numerically evolve this then one would take a set of points
distributed by the probability function and see how the swarm of points behave.

Figure 4.1: A flow chart of the process to numerically evolve interacting Wigner func-
tions in time.

The Wigner function is a quasi-probability density, meaning that it can have nega-
tive values. However we are restricting our analysis to coherent states and large number
states - which can be approximated to by (3.22)1 - so this no longer something that we

1This is because the cumulative distribution is approximately a step function, so we can approximate
the distribution itself like a delta function. That is the most simplistic treatment. We are using (3.22)
which is better approximation and it has an uncertainty in amplitude.[18]

22
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will worry about. Hence, we can evolve a non-interacting Wigner function in much the
same way.

Our multi-mode Wigner functions work in exactly the same manner. The only
difference is conceptual as instead of modeling a single mode with two variables as a
two dimensional probability density, we are modeling a 2N dimensional probability
density. This is evolved in the same way as above. We take a random selection of
points and evolve each individually using our equation of motion.

This process is summed up in figure 4.1

4.0.3 Quality vs. Quantity

Up until now we have been making assumptions about the number of oscilla-
tors/modes that we are considering to be very large. You may have noticed a problem
with the aims of this project in regards to this. We are wanting to simulate the phase
space evolution of a quantum Kuramoto model, but the Kuramoto model is built on
the basis that there is a large number of oscillators in the system. In fact, so many that
we can approximate it as infinitely many. Simulating tens, even hundreds of thousands
of oscillators is very time consuming, so it would be impractical to adhere strictly to
these approximations.

To put some numbers to this I have produced two similar plots to 2.7. For both
of these, the ODE solver was run separately for each step in K and averaged over 10
run-throughs. Figure 4.2was built with 10 oscillators and it took around 20 seconds
to produce, whereas figure 4.3 has 100 oscillators and took about 10 minutes. Figure
2.7 took about 5 hours and that was with just 500 oscillators. It scales in time far
faster than linearly with each new oscillator, so running this for 10,000 oscillators is
completely impractical.

Compare the following two plots:
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Figure 4.2: 2.7 reproduced with only ten
modes and 40 data points.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

100 Oscillator Plot

K

r
∞

Figure 4.3: The same again with one hun-
dred modes and 40 data points.

It is clear to see that there is significant difference between these two plots. Figure
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4.2 contains very little of the shape in figure 2.7 and is very noisy, despite the averaging
process. However, figure 4.3 is almost the same shape as figure 2.7. The biggest
difference is that the curve at the critical value is gentler than the sharp transition that
we should find.

One might think that there is a convergence in increasing the number of oscillators
and they would be correct. In fact, the derivation of the critical coupling uses this
fact[6, 2] and it has been shown that the Kuramoto model does indeed converge as
N →∞ [6]. So we need to find a balance between accurate simulations and computation
time.

In general I have been adapting the number of oscillators to each individual sim-
ulation. Before running a full simulation I would run a few quicker simulations to
check what appropriate time steps and values for the number of modes/oscillators and
occupation numbers. The appropriate values would be the values that led to compu-
tationally fast simulations, but did not detract from the qualitative behaviour of the
system.

I would find these by starting at some values that produced what looked like accurate
results and then run a short simulation for each parameter, taking a value higher
and lower than the starting point. These would then be compared for how much the
behaviour differed. If no qualitative difference could be seen the parameter would
be moved toward more computationally favourable values and the process repeated.
Conversely, if some difference could be seen in all three plots, then it would be moved
towards computationally unfavourable values. This would continue until the most
computationally favourable, qualitatively sound values were found.
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Figure 4.4: The time evolution of 100 sam-
ples for 10 modes.
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Figure 4.5: The time evolution of 100 sam-
ples for 100 modes.

An example that demonstrates this is drawn from the simulations in section A.2
(Figures 4.4 and 4.5 ). Here I have run the time evolution of the Wigner function for
the same case, but with 10 and 100 modes. You can see from this that they both have
the same qualitative behaviour: the peak, dip and smaller peak. There is, however,
a difference in the size of the standard deviation towards the end. If using 50 modes
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returned the same behaviour as figure 4.5, then I would be safe using 50 modes in my
full simulation. This is because the qualitative behaviour behaviour has converged to
a point where the difference between these cases is unnoticeable.2
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Figure 4.6: A plot of a large χ value with
a time step of 0.001. There are 50 modes
with n̄ = 500, χ = 0.005 and ∆ω = 1.
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Figure 4.7: A plot of a large χ value with
a time step of 0.0005. There are 50 modes
with n̄ = 500, χ = 0.005 and ∆ω = 1.

Figures 4.6 and 4.7 shows two plots of the average order parameter for very large
coupling strength, one with twice as large time steps than the other. One can see
straight away that both of these figures show the same behaviour. The plots have the
same shapes and both of the simulations break down at the same point in time. Figure
4.7 has slightly sharper of the peaks and dips, but this can be chalked up to the higher
resolution, as there is no difference in the overall behaviour.

This is the plot that had the most problems in the simulation. The strong coupling
strength causes the system to fluctuate more than any other simulation and eventually
break down. However, excluding the resolution, there is no qualitative difference be-
tween these two figures. This means that the tolerances and time steps we have used
are sufficient to ensure numerical convergence.

2I would like to point out that increasing the number of particles in a system also changes the
effective coupling strength. This is why there are differences in the sharpness in figure 4.5. One must
account for this while searching for appropriate values for a simulation.



Chapter 5

Results

The goal of this thesis is to construct and analyze a quantum Hamiltonian that will
collapse down to the classical Kuramoto model (2.4) when the appropriate limits are
taken and explore its behaviour. Now that I have discussed the theory behind our
system, we can move on to actually constructing the model itself.

5.1 Derivation

To do this we took a set of N harmonic oscillators; traps with a harmonic potential
like that of a classical oscillator.

Ĥsp =

N∑
j

~ωj â†j âj (5.1)

where ωj is the frequency of the jth harmonic oscillator, or mode. The annihilation

and creation operators, âj and â†j , are the for bosons ans can be viewed as creating
or destroying an individual boson in a mode. This describes the energy of a single,
non-interacting particle, hence the subscript. We consider bosons for our trap due to
the fact that they have a well defined classical limit[16].

Then we added an interaction potential that will yield the appropriate limits, as
described in section 5.2.

Ĥint =

N∑
〈j,k〉

i~χjk(â†j âj â
†
kâj − â

†
j âkâ

†
j âj) (5.2)

where χjk is the interaction strength between the jth and kth modes and 〈j, k〉 denotes
a double sum, excluding the cases where j = k.

The total Hamiltonian is the sum of these two:

Ĥ = Ĥsp + Ĥint (5.3)

In order to fully analyze the effects of quantum mechanics in this system it was my
goal to see what effect quantum noise has on sync phenomena. For this I used some

26
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phase space methods as follows. 1

The Von Neumann equation of (5.3) for any density operator is:

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂]

= −i
∑
j

ωj(â
†
j âj ρ̂− ρ̂â

†
j âj) (5.4)

...+
∑
<j,k>

χjk(â
†
j âj â

†
kâj ρ̂− ρ̂â

†
j âj â

†
kâj − â

†
j âkâ

†
j âj ρ̂+ ρ̂â†j âkâ

†
j âj)

The mapping process is very long without much to be gained from following the
process, and hence it is detailed in A.2. The end result only contains first and third
order terms, the later can be neglected for the systems that we are working with as
they vanish in the classical limit. Thus we find that

∂W (α,α∗)

∂t
= −

∑
j

{
∂

∂αj

[
− iωjαj +

∑
k 6=j

χjk(α
∗
kαjαj

...− 2α∗jαjαk + α∗kαkαk)

]
+ c.c.

}
W (α,α∗) (5.5)

or
∂W (α,α∗)

∂t
= −

∑
j

{
∂

∂αj

[
− i

~
∂H(α,α∗)

∂α∗j

]
+ c.c

}
W (α,α∗) (5.6)

where H(α,α∗) is our Hamiltonian(5.3) with âj 7→ αj and â†j 7→ α∗j .
This yeilds the equations of motion for individual αj :

dαj
dt

= − i
~
∂H(α,α∗)

∂α∗j
, j = 1, ..., N (5.7)

These equations are entirely deterministic as there were no second order terms in
5.6. This means that quantum noise does not effect how this system evolves, provided
we are close to the classical limit. The only thing that we have to account for is the
fact that the initial condition is a quantum state. This is done by taking the Wigner
transform2 of a density operator, ρ, to get the initial Wigner function appropriate to

1For more details on phase space representations and their applications see Quantum Noise [16] and
reference [19]. Both of these contain some of the details given here and the later has details on how
they can be applied to Bose-Einstein condensates, which exhibit similar behaviour to the quantum
Kuramoto model.

2see A.2
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the system. This has been done[18] for the states that we are interested in and the
results are shown in section 3.2.1.

Note that up until now I have denoted the interaction strength as χjk, which allows
for a non-equal coupling between different modes. I have kept it general on purpose
as in a physical system the coupling strength will vary, but it will be symmetrical as
the Hamiltonian must be a hermitian operator. However, the Kuramoto model is for a
uniform coupling strength, so from now on I shall make the assumption that χjk = χ.

5.2 The Classical Limit

As I mentioned in section 3.1, the Hamiltonian is constructed such that in the
appropriate limits it collapses to the Kuramoto mode, here I will show this. From
(5.7), we have:

α̇j = −iωjαj + χ
∑
k 6=j

(α∗kαjαj − 2α∗jαjαk + α∗kαkαk) (5.8)

Firstly we assume that every state is a coherent one with a large amplitude. With
this we can approximate αj →

√
nje
−iθj , where nj is the number occupation of the jth

mode and θj it’s phase. Substituting this in we get

e−iθj

2
√
nj
ṅj − i

√
nje
−iθj θ̇j =

− iωj
√
nje
−iθj + χ

∑
k 6=j

(
nj
√
nke
−i(2θj−θk) − 2nj

√
nke
−iθk + n

3/2
k e−iθk

)
(5.9)

equating real and imaginary parts gives

θ̇j = ωj + χ

N∑
k 6=j

√
njnk

(
3− nk

nj

)
sin(θk − θj) (5.10a)

ṅj = −χ
N∑
k 6=j

2
√
njnk(nk − nj) cos(θk − θj) (5.10b)

Here you can see that the standard classical limit differs from the Kuramoto model
in that it has 2N coupled differential equations for N oscillators. Each mode has two
differential equations associated with it, one for phase and one for occupation number.
However if we take one further limit, nj = n̄ = ntot/N , that is all of the occupation
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numbers are equal, then we extract the Kuramoto model:

θ̇j = ωj +
2χntot
N

N∑
k 6=j

sin(θk − θj) (5.11a)

ṅj = 0 (5.11b)

with an effective coupling constant

KQ = 2χntot (5.12)

So there exists a direct mapping to the Kuramoto model with an appropriate limit
and numerical simulations of (5.10) in these limits do indeed behave exactly like the
Kuramoto model (figure 5.1). This means that our Hamiltonian is what we were looking
for; a quantum analogy to the classical Kuramoto model.

To make the comparison a bit more complete, we will cast this in terms of the mean
field. First define an order parameter, as before by

reiψ =
N∑
k=1

√
nk
n̄
eiθk =

√
N

ntot

N∑
k=1

√
nke

iθk (5.13)

Multiplying both sides by e−iθj

rei(ψ−θj) =

√
N

ntot

N∑
k=1

√
nke

i(θk−θj) (5.14)

Equating the real and imaginary parts yields

r sin(ψ − θj) =

√
N

ntot

N∑
k=1

√
nk sin(θk − θj), (5.15a)

r cos(ψ − θj) =

√
N

ntot

N∑
k=1

√
nk cos(θk − θj). (5.15b)
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Then we substituting this into 5.10 we obtain:

θ̇j = ωj +
KQ

2

√
nj

Nntot
r sin(ψ − θj)

N∑
k=1

(
3− nk

nj

)
, (5.16a)

ṅj = −KQ

√
nj

Nntot
r cos(ψ − θj)

N∑
k=1

(nk − nj). (5.16b)

as ntot � nj , this simplifies to:

θ̇j = ωj +
KQ

2

√
nj

Nntot

(
3N − ntot

nj

)
r sin(ψ − θj), (5.17a)

ṅj = −KQ

√
nj

Nntot

(
ntot − 2Nnj

)
r cos(ψ − θj). (5.17b)

Here you can see that it this system can be modeled in a similar way to the Kuramoto
model. Each oscillator is coupled together only by (5.13) and can effectively be modeled
as pairs of independent coupled equations that are only affected by the mean field.
However the effective coupling strength is proportional to the number in the mode
itself, as well as how ordered the system is.

5.2.1 Simulations of Classical Limit

These simulations contain the key findings from the numerical analysis of (5.10).
This first series of simulations are for 100 modes.

The first thing to look at is whether the simulations agree with the analytical theory
in the Kuramoto limit. So setting all of the occupation numbers to be equal produces
figure 5.1. This was for a coupling strength greater than critical, so we have the same
behaviour as the Kuramoto model itself.

To see whether this is a stable equilibrium or not we now distribute the occupation
numbers normally and take the width, ∆n, to be far less than the magnitude3. If
unstable, it should diverge from this stationary point. This is indeed what we find, as
you will see in subsequent figures.

Figures 5.2 and 5.3 are two cases of the common behaviour for KQi > Kc. Here you
can see that the initial distribution in number stays very small for a time before one or
more modes blows up. This eventually settles into chaotic behaviour. However, looking
at the order parameter we can see that for the time where the number distribution is

3Now that ntot as an element of randomness in its definition, the value of KQ will also have a degree
of randomness. But for all simulations where ∆n = 1, this randomness will be much less than 1 part
in 1000, so I will ignore it.
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Figure 5.1: The Kuramoto limit. Here the system spontaneously synchronizes as in
figure 2.5 and the occupation number does not change. KQ = 2.5, ∆ω = 1 and ∆n = 0.
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Figure 5.2: 100 modes, KQ = 5, ∆ω = 1 and ∆n = 0.1.

approximately flat, the system behaves like the classical Kuramoto model and even
synchronizes for a time. Thus we see transient synchronization. This agrees with
the analytics in that the synchronization is only transient and unstable as is quickly
degrades after a time Ts to a highly chaotic state.
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Figure 5.3: 100 modes, KQ = 5, ∆ω = 1 and ∆n = 0.1.

You might be wondering, what with the huge fluctuations in number, if the total
number of bosons is conserved. In figure 5.4 we show the typical evolution of ntot, from
which it is clear that the total population is conserved to at most one part in 104. We
ensure that this is the case for all our simulations.
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Figure 5.4: 100 modes, KQ = 5, ∆ω = 1 and ∆n = 1. The second plot shows that the
variation in total number of bosons is so insignificant that it cannot be seen here.

There was, however, a significant problem that came from running the simulations
of equations (5.10). When deriving these we had to divide by the number in a state nj .
However if this number goes to zero, then the simulation would break down, severely
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limiting the length of time it can run for. When this would happen was largely based
on chance, but since the number interaction strength increases with KQ, it would occur
more often for higher values of KQ.

This problem does not occur in the Wigner formulation as there is no need to divide
by any variable that can vanish in the derivation.
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Figure 5.5: 100 modes, KQ = 5, ∆ω = 20 and ∆n = 1

In the classical Kuramoto model there was a transition between incoherent and
coherent when either increasing χ or lowering ∆ω. In Figure 5.5 we show the results
for ∆ω chosen to be so large that the system cannot synchronize. Looking at the order
parameter, we see that it is behaving incoherently. Interestingly, the mode occupation
shows more stability in the incoherent system than the transient synchronized system.

Increasing ∆ω had no effect on the length of the transient synchronization, Ts, de-
fined previously. It only lowered the maximum level of synchronization it will obtain.

In varying the interaction strength, χ, I found this to have an inverse effect on Ts.
But since it also increases the speed of which the system synchronizes the same level
is reached.

As I have stated before, increasing χ causes numerical problems. However increasing
it beyond a certain value causes the system itself to develop a strange, pseudo-periodic
behaviour where the order parameter exhibits a revival after the initial synchronization.
We also see large peaks in occupation number for certain modes appear sporadically
throughout all times beyond Ts. Figures 5.6 and 5.7 are examples of this and it could
be an indication that the weak coupling assumption is reaching it’s limit.
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Figure 5.6: 100 modes, KQ = 50, ∆ω = 1 and ∆n = 1
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Figure 5.7: 100 modes, KQ = 250, ∆ω = 1 and ∆n = 1

Note that they don’t run for the same time intervals. This is because the simula-
tions crashed due to the afore-mentioned problem.

Finally, I looked into increasing the width of the number distribution, ∆n (Figures
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5.8 and 5.9). With this I found what I expected: the only effect that this had was
shortening the time Ts with no effect on the speed of synchronization. This meant that
the level of synchronization was lowered accordingly.
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Figure 5.8: 100 modes, KQ ≈ 5, ∆ω = 1 and ∆n = 80
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Figure 5.9: 100 modes, KQ ≈ 5, ∆ω = 1 and ∆n = 200

5.2.2 Linear stability analysis

It is plain to see from (5.17) that taking r = 0 is a stationary point to any number
of modes. However, since r = 1 implies that all θj = ψ it is also a stationary point for a
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flat number distribution, i.e. nj = n̄ for all j. The question is what are the properties
of these stationary points and are any of them stable. To find out I performed a linear
stability analysis.

Let

x =

(
θ
n

)
, ẋ = f(x) =

(
f θ
fn

)
where f(x) is the RHS in the equations (5.15).

The incoherent state is actually an infinite set of states due to the arbitrary com-
binations of phases, so this will be too complicated to analyze here. So I will instead
look at the Kuramoto synchronized limit where nj = n̄. This is also an infinite series
of points, however it has a clear relation between the phases, so we can gain some
knowledge of it.

Around a point, x0, we can model the derivative as a first order expansion in
(x− x0).

ẋ = f(x0 + ∆x) ' ∇f(x0) ·∆x (5.18)

for some small displacement ∆x. About an arbitrary point this yields:

∂fθj
∂θj

= −χ
∑
k 6=j

√
njnk

(
3− nk

nj

)
cos(θk − θj),

∂fθj
∂θk

= 2χ
√
njnk

(
3− nk

nj

)
cos(θk − θj)

∂fθj
∂nj

= −2χ
∑
k 6=j

(3

2

√
nk
nj

+
1

2

(nk
nj

)3/2)
sin(θk − θj),

∂fθj
∂nk

= 2χ
(3

2

√
nj
nk
− 3

2

√
nk
nj

)
sin(θk − θj)

∂fnj

∂θj
= −2χ

∑
k 6=j

√
njnk

(
nk − nj

)
sin(θk − θj),

∂fnj

∂θk
= 2χ

√
njnk

(
nk − nj

)
sin(θk − θj)

∂fnj

∂nj
= 2χ

∑
k 6=j

√
nk

( nk
2
√
nj
− 3

2

√
nj

)
cos(θk − θj), (5.19)

∂fnj

∂nk
= −2χ

√
nj

(3

2

√
nk −

nj
2
√
nk

)
cos(θk − θj)

For nj = n̄ this becomes:
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∂fθj
∂θj

= −2χn̄
∑
i 6=k

cos(θk − θj) ,
∂fθj
∂θk

= 2χn̄ cos(θk − θj)

∂fθj
∂nj

= −2χ
∑
k 6=j

sin(θk − θj) ,
∂fθj
∂nk

= 0

∂fnj

∂θj
=
∂fnj

∂θk
= 0 (5.20)

∂fnj

∂nj
= 2χn̄

∑
k 6=j

cos(θk − θj) ,
∂fnj

∂nk
= −2χn̄ cos(θk − θj)

This is too complex to see the dynamics, but when we look only at the θj = ψ case
this collapses down to:

∇f(x0) =


−2χntot 2χn̄ ... 0 0

2χn̄ −2χntot ... 0 0
... ... ... ... ...
0 0 ... 2χntot −2χn̄
0 0 ... −2χn̄ 2χntot


which can be seen to be stable in phase, but unstable in number. From this we can
conclude that if the system is in the Kuramoto stationary point, a small fluctuation
will cause the occupation number to destabilize. Therefore permanent synchronization
is not possible.

5.2.3 Two Mode Case

To gain a qualitative feel for the behaviour found in 5.2.1 and 5.2.2 I looked at the
two mode case. As the coupling between all of the modes is of the same form, restricting
to the two mode case will make the dynamics easier to grasp while containing the essence
of the large N behaviour. Generalizing to larger N only amounts to adding similar off
diagonal terms.

This switch allows us to analyze another case’s linear behaviour. As the previous
sections concluded, the Kuramoto synchronized state is unstable in occupation number.
So what happens in the other extreme? Let’s take a look at the behaviour if a single
mode has the vast majority of bosons and the other has only a few. In terms of
simplifying (5.19) for the two mode case this manifests as n1 � n2 and we will take
n2 ≈ 1 so as to avoid dividing by zero, therefore n1 ≈ ntot. Simulations show that
when behaviour like this happens the order parameter is small (figure 5.10), so we will
include that (θ1)0 − (θ2)0 = π as this makes r = 0 at x0. Now we have:
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∆x =


∆n1
∆n2
∆θ1
∆θ2


and

∇f(x0) =


3χ
√
ntot −3χ

√
ntot 0 0

χn
3
2
tot −χn

3
2
tot 0 0

0 0 −3χ
√
ntot −χn

3
2
tot

0 0 3χ
√
ntot χn

3
2
tot


which is unstable in n1. It’s not clear straight away, but a slight change in n1 will
change ṅ1 proportional to the square root of ntot. Conversely, a small change in n2

will change it proportional to n
3
2
tot and will therefore dominate. So I would expect the

occupation numbers to flatten out.
Comparing these two cases that I have looked at one would expect the 2 mode

case to oscillate in number and this is what we find. Figure 5.10 is the case where
the frequencies are very close to one another. Here we can see that the two modes do
indeed oscillate in number as predicted. However they also have an almost periodic
behavior in order parameter too.
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Figure 5.10: 2 modes, KQ = 5, ∆ω = 1 and ∆n = 1

Now, if they were two non-interacting oscillators, then the order parameter would
have the character of a sine function. Here we can see that there is a sharp dip in
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r when the occupation numbers are at opposite extremes. The order parameter then
stays around zero until the number states have flattened out again. Then, like previous
simulations, the system stays in perfect sync until the number states have blown up
again. Based on the stability analysis, and the fact that the order parameter has the
same period as the number oscillations leads me to conclude that this is very different
from the normal sinusoidal behaviour in the non interacting case.

It should be noted that, while figure 5.10 shows that the pattern repeats, it does
not have a constant period. If you look closely at it you should be able to see that some
of the peaks are further apart than others. However the average frequency is consistent
for a given KQ and has a direct proportionality to it. Another curiosity is that the
mode with the largest occupation number will always return to the initial values and
the one with the majority will never change.

Increasing the distribution in occupation number does not change the dynamics,
only how close the number oscillations are to one another. For example, if the two states
start with a difference in number of 100 then there will still be the same oscillations
seen in figure 5.10. The only difference is that instead of both modes returning to
n = 500, they would return to their initial conditions of a 100 particle difference.
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Figure 5.11: 2 modes, KQ = 5, ∆ω = 10 and ∆n = 1

Figure 5.11 is what 2 modes look like when their frequencies are too far apart to
classically synchronize4 at all. The number dynamics consist of a series of oscillations
between the two modes of a relatively constant size. The size and separation of these
oscillations are unpredictable and seemingly random. While the oscillations are of

4By equation (5.12)
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a relatively consistent period, there is no longer the relation between KQ and the
frequency as opposed to in figure 5.10. The mode with the most bosons does change
in this case.

5.3 Phase Space Simulations

Now we will look at numerically simulating equation (5.8) using the method de-
scribed in section 4.0.2.

5.3.1 Simulation

The states 5 that we will look at are the coherent and Fock or number states, both
with a large amplitude6. The large amplitude Fock states are represented by a spike in
|α| which is rotationally symmetric. The coherent states are represented by Gaussian
distributions displaced by β.

The simplest case for coherent states is taking all of the modes to have the same β.
This is a quantum analogy to synchronized classical oscillators. However, I am wanting
to look at the emergence of synchronization, so I will take βj = |β| exp(iθj), where θj
are uniformly distributed on [0, 2π) for the jth mode. This is the closest analogy to
the classical incoherence.

Since we are looking at a large number of modes, N , this will yield a rotationally
symmetric distribution at |β| of a Gaussian profile in amplitude. As the amplitude
is proportional to occupation number, this total distribution will look very similar
to a Fock state. Because of this, using Fock states is a way that we can simulate
the dynamics of large N coherent states for less modes. Fock states produce clearer
results for the phase dynamics due to the fact that the initial distributions were sharper
and more consistently distributed than the coherent states’ for computationally viable
number of modes. For these reasons I will only cover Fock states in this section, but I
have looked at and gained similar results for coherent states too.

Note that for large amplitudes, increasing the occupation number only changes the
dynamics by increasing the interaction strength and is therefore not important to focus
on.

The first important thing to note is that the ideal Kuramoto synchronized state,
like in figure 5.1, is unattainable with this numerical method. The computational error
(of order 10−16) in representing the magnitude of each αj is enough to make the system

5see section 3.2.1
6For all of my simulations I have been using 502 bosons per mode.
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diverge from this state when evolving in time. This is to be expected and is nothing to
be worried about since this is an unstable stationary point.

Soon I will be showing a couple of three dimensional plots, but before that it will
probably be helpful to see the dynamics of an individual run. A large number of the
following figures will be divided into two separate plots. The first plot is of the order
parameters from individual samples and the second is the average with one standard
deviation shown for each data point.
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Figure 5.12: 50 modes, 300 samples with KQ = 125 and ∆ω = 1

The majority of the transient synchronization observed had a similar shape to figure
5.12. There is the initial jump from incoherent to synchronized. This is followed by
a drop back to an incoherent state with a very low standard distribution. Then the
system oscillates in order parameter a few times until it has reached a noisy, dynamic
equilibrium. This peak and dip occurs for most cases where transient synchronization
is found, with some exceptions that I will be getting to.

A quick aside: as you can see in figure 5.13 the difference in the number of bosons
from the previous simulation is less than 0.35 for the depicted sample from an initial
total of 50,100 bosons. For all samples in figure 5.12, the maximum difference was
about 0.51. As the center of the distribution in number sits on 50,000 bosons a back-
of-the-envelope calculation shows that the error is of order 10−5. This is well within a
tolerable level of error in total number. As the coupling strength increases, this error
did increase, but only to a maximum of about 1. This is still small enough compared
to the total number of bosons that they can effectively be said to be conserved.
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Figure 5.13: The change in ntot for a single sample in figure 5.12. The initial number
of bosons for this run was almost 50,100.

The distribution of natural frequencies

In figure 5.14 I have scanned across the width of the natural frequency distribution,
∆ω, for a reasonable coupling strength of KQ = 9. This figure encapsulates all of
the behaviour dependent on the initial frequency distribution. I will break this plot
down and show individual slices to make it easier to understand, but we can clearly see
some of the behaviour that I have mentioned earlier here. For the smaller frequency
distributions we can see the early period of transient synchronization followed by a
drop to r ≈ 0. We can even clearly see three diminishing oscillations in r that follow
this which here are the three cyan bands. The values of r after these bands take almost
the full four dimensionless units of time to reach their incoherent stable state. All of
these values are similar to figure 5.12 in behaviour.

I would like to draw your attention to a few features of this pot. The first is that
for all cases where transient synchronization is possible, the period of synchronization,
Ts, is independent of the value of ∆ω.That is, the width of the red band does not
change for values lower than around 1 in the y axis. However, for increasing values the
following dip shrinks in width and eventually vanishes. The cyan bands move closer to
Ts to fill this space, until they eventually vanish too.

The values where there is no further peaks after the initial synchronization are
interesting in that they very quickly reach their stable end state, when the smaller
values of ∆ω take much longer to stabilize. This takes the form of the horizontal
trough at around log10(∆ω) ≈ 1.3. This is demonstrated in figure 5.15 and you can
also see, by comparing it with figure 5.16, that the standard deviation is also a lot
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Figure 5.14: 50 modes, 500 samples with KQ = 45 and 900 bosons per mode.

smaller for this case, even when the figure 5.16 has reached it’s stable point.
This is a surprising discovery as it means that there exists a sweet spot where the

distribution yields a lower uncertainty in it’s incoherent state than all other points for
a given Kq. It is surprising because one would expect the system to have a smaller
deviation for more similar oscillators, as opposed to what we find. I cannot think of a
explanation for why this might be, and yet all of my simulations on the matter yield
that same result.
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Figure 5.15: 50 modes, 500 samples with KQ = 45 and ∆ω = 16.98 and 900 bosons
per mode.
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Figure 5.16: 50 modes, 500 samples with KQ = 45 and ∆ω = 0.01 and 900 bosons per
mode.
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Figure 5.17: 50 modes, 500 samples with KQ = 45 and 900 bosons per mode.

Figure 5.17 is a plot generated by taking the maximum of the order parameter
for each value of ∆ω in figure 5.14. You can see in the earlier figure that there is
a value of ∆ω for which the transient sync is no longer possible. In this figure we
find that the value for which rmax = 0.5 is in the range 1.85 ≤ log10(∆ω) ≤ 1.94 or
70.7 ≤ ∆ω ≤ 87.1, which matches the classical critical coupling value of Kc = 125.

Due to the way that this plot was constructed the lower values of rmax are prone
to noise. This is unavoidable due to the fact that the synchronization is transient; in
the classical model one can average the values of all points beyond synchronization,
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whereas here we can’t do that and have to deal with the noise. However this does not
get in the way of the dynamics of the system, it only adds to the uncertainty of the
numbers that we can extract from this system.

This phase transition further cements this model as a quantum analogy to the
Kuramoto model as this is a transient version of the transition discussed in section 2.1
and matches with the results from section 5.2.1.

The coupling strength, KQ

Here I will be looking at how changing the coupling strength changes the dynamics
and highlight the interesting features, like I did in the previous section for ∆ω. However
it is important for me to point out a few details associated with varying the coupling
strength.

It is important to note that while we do not have the problem of dividing by zero as
we did in the classical limit, the computational time increases with KQ. Increasing KQ

will shorten the timescales of Ts and the subsequent features of a plot. Both of these
relations make scanning over large ranges of KQ impractical, as for time-steps that are
computationally reasonable the non-equilibrium behaviour for the higher values could
be skipped over and only a part of them simulated for the lower values. For this reason
I have cut the scanning into smaller chunks.

Time

K
Q

Order Parameter for Different Coupling Strengths

0 0.5 1 1.5 2 2.5 3 3.5 4

50

100

150

200

250

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.18: 10 modes, 100 samples with ∆ω = 1.
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The first thing that I would like to show you is a scan across relatively high7 values
of KQ (Figure 5.18). Here you can clearly see the inverse relation between Ts and KQ;
increasing KQ causes the transient synchronization becomes shorter and shorter.
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Figure 5.19: 50 modes, 100 samples with ∆ω = 1.

Figure 5.19 is a plot of lower values of KQ where it is easy to see that there is a limit
to how long Ts can be when varying only KQ. This also shows that there is a phase
transition between being able to have transient synchronization and not, analogous to
figure 2.7.

Taking the maximum values of this plot across the y axis we produce figure 5.20.
Here (KQ)c is the classical limit critical coupling value found by comparing equations
(5.12) and (2.10). Explicitly this is:

(KQ)c =
2

πg(0)
(5.21)

Figure 5.20 shows that the phase transition occurs at the same place as it would in
the classical limit. Simulations show that changing the number of bosons has the exact
same effect as changing KQ directly.

I did not find that changing the number of modes, while keeping ntot constant, has
an influence on anything but the level of noise in the system, with less modes producing
noisier results.

7By relatively high I mean that the values are too high to see the phase transition, like in figure
5.19.
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Figure 5.20: 20 modes, 300 samples with ∆ω = 1.



Chapter 6

Conclusion and Further Work

In this project I have successfully shown that there does exist a microscopic model
that maps to Kuramoto when the appropriate limits are taken. I have analyzed the
key aspects of said model’s behaviour through the use of phase space methods and
found that only transient synchronization is possible. This is what one would expect
as Hamiltonian evolution is always time reversible.

The reason that the classical Kuramoto model is time irreversible is due to the fact
that it is not a Hamiltonian description of the system. The behaviour is dissipative due
to the form that the coupling takes[4].

There are several avenues of future work that I can see.

The first is in regards to the fact that I have been using the truncated Wigner
method and discarded the third order terms when deriving my equations. A fortunate
consequence of this was that I could scale my simulations down to a level that did not
require much computation time. This was because, as appendix A.2 shows, the third
order terms only come into play when the number or modes and bosons were low. So,
with the truncated formalism, I could keep the same dynamics as the high number of
modes and particles without them actually being high.

However this does raise the question of how the dynamics change with the third
order terms included.

Another avenue that I would like to explore is in regards to reference [5]. What they
have done is posed a different, more general way to define the level of synchronization
in a quantum system. I would like to apply their methods to my model and see how
they compare with my current results. This may have some interesting results for the
trough depicted in figure 5.14 and shed light on why it exists. This paper came out
while this dissertation was being written, so I didn’t have time to act upon this.

Comparing my work with the papers [13, 14, 5, 15, 4], it seems that some form of
external influence is required to achieve perpetual synchronization. In some of these
cases it takes the form of external EM radiation. Indeed, in the Hamiltonian description
of the Kuramoto Model[4] the system must be coupled to a large thermal bath of some
description. Reference [4] works down from this classical Hamiltonian to construct their
quantum Kuramoto analogy. Comparing my results with theirs would shed light on
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what the conditions are required for our model to exhibit irreversible synchronization.
However, as their results came out 3 days before this dissertation was due I have

not had time to investigate this.

The possibility of constructing a physical realization of our Hamiltonian is yet to
be explored. I am very confident that it is possible to build such a system based on the
versatility in current Hamiltonian construction methods. The level of sophistication in
building coupled optical resonator arrays leads this to be a strong candidate, provided
the coupling can be engineered with sufficient precision.

Finally, the field of quantum chaos introduces a way to scale the level of ”quan-
tumness” in a system.Applying this to our Hamiltonian would allow us to explore how
our system transitions from classical regime into a quantum one. Hopefully one would
observe some form of phase transition between irreversible and transient sync.



References

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization: A universal concept
in nonlinear science,” American Journal of Physics, vol. Volume 70, Issue 6, p. pp.
655, June 2002.

[2] S. Strogatz, Sync: the emerging science of spontaneous order. 1st ed. ed., 2003.

[3] F. Marquardt and S. M. Girvin, “Optomechanics,” Physics, vol. 2, p. 40, May
2009.

[4] I. H. de Mendoza, L. A. Pachn, J. Gmez-Gardees, and D. Zueco, “The quantum
kuramoto model.” September 2013.

[5] A. Mari, A. Farace, N. Dirdier, V. Giovannetti, and R. Fazio, “Measures of quan-
tum synchronization in continuous variable systems,” Physical Review Letters,
September 2013.

[6] S. H. Strogatz, “From kuramoto to crawford: exploring the onset of synchro-
nization in populations of coupled oscillators,” Physica D: Nonlinear Phenomena,
vol. 143, no. 14, pp. 1 – 20, 2000.

[7] “Firefly pictures.”

[8] L. F. Abbott and C. van Vreeswijk, “Asynchronous states in networks of pulse-
coupled oscillators,” Physical Review E, vol. Vol. 48, No. 2., pp. pp. 1483–1490, 1
Aug 1993.

[9] C. S. Paskin, “Mathematical aspects of heart physiology,” [New York] Courant
Institute of Mathematical Sciences, New York University, pp. 268–278, 1975.

[10] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological
oscillators,” SIAM Journal on Applied Mathematics, vol. 50, no. 6, pp. 1645–1662,
1990.

[11] N. Weiner, “Nonlinear problems in random theory,” The MIT Press, 1966.

[12] A. T. Winfree, The Geometry of Biological Time. Springer.

[13] G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dy-
namics in optomechanical arrays,” Phys. Rev. Lett., vol. 107, p. 043603, Jul 2011.

[14] C. A. Holmes, C. P. Meaney, and G. J. Milburn, “Synchronization of many nanome-
chanical resonators coupled via a common cavity field,” Phys. Rev. E, vol. 85,
p. 066203, Jun 2012.

50



REFERENCES 51

[15] M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, “Quantum
synchronization of two ensembles of atoms.” July 2013.

[16] P. Z. C. W. Gardiner, Quantum Noise. Springer, third edition ed., 2004.

[17] “Gallery of wigner states.”

[18] M. Olsen and A. Bradley, “Numerical representation of quantum states in the
positive-p and wigner representations,” Optics Communications, vol. 282, no. 19,
pp. 3924 – 3929, 2009.

[19] P. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner, “Dynamics and
statistical mechanics of ultra-cold Bose gases using c-field techniques,” Advances
in Physics, vol. 57, no. 5, pp. 372–384, 2008.



Appendices

A.1 Gaussian vs. Lorentzian

In section 2.2.1 I gave the solution for r∞ for a Lorenztian frequency distribution,
but said that I would be using Gaussian distributions in this dissertation. Here I will
explain why this is.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x
)

Figure A.1: A comparason of equal FWHM Lorentzian (blue) and Gaussian (green)
distiributions.

A Lorentzian distribution is defined by the following equation:

L(x) =
1

π

γ

x2 + γ2
(A.1)

and a gaussian distribution is defined:

G(x) =
1√
2πσ

exp(
−x2

2σ2
) (A.2)

In figure A.1 you can see that for similar width distributions, the Gaussian has
a more centralized distribution than the Lorentzian. While in a continuous case this
would not lead to any problems, a computer runs discrete simulations. When sampling
points for say, frequency, one uses these probabillity distributions to generate a selection
of numbers. From comparing figures A.2 and A.3, which both contain 10,000 randomly
distributed numbers we finsd that the Gaussian distributes numbers more evenly. In
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Figure A.2: A selection of 10,000 random Gaussian distributed points with
FWHH=2.355

fact, the Lorentzian distribution will regularly make extreme outliers.
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Figure A.3: A selection of 10,000 random Lorentzian distributed points with
FWHH=2.355

If these were how the frequencies of oscillators then there would be a small distri-
bution about a value, plodding along at a similar rate. But then there would be a few
zipping around, thousands of times the speed of the rest. Since the Kuramoto model
deals with similar oscillators I have decided to use Gaussian distributions for all of my
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needs.

A.2 Deriving the Phase Space Equations

For a density operator ρ the converting to the Wigner formulation has the following
rules:

aρ↔ (α+
1

2

∂

∂ᾱ
)W (α,α∗) (A.3a)

a†ρ↔ (ᾱ− 1

2

∂

∂α
)W (α,α∗) (A.3b)

ρa↔ (α− 1

2

∂

∂ᾱ
)W (α,α∗) (A.3c)

ρa† ↔ (ᾱ+
1

2

∂

∂α
)W (α,α∗) (A.3d)

The time evolution of the density operator is:

∂ρ

∂t
= − i

~
[H, ρ]

= −i
∑
j

ωj(a
†
jajρ− ρa

†
jaj) +

∑
<j,k>

χjk(a
†
jaja

†
kajρ− ρa

†
jaja

†
kaj − a

†
jaka

†
jajρ+ ρa†jaka

†
jaj)

(A.4)

This is the Wigner fromulation is quite long, so we will break it up into sections.
Denoting the partial derivative with restpect to αj as ∂αj , the single mode part gives:

−i
∑
j

ωj(a
†
jajρ− ρa

†
jaj)↔ −i

∑
j

ωj

[
(α∗j − 1

2∂αj )(αj + 1
2∂α∗j )− (αj − 1

2∂α∗j )(α∗j + 1
2∂αj )

]
W (α,α∗)

= − i
2

∑
j

ωj

(
α∗j∂α∗j − ∂αjαj − αj∂αj + ∂α∗jα

∗
j

)
W (α,α∗)

= −
∑
j

(
∂α∗j (iωjα

∗
j ) + ∂αj (−iωjαj)

)
W (α,α∗) (A.5)

The first double sum commutator gives:∑
<j,k>

χjk(a
†
jaja

†
kajρ− ρa

†
jaja

†
kaj)↔

∑
<j,k>

χjk
[
(α∗j − 1

2∂αj )(αj + 1
2∂α∗j )(α∗k − 1

2∂αk
)(αj + 1

2∂α∗j )

− (αj − 1
2∂α∗j )(α∗k + 1

2∂αk
)(αj − 1

2∂α∗j )(α∗j + 1
2∂αj )

]
W (α,α∗)

(A.6)
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It is easy to see that the 0th and 4th order terms cancel, so the 1st order terms are:

1
2(α∗jαjα

∗
k∂α∗j − α

∗
jαj∂αk

αj + α∗j∂α∗jα
∗
kαj − ∂αjαjα

∗
kαj − αjα∗kαj∂αj + αjα

∗
k∂α∗jα

∗
j − αj∂αk

αjα
∗
j + ∂α∗jα

∗
kαjα

∗
j )W (α,α∗)

=(2∂α∗jα
∗
jα
∗
kαj − ∂αk

α∗jαjαj − ∂αjα
∗
kαjαj)W (α,α∗) (A.7)

2nd order:

1
4(− α∗jαj∂αk

∂α∗j − α
∗
j∂α∗j ∂αk

αj + αj∂αk
∂α∗jα

∗
j + ∂α∗j ∂αk

αjα
∗
j + α∗j∂α∗jα

∗
k∂α∗j − ∂α∗jα

∗
k∂α∗jα

∗
j

+ ∂αjαj∂αk
αj − αj∂αk

αj∂αj − ∂αjαjα
∗
k∂α∗j − ∂αj∂α∗jα

∗
kαj + αjα

∗
k∂α∗j ∂αj + ∂α∗jα

∗
kαj∂αj )W (α,α∗)

= 1
2(∂αk

αj + ∂α∗jα
∗
k − ∂αk

αj − ∂α∗jα
∗
k)W (α,α∗)

= 0 (A.8)

3rd order:

1
8(− α∗j∂α∗j ∂αk

∂α∗j + ∂αjαj∂αk
∂α∗j − ∂αj∂α∗jα

∗
k∂α∗j + ∂αj∂α∗j ∂αk

αj − αj∂αk
∂α∗j ∂αj

+ ∂α∗jα
∗
k∂α∗j ∂αj − ∂α∗j ∂αk

αj∂αj + ∂α∗j ∂αk
∂α∗jα

∗
j )W (α,α∗)

= 1
4(2∂α∗j ∂αj∂αk

αj − ∂α∗j ∂α∗j ∂αk
α∗j − ∂α∗j ∂α∗j ∂αjα

∗
k)W (α,α∗) (A.9)

Repeating this for the remaining terms:

−
∑
<j,k>

χjk(a
†
jaka

†
jajρ− ρa

†
jaka

†
jaj)↔−

∑
<j,k>

χjk
[
(α∗j − 1

2∂αj )(αk + 1
2∂α∗k)(α∗j − 1

2∂αj )(αj + 1
2∂α∗j )

− (αj − 1
2∂α∗j )(α∗j + 1

2∂αj )(αk − 1
2∂α∗k)(α∗j + 1

2∂αj )
]
W (α,α∗)

(A.10)

1st order:

−1
2(α∗jαkα

∗
j∂α∗j − α

∗
jαk∂αjαj + α∗j∂α∗kα

∗
jαj − ∂αjαkα

∗
jαj − αjα∗jαk∂αj + αjα

∗
j∂α∗kα

∗
j − αj∂αjαkα

∗
j + ∂α∗jα

∗
jαkα

∗
j )W (α,α∗)

=(2∂αjα
∗
jαjαk − ∂α∗kα

∗
jα
∗
jαj − ∂α∗jα

∗
kα
∗
jαk)W (α,α∗) (A.11)

2nd order:

−1
4(− α∗jαk∂αj∂α∗j − α

∗
j∂α∗k∂αjαj + αj∂αj∂α∗kα

∗
j + ∂α∗j ∂αjαkα

∗
j + α∗j∂α∗kα

∗
j∂α∗j − ∂α∗jα

∗
j∂α∗kα

∗
j

+ ∂αjαk∂αjαj − αj∂αjαk∂αj − ∂αjαjα
∗
k∂α∗j − ∂αj∂α∗kα

∗
jαj + αjα

∗
j∂α∗k∂αj + ∂α∗jα

∗
jαk∂αj )W (α,α∗)

= −1
2(∂α∗kα

∗
j + ∂αjαk − ∂α∗kα

∗
j − ∂αjαk)W (α,α∗)

= 0 (A.12)
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3rd order:

1
8(− α∗j∂α∗k∂αj∂α∗j + ∂αjαk∂αj∂α∗j − ∂αj∂α∗kα

∗
j∂α∗j + ∂αj∂α∗k∂αjαj − αj∂αj∂α∗k∂αj

+ ∂α∗jα
∗
j∂α∗k∂αj − ∂α∗j ∂αjαk∂αj + ∂α∗j ∂αj∂α∗kα

∗
j )W (α,α∗)

= 1
4(2∂α∗j ∂α∗k∂αjα

∗
j − ∂α∗k∂αj∂αjαj − ∂α∗j ∂αj∂αjαk)W (α,α∗) (A.13)

Combining all of these we have:

∂W

∂t
=

(
∂W

∂t

)
1st

+

(
∂W

∂t

)
3rd

=

(
∂W

∂t

)
SM

+

(
∂W

∂t

)
Int

+

(
∂W

∂t

)
3rd

(A.14)

where, (
∂W

∂t

)
SM

= −
∑
j

[
∂α∗j (iωjα

∗
j ) + ∂αj (−iωjαj)

]
W (α, ᾱ), (A.15)

(
∂W

∂t

)
Int

= −
∑
<j,k>

[(
∂αj (χjkα

∗
kαjαj − 2χjkα

∗
jαjαk) + ∂αk

(χjkα
∗
jαjαj)

)
+ c.c.

]
W (α,α∗)

= −
∑
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[
∂αj

(∑
k 6=j

χjk(α
∗
kαjαj − 2α∗jαjαk + α∗kαkαk)

)
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]
W (α,α∗),

(A.16)

and(
∂W

∂t

)
3rd

= −
∑
<j,k>

[(
∂α∗j ∂αj∂αj (

1
4χjkαk)+∂α∗k∂αj∂αj (

1
4χjkαj)−∂α∗j ∂αj∂αk

(12χjkαj)
)
+c.c.

]
W (α,α∗)

(A.17)
Let’s take a look at the classical limit. Take αj =

√
njα̃j , then let let χjk → 0 and

nj →∞ for all j, k such that njχjk = const.
The first order terms are essentially unchanged as,

∂αj

(
− iωjαj +

∑
k 6=j

χjk(α
∗
kαjαj − 2α∗jαjαk + α∗kαkαk)

)
=

∂α̃j√
nj

(
− i√njωjα̃j +

∑
k 6=j

χjk(nj
√
nkα̃k

∗α̃jα̃j − nj
√
nk2α̃j

∗α̃jα̃k + (nk)
3
2 α̃k

∗α̃kα̃k)
)

→ ∂α̃j

(
− iωjα̃j +

∑
k 6=j

χjk(α̃k
∗α̃jα̃j − 2α̃j

∗α̃jα̃k + α̃k
∗α̃kα̃k)

)
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But the third order terms vanish:

χjk∂α∗j ∂αj∂αj (
1
4αk) + ∂α∗k∂αj∂αj (

1
4αj)− ∂α∗j ∂αj∂αk

(12αj)

=
χjk
nj

[√nk
nj
∂α̃∗j

∂α̃j∂α̃j (
1
4 α̃k) +

√
nj
nk
∂α̃∗k

∂α̃j∂α̃j (
1
4 α̃j)−

√
nj
nk
∂α̃∗j

∂α̃j∂α̃k
(12 α̃j)

]
→ 0

Hence it is an apropriate approximation to use the Truncated Wigner Fromulation,
that is; to ignore the Third order terms. Without the third order terms we have:

∂W (α,α∗)

∂t
≈ −

∑
j

∂αj

(
− iωjαj +

∑
k 6=j

χjk(α
∗
kαjαj − 2α∗jαjαk + α∗kαkαk)

)
+ c.c.

]
W (α,α∗)

= −
∑
j

[
∂αj

(
− i

~
∂H(α,α∗)

∂α∗j

)
+ c.c

]
W (α,α∗) (A.18)

This yeilds the equations of motion:

dαj = − i
~
∂H(α,α∗)

∂α∗j
dt (A.19)

Because there were not any second order terms, there are no diffusion terms in equation
and hence there is no explicit noise. However the initial conditions are stochastic will
need to be sampled apropriately (see 4.0.2).
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