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Abstract

Beautiful experiments have shown that bosons in optical lattices provide

a physical system with an unprecedented degree of control; that they can

generate strongly correlated states; and that, as long-term goals, they may

be useful for simulating other many-body systems, or realising a quantum

computer. Recently a practical scheme for measuring temperature in an op-

tical lattice has been demonstrated [1], which marks an important milestone

necessary for the detailed study of the thermodynamics of this system.

In this thesis, we consider both the translationally-invariant lattice, and

the combined harmonic trap and optical lattice. We use an extended Bose-

Hubbard Hamiltonian which goes beyond the usual Bose-Hubbard approach,

and is valid for shallower lattices and higher temperatures, by allowing for

beyond nearest-neighbour hopping and excited bands, and we have devel-

oped an approximation scheme for off-site interactions. We derive the equa-

tions of the Popov approximation to the Hartree-Fock-Bogoliubov method

for our Hamiltonian, and diagonalise these equations in the local density

approximation (LDA).

We examine the density of states of the optical lattice in detail and in

various limits. We derive new results on the structure of the density of

states, and, in the ideal case, we compare the density of states from the full

diagonalisation with our LDA calculation.

We make an efficient numerical implementation of our theory and compare

the results with the full diagonalisation (for the non-interacting case) and

with the limited experimental results currently available. We consider the

significance of beyond nearest-neighbour hopping and excited bands and

illustrate the properties of our model.

In contrast to the trapped gas with no lattice, few thermodynamic results

for cold bosons in an optical lattice have been calculated. We analytically

derive the first practical formula for the critical temperature in an optical

lattice by using simplified shapes for the density of states. We derive correc-

tions for the influence of excited bands, the finite-size effect and mean-field

interactions. In all of these cases, we compare our results to full numerical

calculations and show that the validity range of our method is comple-

mentary to that of the effective-mass approximation, so that the simple

descriptions extend over a wide range.
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Abbreviations

The only abbreviations we use are for the local density approximation (LDA) and the

first Brillouin zone (BZ). We list our notation in table 1. We do not include notation

that is well known (on the level of m for the mass of an atom or z = eβµ for the

fugacity); used only near to where it is defined, or used only in appendices C and D.

The reference is to the page number where defined, or to the equation if in parentheses.

Table 1: Table of notation

Notation Description Ref.

âb,i destruction operator for an atom in band b at site i (2.4)

aj , a lattice spacing in direction j and their geometric mean (2.1)

as s-wave scattering length 14

bj , b band index in direction j and d-dimensional band-index

vector (b = 0 is the ground band for any d)

14

d number of dimensions (number of harmonically trapped

dimensions in sections 7.2 and 7.4)

11, 75

Eb,j, Eb(k, r) Hartree-Fock or Bogoliubov energy for band b, mode j

and its LDA equivalent for quasi-momentum k

(3.28),

(3.40)

ER,j , ER recoil energy in direction j and their geometric mean 12

g no lattice interaction parameter, g = 4π~
2as/m 14

gb(K) translationally-invariant lattice density of states, band b (4.1)

gLDA(E) combined harmonic lattice LDA density of states (4.12)

gtrap(Vtr) harmonic trap density of states for potential energy Vtr (4.13)

Jb,i,i′, J
l
b,y hopping matrix between sites i, i′ for band b and between

neighbours l sites apart in direction y

(2.6), 18

J ground-band hopping matrix element for a cubic lattice 17

K̂0,i,K̂1,i,K̂2,b,i site i grand-canonical Hamiltonian with 0,1,2 δ̂b,i factors 33

Kb(k) non-interacting translationally-invariant lattice energy (3.34)

Kmin
b minimum of Kb(k) for band b 47, 87

L̂b,i Hartree-Fock energy operator for band b at site i (3.16)

Lb(k, r) LDA equivalent of L̂b,i for quasi-momentum k (3.39)

mi,m
∗
i anomalous density at site i and its complex conjugate 32

m∗
j , m

∗ effective mass in direction j and their geometric mean (4.8)

n̄BE(E) Bose-Einstein distribution at energy E 34

n̂b,i, ñb,i number operator and non-condensate number 16, 31
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Table 1: continued

Notation Description Ref.

ñb(r) band b non-condensate LDA per-site density envelope 37

ñU
T (r, µ),

ÑU
T (µ)

ground-band non-condensate LDA envelope for the per-

site density and total number (sections 7.5, 7.6 only)

90

Ñb, Ñ non-condensate atom number for band b and all bands 31, (3.6)

nc(r) condensate LDA per-site density envelope 37

Nc total number of condensate atoms (3.4)

Ns number of sites in the translationally-invariant lattice 14,

(combined harmonic lattice thermal sites in chapter 7) 75

rj, r̄ direction j position and distance from trap units origin 54

S(w) spread function for the mean-field interaction shift (7.65)

T 0
L, T

0
c , T

fs
c , Tc critical temperature: non-interacting deep lattice limit,

thermal limit, finite-size; mean-field interacting

(7.30),

89

U i1,i2,i3,i4
b1,b2,b3,b4

general interaction parameter for sites i and bands b (2.10)

Ubb′ , U bands b, b′ and ground-band on-site interaction parameter (2.14),17

U ′, U ′′ all site interaction parameters (F.7,F.9)

ub,i,j, vb,i,j Hartree-Fock/Bogoliubov amplitudes (3.24)

ub, vb(k, r) LDA envelopes for Hartree-Fock/Bogoliubov amplitudes 37

Vlatt(r), Vj, V lattice potential, lattice depth and its geometric mean (2.1)

Vtr(r), vi harmonic-trap potential (0 if no trap), vi = Vtr(Ri) 13, 15

wb(r −Ri) Wannier function for band b localised at site i (2.4,D.1)

W , Wb width of the ground band and band b respectively 49, (7.7)

w, wL, w0
c , wc thermal width w = W/kBT at temperatures T , T 0

L, T 0
c , Tc 74,84,94

zi, z(r) condensate amplitude, zi =
〈

â0,i

〉

and its LDA envelope 30, 37

α̂b,j Hartree-Fock/Bogoliubov operator for band b, mode j (3.24)

δ̂b,i non-condensate destruction operator for band b at site i 30

ζα(z) Bose function, ζα(z) =
∑∞

n=1 z
n/nα (I.1)

µfs chemical potential for finite-size effect, µfs = 3~ω̄∗/2 (5.18)

Φ(r) condensate amplitude (order parameter), Φ(r) =
〈

Ψ̂(r)
〉

30

ψb,k(r) translationally-invariant lattice Bloch wavefunction (C.3)

Ψ̂(r), ψ̃(r), total and non-condensate bosonic field operator at r 13, 30

ωj, ω, ω̄,

ω∗
j , ω

∗, ω̄∗

harmonic trap frequency in direction j, their geometric

and arithmetic mean and their effective frequencies

13,59,

(4.15)

ωR recoil frequency, ωR = ER/~ 12
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Chapter 1

Introduction

1.1 Bose-Einstein condensation

Extending Bose’s work on photons [2],1 Einstein introduced what we now call bosons

in 1924 [4], and in 1925 he predicted the phenomenon of Bose-Einstein condensation:

that when the density of an ideal gas is increased at fixed temperature, ‘an increasing

number of molecules goes into the quantum [. . . ] state without kinetic energy [. . . ]. A

separation occurs; a part “condenses”, the rest remains a “saturated ideal gas” [. . . ].’

[5]. In this thesis we will consider atoms which are composite bosons, being composed

of an even number of fermions (electrons and nucleons) as discussed in appendix A.

In 1938, London suggested that the superfluidity of liquid 4He ‘very probably has to

be regarded as the condensation phenomenon of the Bose-Einstein statistics, distorted,

of course, by the presence of molecular forces and by the fact that it manifests itself in

the liquid and not in the gaseous state.’ [6, 7].

We do not attempt to detail here the huge amount of work that has been done in the

intervening years; rather we mention some contributions which are extremely important

to our work. In 1947, Bogoliubov derived a method appropriate to ‘a “nearly perfect”

Bose-Einstein gas’ whereby ‘[. . . ]the excited states of the [. . . ] molecules can be treated

as a perfect gas composed of “elementary excitations” – “quasi-particles” [. . . that] are

also subjected to Bose statistics.’ [8].

For a given density, the temperature at which condensation occurs (the ‘critical tem-

1For all articles cited which are German in the original, the translations in [3] were used.

1



Chapter 1. Introduction

perature’) for an ideal gas was soon shown to be very different for a gas in a box

than for a gas subject to a harmonic potential, and very different for lower-dimensional

problems [9]. In particular, it was shown that there is no condensation for an ideal gas

in a one or two-dimensional box, or in a one-dimensional harmonic potential. These

differences are of crucial importance to our work.

For a weakly-interacting Bose gas, the Gross-Pitaevskii equation was derived; this

describes the entire condensate with a single wavefunction at zero temperature and

uses a pseudo-potential whereby the interaction between two particles is replaced by a

delta function at the origin [10, 11].

Figure 1.1: Velocity distribution of the cloud of atoms just before the

appearance of the condensate (left), just after the appearance of the

condensate (centre), and for a nearly pure condensate (right) [12, 13]

An incredible impetus to the experimental and theoretical work on weakly-interacting

Bose gases occurred with the experimental realisation of Bose-Einstein condensation in

a dilute atomic gas in 1995 [12, 14, 15]. Almost all experiments creating Bose-Einstein

condensates have had a harmonic trap to confine the particles. With an aspherical

trap, the momentum density of the condensate is anisotropic (as a result of the Heisen-

berg uncertainty principle), whereas the momentum density of the thermal atoms is

2



1.2. Optical lattices

isotropic.2 Figure 1.1 shows this definitive signature with time of flight images revealing

a clearly anisotropic momentum distribution after condensation. This experimental re-

alisation has lead to some amazing applications with Bose-Einstein condensates, with

observations of: interference between condensates [16]; ‘atom lasers’ [17]; vortices [18];

collective excitations [19]; collapsing and exploding condensates ‘Bosenova’ [20, 21];

tunable scattering with Feshbach resonances [22–24]; three-body loss rates [25]; con-

densation of molecules from fermionic atoms [26, 27] and optical lattices.

1.2 Optical lattices

Figure 1.2: Schematic of

laser setup for an optical

lattice [28]

If a gas of atoms is subjected to standing waves

due to opposing lasers at a suitable frequency, as

in figure 1.2, the result is a periodic optical-lattice

potential.3 This is analogous to the periodic struc-

ture of a solid-state crystal. In contrast to a crystal,

however, an optical lattice has an unprecedented

degree of control: the atomic density can be varied;

the depth of the periodic potential can be controlled

using the laser intensity; the lattice spacing can be

controlled using the laser wavelength or direction

and the interaction strength may be controlled with

a Feshbach resonance [29–31].4 This level of control

is valuable for understanding condensed-matter problems. Furthermore, optical lattices

are simpler than crystals in some respects, being, for example, free of impurities and

of a pure sinusoidal shape.

In addition to the optical-lattice potential, it is necessary to have an overall confin-

ing potential. In optical-lattice experiments to date, the confining potential has been

approximately harmonic for low energies, arising from the combined effect of focused

laser beams and magnetic trap potentials. The additional harmonic potential adds sig-

nificant complication to the theoretical problem, since the combined potential is no

2This can be shown using, for example, the local density approximation for the thermal atoms.
3Discussed in section 2.1.
4The use of a Feshbach resonance for bosons has been achieved without an optical lattice and

is proposed with an optical lattice as discussed in the references given. In addition, the effective

interaction varies with the lattice depth as considered below.

3



Chapter 1. Introduction

longer truly periodic. For atoms confined to a plane, we can visualise the combined

trap and harmonic optical lattice potential using a surface above the plane represent-

ing the strength of the combined potential. This reveals an egg-carton-like structure

with additional harmonic confinement, as schematically shown in figure 1.3.5

Figure 1.3: Combined harmonic lattice potential in two dimensions

However, the energy structure of the optical lattice with no harmonic confinement (the

‘translationally-invariant’ lattice) has some relevance locally in the trap. For sufficiently

deep lattices, the energy levels of the translationally-invariant lattice separate into

bands, and, for a degenerate system, the atomic density becomes more concentrated

near the centre of lattice sites. In this regime, the many-body Hamiltonian for the

system is well approximated by the Bose-Hubbard Hamiltonian [32–35], a simple model

which includes local interactions and hopping between nearest-neighbour sites. The

Bose-Hubbard model is widely applicable, but neglects off-site interactions, hopping

beyond nearest-neighbour sites and excited bands – approximations that are not always

well justified at the critical temperature.

As the depth of the optical lattice increases, the effective interaction increases (since

the atomic density is higher at the centre of a lattice site at the expense of density

nearer the lattice barriers) and the hopping term decreases. The result is a transition

from a weakly-interacting regime, where the kinetic energy dominates interactions, to

5The potential shown is for a very weak lattice, since the lattice variation for an experimentally

relevant lattice depth and trap (as discussed in sections 2.1 and 2.2) would be too rapid to display for

a discernable harmonic variation.
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1.2. Optical lattices

Figure 1.4: Atom number at each site (left) and interference pattern

(imaged after time of flight, right) of the superfluid (a) and Mott-

insulator (b) states [28]

a strongly-correlated regime, where interactions dominate. In the weakly-interacting

case, for sufficiently low temperatures, there is a Bose-Einstein condensate superfluid

state [34, 36–38], where the condensate atoms all have the same wavefunction, which is

spread out over the lattice; this is a coherent phase which interferes as shown in figure

1.4(a), and the atom number at each site fluctuates. In the strongly-correlated regime,

the phase is incoherent, but, for sufficiently low temperatures, there is a Mott-insulator

state, where each lattice site is filled with a fixed number of atoms as shown in figure

1.4(b).

The transition from a superfluid to a Mott-insulator has been observed experimentally

[39], as shown in figure 1.5. In subfigure (a), there is no lattice, and the lattice depth

increases in each subfigure until the maximum depth in (h). As the lattice depth is

increased, the interference pattern due to phase coherence is initially clearly visible.

From subfigure (e), the interference maxima decrease until for (g) and (h) the atoms are

5



Chapter 1. Introduction

incoherent. What is truly amazing about this is that, if the lattice depth is reduced,

the phase coherence returns, demonstrating that its loss was not due to irreversible

processes.

Figure 1.5: Absorption images of matter wave interference patterns

as the optical lattice depth is increased [39]

In the superfluid phase of a non-interacting gas, the ground state is fully condensed at

zero temperature. For an interacting gas, competing effects emerge: a state with some

atoms promoted out of the single particle ground state increases the single particle

energy, but can decrease the interaction energy. Bogoliubov theory predicts that, due

to this competition, even at zero temperature there are some atoms which are not

in the condensate (these atoms are the ‘quantum depletion’) [8]. As the lattice depth

increases, the increase in the effective interaction, and decrease in the (single particle)

hopping term, both put the competition in favour of quantum depletion. The quantum

depletion therefore increases with lattice depth, long before the onset of the Mott-

insulator state discussed above. This effect has been shown experimentally [40] with

results reproduced in figure 1.6.

In addition to this fascinating transition, optical lattices promise to be an experimen-

tal method for the simulation of other many-body Hamiltonians. There have been

numerous applications for the versatile optical lattice already, including observation of:

strongly correlated systems such as the Tonks-Girardeau gas [41]; number squeezing

[42]; superexchange [43]; and steps towards quantum computing [44, 45].
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1.2. Optical lattices

Figure 1.6: Quantum depletion of a 23Na condensate in an optical

lattice near zero temperature. The squares and circles correspond to

experimental data and the thick lines show the Bogoliubov result (we

do not consider the lines (i)-(iii) here) [40]

An exact diagonalisation of even the Bose-Hubbard Hamiltonian is currently compu-

tationally unattainable for more than a few particles and sites. Quantum Monte-Carlo

for the combined harmonic lattice problem in three dimensions has been limited to

approximately 20 sites in each direction [46, 47]. The density-matrix renormalisation

group method has not currently been solved in three dimensions [48, 49] although

recent work on a special case in two dimensions has been reported [50]. Due to the

difficulty of exact calculations with the Bose-Hubbard Hamiltonian, Bogoliubov ap-

proaches, commonly used for the trapped system without a lattice [51], have been used

for the lattice system in the superfluid regime. For the combined harmonic lattice, this

has been limited to one dimension: adiabatic loading was considered in [52] with 19

atoms and superfluidity and condensation was considered in [53] with 41 sites and ten

atoms.

To model sufficient atoms for thermodynamics, and since, as we shall see, the dimension

of the system has a profound effect on its properties, it is necessary to simplify further.

The local density approximation (LDA) has been shown to give reasonable agreement

with experimental results for the trapped, no lattice case [54–56], although it restricts

7



Chapter 1. Introduction

the validity of results to temperatures well above the energy spacing of the Hamiltonian.

Duan and co-workers [57, 58] have considered the combined harmonic lattice in the

LDA using the Bose-Hubbard assumption. Although they concentrate on the effect of

condensation on the interference pattern, they do produce condensate fractions, the

depletion fraction and number densities. Other LDA work with interacting bosons in

the combined harmonic lattice has used the decoupling approximation [59], or has

treated tunnelling as a perturbation [60], so is more applicable in the Mott-insulator

regime.

1.3 Overview

In this thesis, we develop theory for Bose-Einstein condensates in optical lattices, both

with and without an additional harmonic potential. We go beyond the Bose-Hubbard

Hamiltonian and critically assess the importance of hopping beyond nearest-neighbour

sites, excited bands and off-site interactions. Our results justify the regimes of applica-

bility of the Bose-Hubbard Hamiltonian and indicate that in many accessible regimes,

beyond Bose-Hubbard Hamiltonian effects are important. Most results we produce ap-

ply to systems of one, two or three spatial dimensions, but for numerical results, we

generally concentrate on the three-dimensional case.

We start from the many-body Hamiltonian for bosons in an optical lattice, derive

the extended Bose Hubbard Hamiltonian, and make the Popov approximation to the

Hartree-Fock Bogoliubov method. We diagonalise the resulting Hamiltonian in the

LDA. Our approach is more general than the related work of Duan and co-workers

[57, 58]: their work is based on the Bose-Hubbard model and uses the simpler case

of fixed number density at the trap centre (so that the chemical potential iteration is

local). The efficient numerical implementation of our theory allows us to model the

fixed total number case, while providing a more general treatment of beyond nearest-

neighbour tunnelling and the influence of excited bands.

We derive new results on the rich structure of the combined harmonic lattice density of

states. We compare the LDA combined harmonic lattice density of states to the density

of states from the full diagonalisation for the ideal gas. We numerically implement our

model and compare the thermodynamic results with the full diagonalisation of the

ideal gas and with limited experimental results available.
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1.4. Outline

We derive analytical results for the ideal number density, condensate fraction and

critical temperature, and for the finite-size effect and mean-field interaction shift. We

give simple iterative procedures for including excited bands. We compare all of these

against the full numerical approach. We show that the nature of useful approximations

for the translationally-invariant and combined harmonic lattices differ distinctly. For

the translationally-invariant case, the lowest energy states are singularly important,

for which we verify that an effective-mass treatment is accurate over a broad regime.

In contrast, for the combined harmonic lattice, the entire ground-band structure is

typically important, for which we develop simple band shape approximations. In both

the translationally-invariant and the combined harmonic lattices, we show that the

effective-mass treatment and the simple band shape approximations work in comple-

mentary regimes.

1.4 Outline

We begin by presenting the many-body Hamiltonian for bosons in an optical lattice

in chapter two. We show the conversion to the extended Bose-Hubbard Hamiltonian,

by changing to a localised basis. We compare our approach with other extended Bose-

Hubbard work. We discuss the hopping, trap, and interaction parameters appearing in

the Hamiltonian, and consider approximations that are often used in other work.

We make mean-field approximations to the extended Bose-Hubbard Hamiltonian in

chapter three, using the Popov approximation to the Hartree-Fock-Bogoliubov method

[61]. We diagonalise the mean-field Hamiltonian in the LDA.

We show the translationally-invariant lattice density of states, in chapter four. We con-

sider nearest-neighbour only, effective-mass and high-energy approximations. We derive

results on the LDA combined harmonic lattice density of states, which we compare to

the full diagonalisation of the non-interacting Hamiltonian.

In chapter five we show some important features of our numerical implementation,

we give our algorithm for finding thermodynamic results in an optical lattice, and we

compare our implementation to that of [57, 58].

We present numerical results from our model in chapter six. We compare our predictions

of thermal properties with results from the full diagonalisation for the ideal gas. We

show the significance of the parameters and assumptions in the Hamiltonian and the

9



Chapter 1. Introduction

effect of the Bogoliubov approach.

We derive analytical results for number density, condensate fraction and mean-field

critical temperature in chapter seven. We start by exploring the validity of the well-

known effective-mass approximation, and consider an existing very deep lattice limit

[62]. We then consider simple band shapes and use these to derive a simple formula

for the non-interacting critical temperature, first ignoring excited bands, then deriving

adjustments for excited bands, the finite-size effect and the mean-field interaction shift.

We compare to results from our full numerical model.

We present our conclusions and outlook in chapter 8.

In the appendices, we consider some background material and mathematical details

and extensions.

1.5 Papers arising

Two papers arising from this thesis, and subsequent work, are in review and available

on arXiv, based on the theory and numerical results from chapters 2 to 6 [63] and

analytical critical-temperature work of chapter 7 [64]. Additional work related to the

finite-temperature, mean-field description of a quasi-two-dimensional gas was under-

taken during this masters thesis (that work is not discussed here) and is published in

Phys. Rev. A [65].

10



Chapter 2

Bosons in optical lattices

In this chapter we derive the many-body Hamiltonian for bosons in an optical lattice

with two body interaction. In this work we consider the effect of inclusion of excited

bands, beyond nearest-neighbour hopping, and approximate off-site interactions, by de-

veloping an extended version of the usual Bose-Hubbard Hamiltonian. Our approach is

more general than existing extended Bose-Hubbard work [66–69]. We then consider the

values of the numerical parameters in the Hamiltonian in considerable detail, including

investigation of approximations that are commonly used in the literature, and give our

own novel improvements to these approximations. Our investigation of approximations

in the treatment of the harmonic trap by the extended Bose-Hubbard model is the first

to our knowledge.

2.1 Lattice potential

We consider an optical lattice formed by orthogonal standing waves. In each direction,

the standing wave is created by two opposing lasers. The laser wavelength λj (in di-

rection j) is off-resonant with respect to an atomic transition. The resulting potential

in d dimensions, up to an additive constant, is (from appendix B):

Vlatt(r) ≡
d
∑

j=1

Vj sin2

(

πrj

aj

)

, (2.1)

where Vj is the lattice depth and aj ≡ λj/2 is the lattice spacing in direction j. We

set V ≡
(

∏

j Vj

)1/d

and a ≡
(

∏

j aj

)1/d

. Most of our results can be generalised to the
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Chapter 2. Bosons in optical lattices

non-separable case, but the notation would be more complex [70, 71] (and the method

of calculation of the density of states, discussed in chapter 4, would be specific to the

experimental configuration).

We will generally present results in recoil units, with the unit of length being aj/π and

the unit of energy ER,j ≡ h2/2mλ2
j where m is the atomic mass (we have m = 86.909 u

for 87Rb [72] and m = 22.990 u for 23Na [73]). We set ER ≡
(

∏

j ER,j

)1/d

, and the

recoil frequency to ωR ≡ ER/~.

Except where specifically stated otherwise, our formulae are generally valid for non-

cubic lattices and lower-dimensional systems.1 By a cubic lattice, we mean the under-

lying Bravais lattice has cubic symmetry (or the equivalent in lower dimensions, such

as the square case) and that the lattice spacings, aj , and depths, Vj, are the same

in each axial direction. All of our numerical results are for separable cubic lattices.

The three-dimensional experiments for which we give parameters in table 2.1 generally

have a cubic-lattice potential, apart from minor frequency shifts to eliminate cross-

interference between different beams which have a relative effect on the lattice spacing

of . 10−7.

Table 2.1: Typical experimental lattice parameters [72, 73]

atom transition lattice lasers ER/h

87Rb D2 52S1/2 → 52P3/2 at 780.24 nm

852 nm [39, 74] 3.2 kHz

850 nm [75–77] 3.2 kHz

840 nm [42] 3.3 kHz

826 nm [78] 3.4 kHz

23Na
D2 (32S1/2 → 32P3/2) at 589.16 nm, and 594.7 nm [79] 24.4 kHz

D1(3
2S1/2 → 32P1/2) at 589.8 nm 1064 nm [40] 7.7 kHz

2.2 Harmonic-trap potential

Experimentally, atoms are subject to a crossed optical dipole [40, 79] harmonic trap

(due to the focused lasers used to make the lattices) and often a magnetic trap also

1However, we do not consider quasi-reduced-dimensional systems, where some directions are par-

tially accessible, that is, kBT is of the order of the level spacing.
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2.3. Many-body Hamiltonian

[74, 75]. The resulting potential is Vtr(r) ≡ 1
2
m
∑

j ω
2
j r

2
j , where ωj is the harmonic trap

frequency in direction j. In three-dimensional experiments, the trap is often spherical

or radially symmetric, with, for example ωx = ωy 6= ωz. We set ω =
(

∏

j ωj

)1/d

. We

consider the aspherical case in d dimensions, but, as for the lattice parameters discussed

above, we do not allow for quasi-reduced-dimensionality. In this thesis we consider both

the lattice with with Vtr(r) = 0, which we call the ‘translationally-invariant lattice’,2

and the experimentally relevant combined harmonic-trap and optical-lattice potential,

which we call the ‘combined harmonic lattice’.

From a sample of three-dimensional lattice experiments, we find the harmonic trapping

frequencies to be generally between 2π×18 Hz and 2π×155 Hz [39, 40, 74, 78, 79], giving

ω/ωR between 0.005 and 0.02. The maximum anisotropy, ωj/ωk, for these experiments

is less than 50%.

An iso-surface of the combined harmonic lattice potential is shown for an ellipsoidal

harmonic trap in figure 2.1. For a given potential energy, the volume of a site is reduced

when the harmonic potential is greater.

Figure 2.1: An iso-surface of the combined harmonic lattice potential

in three dimensions

2.3 Many-body Hamiltonian

In this work we consider only bosons, with field operator Ψ̂(r) such that [80]:
[

Ψ̂(r), Ψ̂(r′)
]

= 0,
[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r− r′). (2.2)

2This is standard terminology, but the lattice without a harmonic trap is only invariant under

translations of a direct lattice vector.
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Chapter 2. Bosons in optical lattices

As we are considering low energy collisions in a cold dilute gas, we consider two-body

forces only and we use the pseudo-potential, to lowest order depending only on the

s-wave scattering length, as, giving a Hamiltonian with a contact potential [81]:

Ĥ =

∫

drΨ̂†(r)

[

−~
2∇2

2m
+ Vlatt(r) + Vtr(r)

]

Ψ̂(r) +
g

2

∫

drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r),

(2.3)

where g ≡ 4π~
2as/m. For 87Rb, as = 5.77 nm from the triplet configuration and for

23Na, we use the maximally stretched as = 2.75 nm [72, 73, 82].

2.4 Wannier basis

We expand the boson field operators in a basis of the Wannier functions, wb(r − Ri),

of the non-interacting translationally-invariant lattice (D.1), so that for bands b and

sites Ri we have (as in [66]):

Ψ̂(r) =
∑

b,i

âb,iwb(r −Ri), Ψ̂†(r) =
∑

b,i

â†b,iw
∗
b (r −Ri), (2.4)

where the creation operator for an atom in band b at site i is given by âb,i. We note

that b and i are discrete d-dimensional vectors. We will refer to the ground band as

b = 0 by which we mean bj = 0 for all j. Also, for the translationally-invariant lattice

with Ns sites, we will let i = 1, . . . , Ns. We require that:

[

âb,i, â
†
b′,i′

]

= δbb′δii′,
[

âb,i, âb′,i′

]

= 0, (2.5)

which ensures (2.2), since then
[

Ψ̂(r), Ψ̂†(r′)
]

=
∑

b,iwb(r−Ri)w
∗
b (r

′−Ri) = δ(r− r′)

from (D.10). The Wannier basis is a localised basis for sufficiently deep lattices, as de-

picted in figure 2.2. For a given lattice depth, there is less localisation for excited bands

as shown in figure D.3. Using a localised basis significantly simplifies the treatment of

interactions when off-site interactions are ignored.

The Wannier states are ‘quasi-stationary’, since, as we show in appendix D, they are

not eigenstates of the Hamiltonian, so that there are transitions between the different

Wannier states in the same band due to the single-particle evolution. In particular, the

matrix element for hopping from site Ri′ to site Ri for band b is defined as:

Jb,i,i′ ≡ −
∫

drw∗
b(r −Ri)

[

−~
2∇2

2m
+ Vlatt(r)

]

wb(r − Ri′). (2.6)
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Figure 2.2: Ground-band Wannier functions

We show in the appendix (D.16) that there is no inter-band hopping with the (non-

interacting, translationally-invariant lattice) definition of the Wannier functions we are

using. A change of variables in (2.6) shows that this formula is dependent on Ri and

Ri′ only through the difference Ri − Ri′.

2.5 Extended Bose-Hubbard Hamiltonian

We now express the Hamiltonian in terms of the operators âb,i by inserting (2.4) into

(2.3) and we consider the resulting terms in this section.

We assume the trap is slowly varying relative to the lattice spacings aj so that:

∫

dr Vtr(r)w
∗
b (r− Ri)wb′(r − Ri′) ≈ vi

∫

drw∗
b(r − Ri)wb′(r −Ri′) = viδbb′δii′ , (2.7)

using (D.7) where vi ≡ Vtr(Ri). The approximations in (2.7) will be discussed in section

2.9. We define:

N̂ ≡
∫

dr Ψ̂†(r)Ψ̂(r) =
∑

b,b′,i,i′

â†b,iâb′,i′

∫

drw∗
b (r − Ri)wb′(r −Ri′) =

∑

b,i

n̂b,i, (2.8)
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Chapter 2. Bosons in optical lattices

where n̂b,i ≡ â†b,iâb,i. Then, expressing the Hamiltonian in the grand-canonical distri-

bution to conserve total particle number, K̂ ≡ Ĥ − µN̂ :

K̂ =
∑

b,i

[

−
∑

i′

(

Jb,i,i′ â
†
b,iâb,i′

)

+ n̂b,i(vi − µ)

]

+
1

2

∑

i1,i2,i3,i4
b1,b2,b3,b4

â†b1,i1
â†b2,i2

âb3,i3
âb4,i4

U i1,i2,i3,i4
b1,b2,b3,b4

,

(2.9)

where:

U i1,i2,i3,i4
b1,b2,b3,b4

≡ g

∫

drw∗
b1(r − Ri1)w

∗
b2(r −Ri2)wb3(r − Ri3)wb4(r −Ri4). (2.10)

If we restrict to on-site interactions, (2.9) reduces to K̂ =
∑

i K̂i where:

K̂i ≡
∑

b

[

−
∑

i′

(

Jb,i,i′ â
†
b,iâb,i′

)

+ n̂b,i(vi − µ)

]

+
1

2

∑

b1,b2,b3,b4

â†b1,iâ
†
b2,iâb3,iâb4,iU i,i,i,i

b1,b2,b3,b4

,

(2.11)

where the interaction parameter is:

U i,i,i,i
b1,b2,b3,b4

≡ g

∫

drw∗
b1

(r)w∗
b2

(r)wb3(r)wb4(r), (2.12)

as in [83].

2.6 Comparison to other approaches

The extended Bose-Hubbard Hamiltonian (2.11) is the basis for the work in this thesis:

we will make approximations to it in chapter 3 (although we also consider off-site inter-

actions in section 2.10.5 and appendix F). In this section, we consider approximations

that have been made in previous work. Assuming that interactions are perturbative rel-

ative to the band-gap energy scale, so that we may ignore collisional couplings between

bands in the many body state, we get:

1

2

∑

b1,b2,b3,b4

â†b1,iâ
†
b2,iâb3,iâb4,iU i,i,i,i

b1,b2,b3,b4

≈ 1

2

∑

b

â†b,iâ
†
b,iâb,iâb,iUbb +

∑

b,b′

b6=b′

â†b,iâ
†
b′,iâb,iâb′,iUbb′ +

∑

b,b′

b6=b′

â†b,iâ
†
b,iâb′,iâb′,iUbb′

=
1

2

∑

b

n̂b,i(n̂b,i − 1)Ubb +
∑

b,b′

b6=b′

n̂b,in̂b′,iUbb′ +
∑

b,b′

b6=b′

â†b,iâ
†
b,iâb′,iâb′,iUbb′ , (2.13)
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2.7. Mott-insulator transition

where:

Ubb′ ≡ g

∫

dr |wb(r)wb′(r)|2 , (2.14)

as for the result derived in [68] (although, by
∑

bb′,b6=b′ they seem to mean either
∑

b>b′

or 1
2

∑

bb′,b6=b′).

Other extended Bose-Hubbard work has used various simplifications of (2.11): [66]

uses nearest-neighbour hopping and nearest-neighbour interactions, [69] uses ground

band only, nearest-neighbour hopping and nearest-neighbour interactions and [67] uses

ground band only and nearest-neighbour interactions.

Limiting to the ground band, nearest-neighbour hopping (and ignoring the energy offset

J0,i,i), and on-site interactions only, the Hamiltonian reduces to the Bose-Hubbard

model [32, 33] which for the cubic lattice is:

K̂ = −J
∑

〈i,i′〉

â†0,iâ0,i′ +
∑

i

n̂0,i(vi − µ) +
U

2

∑

i

n̂0,i(n̂0,i − 1), (2.15)

where J ≡ J0,i,i′ is the cubic-lattice ground-band hopping matrix element for nearest-

neighbours i and i′ (labelled 〈i, i′〉), and U ≡ U00.

2.7 Mott-insulator transition

In this thesis, we consider atoms in the normal and superfluid states. For a sufficiently

deep lattice, there is a transition to a Mott-insulator phase [34]. In a three-dimensional

cubic lattice, this occurs for the unit-filled system when U/6J > 5.83 at T = 0 [38].

For typical experimental parameters, the transition occurs in 87Rb when V & 13ER

(when V > 16ER for 23Na with the far blue detuning of [40]). The lattice depth for the

Mott-insulator transition is increased for higher filling factors.

2.8 Hopping matrix

We first consider the importance of beyond nearest-neighbour hopping in section 2.8.1.

We then consider alternative approximations for the nearest-neighbour ground-band

hopping matrix element, J . These can be useful rules of thumb, but, in this work, we

will always use the exact form, (2.6), for calculations of the hopping matrix.
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Chapter 2. Bosons in optical lattices

2.8.1 Beyond nearest-neighbour hopping

In this section, we consider the ratio of beyond nearest to nearest-neighbour hopping

matrix elements (we also discuss the significance of beyond nearest-neighbour hopping

in sections 4.2, 6.2 and D.2).

In section 2.5 we defined the band b hopping matrix element between sites i and i′

by Jb,i,i′, which is the form that will be most useful for our theory, and the cubic-

lattice ground-band nearest-neighbour hopping matrix element, J , which is useful in

the deep lattice limit. Here we will also define the band b hopping between neighbours

l sites apart in axial direction j to be J l
b,j (for example J l

b,y = Jb,000,0l0 and, for the

cubic lattice, J = J1
0,j),

3 which we will use for considering the significance of beyond

nearest-neighbour hopping.

The ratio of beyond nearest-neighbour to nearest-neighbour hopping in shown in figure

2.3.4
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Figure 2.3: Ratio of beyond nearest- to nearest-neighbour hopping

3When we use this notation, we are implicitly assuming that the energy spectrum is invariant under

inversion of quasi-momentum, in view of (D.15).
4For the first excited band, the hopping matrix element in a non-excited direction is the same as

for the ground band, so the excited direction used for the first excited band is the hopping matrix

direction, j.
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2.8. Hopping matrix

We see from figure 2.3 that the ground-band next-nearest-neighbour hopping matrix

element is as much as 25% of its nearest-neighbour counterpart at V = 0, but decreases

rapidly with increasing V . Beyond next-nearest-neighbour hopping is less significant.

For the excited band, some of the ratios can increase initially.

2.8.2 Numerical fit

For the ground-band nearest-neighbour hopping matrix, a numerical fit of the exact

form over the range 5ER < V < 15ER is:

J

ER

≈ 2.48√
π

(

V

ER

)1.04

e−2.11
√

V/ER, (2.16)

with coefficient of determination, R2 > 1 − 10−5. Equivalent results to two significant

figures are given with unspecified lattice-depth validity range in [84].

2.8.3 Deep lattice limit

In the nearest-neighbour hopping approximation, the width of the one-dimensional

ground band is 4J from (D.19), so from [85] as V → ∞:

J

ER
→ 4√

π

[

(

V

ER

)3/4

− 0.45

(

V

ER

)1/4

+O

(

V

ER

)−1/2
]

e−2
√

V/ER, (2.17)

the first term of which is given in [86].

2.8.4 Gaussian approximation

For a sufficiently deep lattice, the energy of the ground band is low within the lattice

potential. Near the bottom of a lattice potential well, we see from (2.1) that (taking

r ≈ 0 as an example), Vlatt(r) ≈
∑3

j=1 Vj(πrj/aj)
2. As the lattice depth increases, the

ground band narrows toward the ground-state energy of this potential. We approximate

the ground-band Wannier function with the ground-state wavefunction of this harmonic

potential:

w0(r) ≈
(

π

a2

√

V

ER

)d/4

e−
P

j

√
Vj/ER,j(πrj/aj)2/2. (2.18)
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Chapter 2. Bosons in optical lattices

The approximation of the ground-band Wannier function by a Gaussian is illustrated

further in appendix D. For the hopping matrix, if we also approximate the lattice

potential with a quadratic barrier, we find (E.3) for the cubic lattice:

J ≈
(

π2

4
− 1

)

V e−
π2

4

√
V/ER. (2.19)

The origin of the numerical coefficient shown in (2.19) is given in appendix E and is

used in [87]. However, since the Gaussians which approximate the Wannier functions at

different sites are not orthogonal, any constant addition to the Hamiltonian will change

the J estimate, so the coefficient is not well determined. If we use a Gram-Schmidt

orthogonalisation to get a pair of orthogonal functions, we find that the hopping matrix

element is zero (shown in appendix E). The scaling of the exponential shown, π2/4 ≈
2.47 (used in [38]) is a poor approximation to the true large V scaling in (2.17), since

the true Wannier functions are fatter tailed than the Gaussian approximation (the

tails, important for the hopping matrix, are where the potential is not approximately

harmonic). A comparison of the hopping matrix approximations is shown in figure 2.4.

We see that (2.16) and (2.17) are good approximations (and the first term of (2.17)

has the correct large V behaviour) and that (2.19) is a poor approximation.

V/ER

J
/E

R

actual
numerical fit (2.16)
large V limit (2.17), first term only
large V limit (2.17)
Gaussian (2.19)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

Figure 2.4: Nearest-neighbour, ground-band hopping matrix approx-

imations
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2.9. Harmonic trap

2.9 Harmonic trap

In this work, we will always use the local energy form (2.7) to represent the harmonic

trap. However, there are approximations involved in (2.7) which we consider in this

section.

2.9.1 On-site variation

Here we consider the accuracy of (2.7) when i = i′ and b = b′. To the extent that this

is in error due to variation on the trap site, the error could be removed by setting:

vb,i =

∫

dr Vtr(r) |wb(r −Ri)|2 . (2.20)

However, to the extent that (2.7) is in error due to the Wannier functions not being

fully localised on the site, to be consistent, it would be necessary to allow for the off-site

contribution, considered in the next section.

We now quantify the extent of the error. There are three components to the integral in

(2.7), one for each trap direction and the three components are additive. Considering

the x component, for example, we have (using Xi for the x component of Ri):

∫

dr
1

2
mω2

xx
2 |wb(r −Ri)|2 =

1

2
mω2

x

∫ ∞

−∞

dxx2 |wb(x−Xi)|2

=
1

2
mω2

x

∫ ∞

−∞

dx′ x′
2 |wb(x

′)|2 +
1

2
mω2

xX
2
i , (2.21)

where we have made the transformation x − Xi → x′ to obtain the last line and

have used the fact that x |wb(x)|2 is odd and that wb(r) is normalised. For the ground

band, we can recover (2.7) by absorbing the constant 1
2
mω2

x

∫∞

−∞
dx′ x′2 |wb(x

′)|2 into

the chemical potential. For excited bands there will be an error of

1

2
mω2

x

∫ ∞

−∞

dx′ x′
2
[

|wb(x
′)|2 − |w0(x

′)|2
]

, (2.22)

which is applied to n̂b,i in the Hamiltonian.

In figure 2.5 we plot the ratio
∫∞

−∞
dxx2

[

|w1(x)|2 − |w0(x)|2
]

/a2 as a function of V .

The divisor of a2 means if the ratio is 1, vi is wrong by 1
2
mω2

xa
2.
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V/ER
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x
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2
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|w
1
(x

)|2
−
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Figure 2.5: First excited band error due to on-site variation of the

trap

2.9.2 Off-site contribution

Now, we consider the case with i 6= i′ but with b = b′. This contribution could be

included by introducing hopping matrix element adjustments that vary by site, given

by:

vb,i,i′ ≡
∫

dr Vtr(r)w
∗
b (r −Ri)wb(r − Ri′) (2.23)

instead of using vb,i (that is, the diagonal element of vb,i,i′).

To quantify the error of ignoring the off-diagonal elements of vb,i,i′, we note again that

the components of the trap contributing to the integral in the three directions are

additive. We only get a potential error in the x component if components in the other

directions of i and i′ are equal. Then, for Xi 6= Xi′ :
∫

dr
1

2
mω2

xx
2w∗

b (r− Ri)wb(r −Ri′) =
1

2
mω2

x

∫ ∞

−∞

dxx2w∗
b (x−Xi)wb(x−Xi′)

=
1

2
mω2

x

∫ ∞

−∞

dxx2w∗
b (x)wb(x− (Xi′ −Xi)),

(2.24)
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2.9. Harmonic trap

since wb(x − Xi) and wb(x − Xi′) are orthogonal and w∗
b (x − Xi)wb(x − Xi′) is even

about (Xi + Xi′)/2 as wb(x) is either even or odd.5 In figure 2.6 we plot the ratio
∣

∣

∣

∫∞

−∞
dxx2w∗

b (x)wb(x− a)
∣

∣

∣
/a2 as a function of V .

V/ER

∣ ∣ ∣

∫

∞ −
∞

d
x
x

2
w

∗ b
(x

)w
b
(x

−
a
)∣ ∣ ∣
/a

2

ground band
first excited band

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

Figure 2.6: Error due to contribution from adjacent sites

2.9.3 Inter-band contribution

Now we consider the case with b 6= b′, but with i = i′. To allow for this contribution,

it would be necessary to include matrix elements between bands in the Hamiltonian.

To quantify the error, we consider the additive component in the x direction, and we

only get a potential error if the other components of band b and b′ are equal. Then,

with bx being the x component of b and bx 6= b′x:

∫

dr
1

2
mω2

xx
2w∗

b(r − Ri)wb′(r − Ri) =
1

2
mω2

x

∫ ∞

−∞

dxx2w∗
bx

(x−Xi)wb′x(x−Xi)

=
1

2
mω2

x

∫ ∞

−∞

dx (x+Xi)
2w∗

bx
(x)wb′x(x). (2.25)

5f(−x) = ±f(x), g(x) = f(x−a)f(x+a) =⇒ f(x−a) = ±f(−x+a), f(x+a) = ±f(−x−a) =⇒
g(−x) = f(−x− a)f(−x+ a) = f(x+ a)f(x− a) = g(x)
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Chapter 2. Bosons in optical lattices

Considering, for example bx = 0 (the ground band), and b′x = 1 (the first excited band)

w∗
0(x)w1(x) is odd so the above becomes mω2

xXi

∫∞

−∞
dxxw∗

0(x)w1(x). In figure 2.7 we

plot the ratio
∫∞

−∞
dxxw∗

0(x)w1(x)/a as a function of V , and note that when occupation

of excited bands is low, its significance will be reduced.

V/ER

∫

∞ −
∞

d
x
x
w

∗ 0
(x

)w
1
(x

)/
a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

Figure 2.7: Error due to overlap between Wannier functions from the

ground and first excited bands

2.10 Interaction coefficients

In this work, we will always use the exact form (2.12) for calculation of interaction

coefficients. However, we consider approximations and limits in this section.

2.10.1 Numerical fit

A numerical fit of the ground-band on-site interaction coefficient over the range 5ER <

V < 15ER gives, for the three-dimensional case:

U

ER
≈ 2.33

as

a

(

V

ER

)0.96

, (2.26)

with coefficient of determination, R2 > 0.999.
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2.10. Interaction coefficients

2.10.2 Gaussian approximation

As in section 2.8.4, if we approximate the Wannier function by (2.18), then:

U ≈ g

∫

dr |w0(r)|4 ≈ g
( π

2a2

)d/2
(

V

ER

)d/4

, (2.27)

and in three dimensions this gives U ≈ 2
√

2π(V/ER)3/4ERas/a as in [88, 89].

2.10.3 No lattice limit

In appendix F.2 we show that, in the limit when there is no lattice, the numerical

approach we follow in this thesis gives the same results as those we would get from

existing no-lattice LDA calculations [56] if Ubb′ = g/ad for all b, b′. This is equivalent

to:

Ubb′a
d−2

ERas
=

8

π
. (2.28)

In appendix F.2 we proceed to show that the correct limit is obtained when we consider

interactions with all sites. In this section we consider what the shortfall is when only

on-site interactions are included.

We have w0(x) = sinc (πx/a)/
√
a from (D.25), so the on-site only component for the

ground band is:

U = g

∫

|w0(r)|4 dr = g

[

∫ ∞

−∞

∣

∣

∣

∣

1√
a

sinc (πx/a)

∣

∣

∣

∣

4

dx

]d

= g

(

2

3a

)d

, (2.29)

so that, in three dimensions, Uad/g = (2/3)3 ≈ 30%, showing that on-site component

makes up 30% of the total interaction in the no-lattice limit. From (D.25), in three

dimensions, the on-site interaction component between the ground band and an excited

00n band (ground band in two directions and band n in one direction) is:

U000,00n = g

[
∫ ∞

−∞

w4
0(x)dx

]2 ∫ ∞

−∞

w2
0(x)w

2
n(x)dx

= g

(

2

3a

)2
5

12a
= g

5

27a3
=

40

27π

as

a
ER. (2.30)

So, the on-site ground to 00n band interactions make up 5/27 = 18% of the total

ground to 00n band interactions in the no lattice limit.
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Chapter 2. Bosons in optical lattices

The two types of on-site interactions between first excited bands in three dimensions

are:

U00n,00n = g

[
∫ ∞

−∞

w4
0(x)dx

]2 ∫ ∞

−∞

w4
n(x)dx

= g

(

2

3a

)2
1

2a
= g

2

9a3
=

16

9π

as

a
ER, (2.31)

and

U0n0,00n = g

∫ ∞

−∞

w4
0(x)dx

[
∫ ∞

−∞

w2
0(x)w

2
n(x)dx

]2

= g
2

3a

(

5

12a

)2

= g
25

216a3
=

25

27π

as

a
ER, (2.32)

so the on-site interactions are 22% and 12% of the respective totals.

2.10.4 Using Wannier functions

The three-dimensional ground-band interaction coefficients are shown in figure 2.8. The

on-site interaction coefficient tends to the expected value, (2.29), at V = 0. We also

show the all-site interaction coefficients, discussed in section 2.10.5, which tend to the

expected value (2.28) at V = 0. Compared to the Gaussian approximation, the Wannier

functions are fatter tailed and therefore lower at the peak for a given normalisation

(as shown in figure D.2). This increased peak height for the Gaussian approximation

is accentuated by taking the fourth power in the integral for U , and we can see that

the Gaussian approximation significantly overstates the interaction coefficient.

The three-dimensional excited-band interaction coefficients are shown for reference in

figure 2.9. The results all tend to the expected limits at V = 0. The gap between

all-site and on-site interaction coefficients is maintained for higher V/ER than for the

ground-band, since the excited-band Wannier functions are less localised.

2.10.5 Off-site interactions

We derive an approximation scheme for off-site interactions in appendix F. The result

is a modification of the interaction coefficients, as shown in figure 2.8. As discussed

in section F.2, if we use the all-site interaction coefficients in our model at V = 0,

with a certain interpretation of the number densities, the formulae are exactly the
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Figure 2.8: Ground-band interaction coefficients in three dimensions
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Figure 2.9: Excited-band interaction coefficients. The integers in the

legend specify the components bx, by, bz of each band

27



Chapter 2. Bosons in optical lattices

same as those for existing no-lattice calculations. For the non-condensate (for example,

for calculating critical temperatures from above), the on-site and all-site interaction

coefficients are very similar for V & 5ER. We do not pretend to have solved the problem

of an interacting gas in a lattice with V . ER, since the Wannier basis we use is not

localised in such a regime (we discuss interactions in a shallow lattice in section 7.1.1).

However, our off-site interaction coefficients provide a useful interpolation scheme which

is accurate in the no-lattice case and for moderate to deep lattices. The validity of

other aspects of formulae in shallow lattices must still be considered; for example, our

analytical results will not be accurate if interactions in the excited bands are significant.

For the condensate, interference between sites, mediated by the tails of distant Wannier

states, can reduce the interaction coefficient, as discussed in section F.1.

All of our numerical results in this thesis use on-site interaction coefficients.

2.11 Summary

We have described the optical-lattice and harmonic-trap potentials and given their

typical experimental parameters. We have derived an extended Bose-Hubbard Hamil-

tonian which goes beyond the usual Bose-Hubbard approach, so will be valid for shal-

lower lattices and at higher temperatures, by allowing for beyond nearest-neighbour

hopping, excited bands, and by giving an interpolation scheme for off-site interactions.

We have carefully considered the extended Bose-Hubbard model parameters, includ-

ing the hopping matrix, the harmonic trap and interactions and have investigated the

approximations often used to obtain the Bose-Hubbard model parameters.
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Mean-field approximation

For more than a few particles and sites, the Hamiltonian (2.9) cannot be solved ex-

actly. Quantum Monte-Carlo has generally been used for the one-dimensional problem

[90–92]. Three-dimensional solutions have been produced, but have been limited to ap-

proximately 20 sites in each direction [46, 47]. For the translationally-invariant lattice,

the number of particles modelled is up to order 104 [47, 93], but for the combined

harmonic lattice, the number of particles is limited to approximately 500 [94]. The

density-matrix renormalisation group method has not currently been solved in three

dimensions [48, 49] although recent work with hard-core bosons in two dimensions has

been reported [50].

Due to the difficulty of exact calculations with the Bose-Hubbard Hamiltonian, we

use the Popov approximation to the Hartree-Fock Bogoliubov method. The discrete

version of this method has been used for the ground band of the combined harmonic

lattice, but has been limited to one dimension: adiabatic loading was considered in

[52] with 19 atoms and the superfluidity and condensation was considered in [53] with

41 sites and ten atoms. Our derivation of the quadratic Hamiltonian for the extended

Bose-Hubbard model is the first to our knowledge.

Since, as we shall see, the dimension of the system has a profound effect on its prop-

erties, and since we wish to numerically consider thermodynamics so that we require

many more atoms and sites, we continue this chapter by introducing the LDA. We

then diagonalise the Hamiltonian within the LDA. A necessary condition for the LDA

treatment to be valid is that kBT ≫ ~ω̄∗ (the energy spacing, ~ω̄∗, is defined on page

59). Ours is the first LDA treatment of the extended Bose-Hubbard model, and the
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Chapter 3. Mean-field approximation

first for the Bose-Hubbard model via the position basis.

Allowing for off-site interactions within a local calculation involves significant approx-

imations and an involved derivation which is discussed in appendix F. In this chapter

we derive the results for on-site interactions, starting from the Hamiltonian (2.11).

3.1 Mean-field approach: condensate and

non-condensate

We assume that the local number of condensate atoms is either macroscopic or zero

[8, 95], so that the field operator, Ψ̂(r), can be separated into a c-number condensate

component (the order parameter), Φ(r), and a non-condensate field operator, ψ̃(r),

defined by the usual broken symmetry approach, Φ(r) ≡
〈

Ψ̂(r)
〉

, ψ̃(r) ≡ Ψ̂(r) − Φ(r)

so that
〈

ψ̃(r)
〉

= 0.

The assumption that Φ(r) is a c-number is inaccurate near the edges of the conden-

sate, where the local condensate density, |Φ(r)|2, is small and just below the critical

temperature, as the condensate component is then small everywhere, since fluctuations

are important in such regions.

We expand the condensate amplitude and the non-condensate field-operator in a Wan-

nier basis:

Φ(r) =
∑

i

ziw0(r − Ri), ψ̃(r) =
∑

b,i

δ̂b,iwb(r −Ri), ψ̃†(r) =
∑

b,i

δ̂†b,iw
∗
b (r −Ri).

(3.1)

From (2.4) and the orthogonality, (D.7), and completeness, (D.8), of the Wannier func-

tions, we get zi ≡
〈

â0,i

〉

for the ground band and δ̂0,i ≡ â0,i − zi [96], and δ̂b,i ≡ âb,i

above the ground band. Using (2.5), we get the usual commutation relations:
[

δ̂b,i, δ̂
†
b′,i′

]

= δbb′δii′,
[

δ̂b,i, δ̂b′,i′
]

= 0. (3.2)

The condensate density is:

|Φ(r)|2 =
∑

i,i′

z∗i zi′w
∗
0(r− Ri)w0(r −Ri′), (3.3)

allowing for the non-locality of the Wannier states, and:

Nc ≡
∫

dr |Φ(r)|2 =
∑

i

|zi|2 . (3.4)
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We note that |zi|2 is not the number of condensate atoms per site, but it is a good

approximation for a deep lattice, when the term w∗
0(r−Ri)w0(r−Ri′) is approximately

zero for i 6= i′ and |wb(r− Ri)|2 ≈ 0 except for r ≈ Ri.

For both the condensate and the non-condensate, we assume that interactions are

perturbative relative to the band-gap energy scale (a necessary condition for this is

that the band gap is small compared to 2U0b |zi|2 + 2
∑

b′ Ubb′ ñb′,i), so that we may

ignore collisional couplings between bands in the many-body state. The advantage of

including excited bands in our approach is that, if temperatures are sufficiently high for

our calculations to show that excited bands are highly occupied, this is an indication

that the validity of ignoring collisional couplings should be considered.

For the non-condensate, we assume that the thermal coherence length is sufficiently

short (long range coherence is absorbed by the condensate) that the non-condensate

one-body density matrix is diagonal in lattice site indices
〈

δ̂†b,iδ̂b′,i′
〉

= ñb,iδbb′δii′ , where

we define ñb,i ≡
〈

δ̂†b,iδ̂b,i

〉

. Note that δij is the delta function and δ̂b,i is the destruction

operator. The non-condensate density is then given by:
〈

ψ̃†(r)ψ̃(r)
〉

=
∑

b,b′,i,i′

〈

δ̂†b,iδ̂b′,i′
〉

w∗
b (r − Ri)wb′(r −Ri′) =

∑

b,i

ñb,i |wb(r −Ri)|2 , (3.5)

so that:

Ñ ≡
∫

dr
〈

ψ̃†(r)ψ̃(r)
〉

=
∑

b,i

ñb,i, (3.6)

and we define Ñb ≡
∑

i ñb,i. Following the same arguments given for the condensate,

for a sufficiently deep lattice ñb,i is approximately the number of non-condensate atoms

in band b at site i.

To express the Hamiltonian in terms of the amplitudes zi, and operators, δ̂b,i, we take

the interaction term from (2.11):

1

2

∑

b1,b2,b3,b4

â†b1,iâ
†
b2,iâb3,iâb4,i U i,i,i,i

b1,b2,b3,b4

=
1

2
|zi|4 U00 +

∑

b

[

z∗i δ̂b,i + ziδ̂
†
b,i

]

|zi|2 U i,i,i,i
0,0,0,b

+
∑

b,b′

[

1

2
m∗

i δ̂b,iδ̂b′,i +
1

2
miδ̂

†
b,iδ̂

†
b′,i + 2 |zi|2 δ̂†b,iδ̂b′,i

]

U i,i,i,i
0,0,b,b′

+
∑

b1,b2,b3

[

z∗i δ̂
†
b1,iδ̂b2,iδ̂b3,i + ziδ̂

†
b1,iδ̂

†
b2,iδ̂b3,i

]

U i,i,i,i
0,b1,b2,b3

+
1

2

∑

b1,b2,b3,b4

δ̂†b1,iδ̂
†
b2,iδ̂b3,iδ̂b4,iU i,i,i,i

b1,b2,b3,b4

,
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Chapter 3. Mean-field approximation

where mi ≡ z2
i , m∗

i ≡ z∗2i and we have taken advantage of our real Wannier functions,

(D.22), so that the order of subscripts in U i,i,i,i
b1,b2,b3,b4

is not important.

3.2 Quadratic Hamiltonian

The Hamiltonian still includes up to fourth powers in the operators δ̂b,i. We make a

quadratic Hamiltonian simplification by making a mean-field approximation motivated

by Wick’s theorem [56, 61]. This is valid in the weakly-interacting regime; therefore, our

work is not valid in the strongly-correlated Mott-insulator case. For the translationally-

invariant, no lattice case at T = 0, the small parameter for a perturbative approach is

nca
3
s ≪ 1 and for kBT ≫ ncg the small parameter is

√

nca3
skBT/ncg ≪ 1 [97]. We are

not aware of any literature specifying the small parameter for a lattice. We use:

δ̂†b1,iδ̂
†
b2,iδ̂b3,iδ̂b4,i ≈

〈

δ̂†b1,iδ̂
†
b2,i

〉

δ̂b3,iδ̂b4,i +
〈

δ̂†b1,iδ̂b3,i

〉

δ̂†b2,iδ̂b4,i +
〈

δ̂†b1,iδ̂b4,i

〉

δ̂†b2,iδ̂b3,i

+
〈

δ̂†b2,iδ̂b3,i

〉

δ̂†b1,iδ̂b4,i +
〈

δ̂†b2,iδ̂b4,i

〉

δ̂†b1,iδ̂b3,i +
〈

δ̂b3,iδ̂b4,i

〉

δ̂†b1,iδ̂
†
b2,i

≈ ñb1,iδ̂
†
b2,iδ̂b2,i (δb1b3δb2b4+ δb1b4δb2b3) + ñb2,iδ̂

†
b1,iδ̂b1,i (δb2b3δb1b4+ δb2b4δb1b3)

(3.7)

=⇒
∑

b1,b2,b3,b4

δ̂†b1,iδ̂
†
b2,iδ̂b3,iδ̂b4,iU i,i,i,i

b1,b2,b3,b4

≈ 4
∑

b,b′

ñb′,iδ̂
†
b,iδ̂b,iUbb′ , (3.8)

where we have used a Popov approximation to eliminate the terms
〈

δ̂†b,iδ̂
†
b,i

〉

and
〈

δ̂b,iδ̂b,i

〉

, and we have neglected pairs with different band indices, since we ignore

collisional couplings between bands in the many-body state as discussed above.

Similarly, by analogy with Wick’s theorem [98], we can simplify the third order terms:

z∗i δ̂
†
b1,iδ̂b2,iδ̂b3,i ≈ z∗i

〈

δ̂†b1,iδ̂b2,i

〉

δ̂b3,i + z∗i

〈

δ̂†b1,iδ̂b3,i

〉

δ̂b2,i + z∗i

〈

δ̂b2,iδ̂b3,i

〉

δ̂†b1,i

≈ z∗i ñb1,i

[

δ̂b3,iδb1b2δb30 + δ̂b2,iδb1b3δb20

]

(3.9)

=⇒
∑

b1,b2,b3

z∗i δ̂
†
b1,iδ̂b2,iδ̂b3,iU i,i,i,i

0,b1,b2,b3

≈ 2z∗i δ̂0,i

∑

b

ñb,iU0b, (3.10)

and:

∑

b1,b2,b3

ziδ̂
†
b1,iδ̂

†
b2,iδ̂b3,iU i,i,i,i

0,b1,b2,b3

≈ 2ziδ̂
†
0,i

∑

b

ñb,iU0b, (3.11)

and we set the linear terms
[

z∗i δ̂b,i + ziδ̂
†
b,i

]

|zi|2 to zero for b 6= 0 and the quadratic

terms |zi|2 δ̂†b,iδ̂b′,i, m∗
i δ̂b,iδ̂b′,i and miδ̂

†
b,iδ̂

†
b′,i to zero for b 6= b′ by the same assumption
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3.3. Gross-Pitaevskii equation

that interactions are perturbative relative to the band-gap energy scale. Our interaction

term then becomes:

1

2

∑

b1,b2,b3,b4

â†b1,iâ
†
b2,iâb3,iâb4,i Ub1,b2,b3,b4 ≈

[

1

2
|zi|2 + z∗i δ̂0,i + ziδ̂

†
0,i

]

|zi|2 U00

+
∑

b

[

1

2
m∗

i δ̂
2
b,i +

1

2
miδ̂

†2
b,i + 2 |zi|2 δ̂†b,iδ̂b,i + 2z∗i ñb,iδ̂0,i + 2ziñb,iδ̂

†
0,i

]

U0b

+ 2
∑

b,b′

ñb′,iδ̂
†
b,iδ̂b,iUbb′ . (3.12)

Separating the Hamiltonian (2.11) by the number of depletion operators δ̂†i and δ̂i

appearing and by band, K̂i = K̂0,i + K̂1,i + K̂†
1,i +

∑

b K̂2,b,i, we get:

K̂0,i ≡ z∗i

[

−
∑

i′

J0,i,i′Ŝi′,i + vi − µ+
U00

2
|zi|2

]

zi, (3.13)

K̂1,i ≡ δ̂†0,i

[

−
∑

i′

J0,i,i′Ŝi′,i + vi − µ+ U00 |zi|2 + 2
∑

b

U0bñb,i

]

zi, (3.14)

K̂2,b,i ≡ δ̂†b,iL̂b,iδ̂b,i +
U0b

2

[

δ̂†2b,imi + δ̂2
b,im

∗
i

]

, (3.15)

where:

L̂b,i ≡ −
∑

i′

Jb,i,i′Ŝi′,i + vi − µ+ 2U0b |zi|2 + 2
∑

b′

Ubb′ ñb′,i, (3.16)

and Ŝi′,i is the shift operator from the site Ri to Ri′, for example Ŝi′,iδ̂b,i = δ̂b,i′.

3.3 Gross-Pitaevskii equation

By minimising the energy functional d
〈

K̂
〉

/dz∗i = 0, using
〈

δ̂†0,i

〉

=
〈

δ̂0,i

〉

= 0, so

that
〈

K̂1,i + K̂1,i

〉

= 0 and noting which terms in K̂2,b,i have no z∗i dependence, we

obtain the generalised Gross-Pitaevskii equation at site i:
[

−
∑

i′

J0,i,i′Ŝi′,i + vi − µ+ U00 |zi|2 + 2
∑

b

U0bñb,i

]

zi = 0. (3.17)

We note that if zi satisfies the generalised Gross-Pitaevskii equation, then the terms

K̂1,i and K̂†
1,i are zero and the next contribution comes from K̂2,b,i.

The generalised Gross-Pitaevskii has the Thomas-Fermi solution:

|zi|2 =
1

U00
max

(

0, µ− vi − 2
∑

b

U0bñb,i

)

, (3.18)
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Chapter 3. Mean-field approximation

where µ is determined by N =
∑

i |zi|2 +
∑

b,i ñb,i.

3.4 Hartree-Fock

The Hartree-Fock treatment is obtained by ignoring the terms1 δ̂†2b,imi and δ̂2
b,im

∗
i in

K̂2,b,i which can then be diagonalised by a single particle transformation, setting δ̂b,i =
∑ ′

jub,i,jα̂b,j (where the symbol
∑ ′

j indicates a sum over modes excluding the conden-

sate). The operators α̂b,j are chosen to satisfy:

[

α̂b,j, α̂
†
b′,j′

]

= δbb′δjj′,
[

α̂b,j, α̂b′,j′

]

= 0, (3.19)

and the ub,i,j modes are an orthonormal basis, that is
∑

i u
∗
b,i,jub,i,j′ = δjj′, satisfying:

L̂b,iub,i,j = Eb,jub,i,j, (3.20)

so that:

∑

i

K̂2,b,i =
∑

j

′

Eb,jα̂
†
b,jα̂b,j . (3.21)

Taking the condensate to satisfy the generalised GPE, we have:

K̂ =
∑

i

z∗i

[

−
∑

i′

J0,i,i′Ŝi′,i + vi − µ+
U00

2
|zi|2

]

zi +
∑

b,j

′

Eb,jα̂
†
b,jα̂b,j. (3.22)

Since the Hamiltonian is diagonal in band b and mode j, we can treat the Hartree-

Fock modes as non-interacting which leads to
〈

α̂†
b,jα̂b′,j′

〉

= δbb′δjj′n̄BE(Eb,j) where

n̄BE(E) ≡ (eβE−1)−1 and
〈

α̂b,jα̂b′,j′

〉

=
〈

α̂†
b,jα̂

†
b′,j′

〉

= 0, so the non-condensate density

is given by:

ñb,i =
∑

j

′ |ub,i,j|2 n̄BE(Eb,j). (3.23)

3.5 Bogoliubov diagonalisation

In general it is desirable to go beyond the Hartree-Fock treatment when the condensate

is present. To do this, we retain the terms δ̂†2b,imi and δ̂2
b,im

∗
i in the Hamiltonian, which

1We note that this is different from the Popov approximation which eliminates only the expected

value of the terms δ̂†2b,i and δ̂2b,i.
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3.5. Bogoliubov diagonalisation

can be diagonalised using a quasi-particle transformation [8]:

δ̂b,i =
∑

j

′
(

ub,i,jα̂b,j + v∗b,i,jα̂
†
b,j

)

, δ̂†b,i =
∑

j

′
(

u∗b,i,jα̂
†
b,j + vb,i,jα̂b,j

)

, (3.24)

where we refer to the α̂b,j as the quasi-particle operators and the ub,i,j, vb,i,j as the

quasi-particle modes. We require that (3.19) holds, as for the Hartree-Fock case so

that:2

[

δ̂b,i, δ̂
†
b′,i′

]

= δbb′
∑

j

′ (

ub,i,ju
∗
b,i′,j − v∗b,i,jvb,i′,j

)

=⇒
∑

j

′ (

ub,i,ju
∗
b,i′,j − v∗b,i,jvb,i′,j

)

= δii′ , (3.25)

and
[

δ̂b,i, δ̂b,i′
]

=
∑ ′

j

(

ub,i,jv
∗
b,i′,j − v∗b,i,jub,i′,j

)

= 0. The quasi-particle modes are nor-

malised:

∑

i

(

|ub,i,j|2 − |vb,i,j|2
)

= 1. (3.26)

The quasi-particle transformation, brings K̂2,b,i into the form:

K̂2,b,i =
∑

j,k

′

[

α̂†
b,jα̂b,k

(

u∗b,i,jL̂b,iub,i,k +
U0b

2

{

miu
∗
b,i,jvb,i,k + m∗

i v
∗
b,i,jub,i,k

}

)

+ α̂b,jα̂
†
b,k

(

vb,i,jL̂b,iv
∗
b,i,k +

U0b

2

{

mivb,i,ju
∗
b,i,k + m∗

iub,i,jv
∗
b,i,k

}

)

+ α̂b,jα̂b,k

(

vb,i,jL̂b,iub,i,k +
U0b

2
{mivb,i,jvb,i,k + m∗

iub,i,jub,i,k}
)

+ α̂†
b,jα̂

†
b,k

(

u∗b,i,jL̂b,iv
∗
b,i,k +

U0b

2

{

miu
∗
b,i,ju

∗
b,i,k + m∗

i v
∗
b,i,jv

∗
b,i,k

}

)]

. (3.27)

We choose the modes to satisfy the Bogoliubov-de Gennes equations (see section 3.5.1

for a discussion of orthogonalisation of these equations):

L̂b,iub,i,j + U0bmivb,i,j = Eb,jub,i,j, (3.28)

L̂b,ivb,i,j + U0bm
∗
iub,i,j = −Eb,jvb,i,j. (3.29)

We show that the Hamiltonian is diagonal with these solutions in appendix G:

K̂ = −
∑

i,i′

J0,i,i′z
∗
i zi′ +

∑

i

[

vi − µ+
U00

2
|zi|2

]

|zi|2 +
∑

b,j

′

Eb,j

[

α̂†
b,jα̂b,j −

∑

i

|vb,i,j|2
]

,

(3.30)

2Using
[

∑

j Aj ,
∑

k Bk

]

=
∑

j,k [Aj , Bk].
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Chapter 3. Mean-field approximation

and we can treat the quasi-particles as non-interacting which leads to:

ñb,i =
∑

j,k

′
〈(

u∗b,i,jα̂
†
b,j + vb,i,jα̂b,j

)(

ub,i,kα̂b,k + v∗b,i,kα̂
†
b,k

)〉

=
∑

j

′ (|ub,i,j|2 + |vb,i,j|2
)

n̄BE(Eb,j) + |vb,i,j|2 . (3.31)

3.5.1 Quasi-particle orthogonality

The references [98, 99] explain that, for a general potential, equations (3.28) and (3.29)

give quasi-particle functions which are orthogonal to the condensate only in a gen-

eralised sense,
∑

i z
∗
i ub,i,j + zivb,i,j = 0. To be orthogonal in the sense

∑

i z
∗
i ub,i,j =

∑

i zivb,i,j = 0, adjustments are required, for example [96, 100]:

E0,ju0,i,j → E0,ju0,i,j + U00

∑

i

|zi|2 (z∗i u0,i,j − ziv0,i,j) zi, (3.32)

for (3.28) and a similar adjustment for (3.29). We do not follow this approach since, in

our LDA solution below, we approximate by using an orthogonal Bloch form for the

modes.

3.6 Local density approximation

3.6.1 Overview

The LDA has been extensively used for (non-lattice) harmonically trapped Bose gases.

The essence of this approximation is the replacements −~
2∇2/2m → p2/2m in the

Hamiltonian with r and p treated as classical variables. The extension of this approach

to the lattice case is made by the replacement −~
2∇2/2m+ Vlatt(r) → Kb(k) where k

is the quasi-momentum, b the quantised band index and Kb(k) the Bloch spectrum. In

what follows, we present our assumptions in making this replacement more precisely.

3.6.2 Bloch approximation

We set j to be the Bloch momentum, k, and make the LDA by seeking solutions where

u and v have the Bloch form:

ub,i′,k = eik · (Ri′−Ri)ub,i,k, vb,i′,k = eik · (Ri′−Ri)vb,i,k. (3.33)
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3.6. Local density approximation

This assumption is exact for the translationally-invariant case, and we justify the ap-

proximation by comparing our non-interacting density of states to the numerical diag-

onalisation of the full combined harmonic lattice problem in section 4.6.

To make progress, it is useful to consider the Bloch waves (appendix C), ψb,k(r), of the

homogeneous non-interacting lattice Hamiltonian:
[

−~
2∇2

2m
+ Vlatt(r)

]

ψb,k(r) = Kb(k)ψb,k(r), (3.34)

with corresponding energy, Kb(k). We find from (3.33) and (D.17) that:

−
∑

i′

Jb,i,i′ub,i′,k = Kb(k)ub,i,k. (3.35)

We then have:

L̂b,iub,i,k =

[

Kb(k) + vi − µ+ 2U0b |zi|2 + 2
∑

b′

Ubb′ ñb′,i

]

ub,i,k. (3.36)

3.6.3 Envelope functions

We define a function ñb(r) which is a proxy with the continuous variable r for the

number of non-condensate atoms per site: ñb(Ri) = ñb,i. Introducing these envelope

functions greatly simplifies our formalism by allowing us to use continuous functions

to exploit the trap symmetry which is broken by the lattice. Then, for a sufficiently

small lattice spacing:

1

ad

∫

dr ñb(r) ≈
∑

i

ñb(Ri) =
∑

i

ñb,i = Ñb, (3.37)

where ad =
∏

j aj is the volume of a unit cell of the optical lattice. Similarly, we define

the condensate mode envelope z(r) where z(Ri) = zi and nc(r) ≡ |z(r)|2 so that:

1

ad

∫

drnc(r) ≈
∑

i

|z(Ri)|2 =
∑

i

|zi|2 = Nc. (3.38)

We also define the envelope functions ub(k, r) and vb(k, r) where ub(k,Ri) = ub,i,k and

vb(k,Ri) = vb,i,k and from (3.36) we have L̂b,i → Lb(k, r) where:

Lb(k, r) = Kb(k) + Vtr(r) − µ+ 2U0bnc(r) + 2
∑

b′

Ubb′ ñb′(r). (3.39)

Envelope functions represent the discrete functions but do not contain the fast Wan-

nier state variation. However, apart from exceptional imaging techniques, such as the
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Chapter 3. Mean-field approximation

stunning results of high-resolution scanning electron microscopy [101], normal optical

imaging techniques would not distinguish density variation at the order of one site. If we

require the detailed spatial density, rather than just site occupation, once we have the

envelope functions, we can calculate |Φ(r)|2 =
∑

i,i′ z
∗(Ri)z(Ri′)w

∗
0(r−Ri)w0(r−Ri′)

from (3.3) and
〈

ψ̃†(r)ψ̃(r)
〉

=
∑

b,i ñb(Ri) |wb(r −Ri)|2 from (3.5).

3.6.4 Bogoliubov spectrum

Making use of the envelope functions from the previous section, the Bogoliubov-de

Gennes equations (3.28) and (3.29) take the algebraic form:

Lb(k, r)ub(k, r) + U0bz
2(r)vb(k, r) = Eb(k, r)ub(k, r), (3.40)

Lb(k, r)vb(k, r) + U0bz
∗2(r)ub(k, r) = −Eb(k, r)vb(k, r). (3.41)

Solving the characteristic equation yields:

Eb(k, r) =

√

L2
b(k, r) − [U0bnc(r)]

2

=

√

√

√

√

[

Kb(k) + Vtr(r) − µ+ 2U0bnc(r) + 2
∑

b′

Ubb′ ñb′(r)

]2

− [U0bnc(r)]
2.

(3.42)

From v∗b (k, r)×(3.40)−ub(k, r)×(3.41)∗, choosing ub and vb to satisfy the normalisation

condition |ub(k, r)|2 − |vb(k, r)|2 = 1 (as in [56] for the no lattice case):

ub(k, r)v
∗
b (k, r) = − U0bz

2(r)

2Eb(k, r)
. (3.43)

Substituting this into ub(k, r) × (3.41)∗ and v∗b (k, r) × (3.40), we have:

|ub(k, r)|2 =
Lb(k, r) + Eb(k, r)

2Eb(k, r)

=
Kb(k) + Vtr(r) − µ+ 2U0bnc(r) + 2

∑

b′ Ubb′ ñb′(r) + Eb(k, r)

2Eb(k, r)
, (3.44)

|vb(k, r)|2 =
Lb(k, r) −Eb(k, r)

2Eb(k, r)

=
Kb(k) + Vtr(r) − µ+ 2U0bnc(r) + 2

∑

b′ Ubb′ ñb′(r) −Eb(k, r)

2Eb(k, r)
. (3.45)

Setting vb(k, r) = 0, we find |ub(k, r)|2 = 1 and Eb(k, r) = Lb(k, r), yielding the

Hartree-Fock solution (3.20).

It has been stated that the Thomas-Fermi approximation is consistent with the LDA:
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3.7. Summary

Where the local-density approximation is used for the whole excitation

spectrum, not only the high-lying part, then it is necessary for consistency

to treat also the condensate in the corresponding approximation, which is

the finite-temperature Thomas-Fermi approximation. [102]

We use the Thomas-Fermi solution for all of our interacting calculations, which we

restate using the envelope functions, starting from (3.18) to find:

nc(r) =
1

U00
max

[

0, µ− Vtr(r) − 2
∑

b

U0bñb(r)

]

. (3.46)

For the non-condensate, using (3.31) and the envelope functions we have:

ñb(r) ≈
( a

2π

)d
∫

BZ

dk
{[

|ub(k, r)|2 + |vb(k, r)|2
]

n̄BE[Eb(k, r)] + |vb(k, r)|2
}

. (3.47)

3.7 Summary

We have used the usual broken symmetry approach to separate the mean-field con-

densate from the non-condensate. We have used a mean-field approach to simplify the

extended Bose-Hubbard Hamiltonian to quadratic form with the Popov approximation

to the Hartree-Fock-Bogoliubov method. We have expressed the resulting Hamiltonian

in LDA form and introduced envelope functions to exploit the trap symmetry. Finally,

we have diagonalised the quadratic Hamiltonian in the LDA to find the Bogoliubov

energy spectrum.
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Chapter 4

Density of states

The density of states of an optical lattice is an essential tool which we will use through-

out the rest of this thesis. In this chapter we first introduce the density of states, which

we will calculate using the method of section 5.2 for use in our numerical results in

chapter 6. We then show typical examples of the density of states, so that we can judge

the appropriateness of the approximations we will make in chapter 7. We do this sep-

arately for one, two and three-dimensional optical lattices. Then we demonstrate the

significance of allowing for beyond nearest-neighbour hopping which we introduced in

section 2.5 and considered in section 2.8.1. We develop new results on the approximate

structure of the combined harmonic density of states. Finally we compare the density

of states from LDA to the full diagonalisation of the non-interacting problem. This

will be an important piece of evidence of the validity of the approximations that we

described in section 3.6.

4.1 Definition

By ‘density of states’, we refer to the per-volume density of states for the non-interacting,

translationally-invariant1 lattice which we define as [103]:

gb(K) ≡ 1

(2π)d

∫

BZ

dk δ[K −Kb(k)], (4.1)

where we take Kb(k) from its definition (3.34). When an integrand depends on k only

through Kb(k) we can change variables to K = Kb(k) since we then have, for any

1We consider the combined harmonic lattice density of states only in section 4.6.
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Chapter 4. Density of states

function Qb[Kb(k), r]:

∫ ∞

−∞

dK gb(K)Qb(K, r) =
1

(2π)d

∫ ∞

−∞

dK

∫

BZ

dk δ[K −Kb(k)]Qb(K, r)

=
1

(2π)d

∫

BZ

dkQb[Kb(k), r]. (4.2)

Applying this to (3.47):

ñb(r) = ad

∫ ∞

−∞

dK gb(K)
{[

|ub(K, r)|2 + |vb(K, r)|2
]

n̄BE[Eb(K, r)] + |vb(K, r)|2
}

.

(4.3)

We emphasise that this is making no additional approximation: the approximations of

section 3.6 allow us to use the density of states. In the Hartree-Fock approximation, or

above the critical temperature:

ñb(r) = ad

∫ ∞

−∞

dK gb(K)n̄BE[Eb(K, r)]. (4.4)

4.2 Translationally-invariant lattice

To calculate the density of states, we first need the energy dispersion, Kb(k). We

note that the potential (2.1) is separable, so that the solution of (3.34) has Bloch

wavefunction (appendix C) ψbx,k(r) =
∏

j ψbj ,kj
(j) and energy Kb(k) =

∑

j Kbj
(kj)

with, for the x direction, for example:

− ~
2

2m

d2ψbx,kx(x)

dx2
+ Vx sin2

(

πx

ax

)

ψbx,kx(x) = Kbx(kx)ψbx,kx(x), (4.5)

which is the well-studied Mathieu’s equation [104–106].2 We show the energies of the

lowest three bands in figure 4.1, for Vx = 2ER,x and Vx = 15ER,x.

2On converting (4.5) to the standard Mathieu form, the amplitude is −Vx/4ER,x (often labelled

q) and the ‘characteristic value’ (energy eigenvalue, often labelled a) is [Kbx
(kx) − 1

2Vx]/ER,x.
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4.2. Translationally-invariant lattice
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Figure 4.1: Energy dispersion relation in one dimension for the first

three bands

For the cubic lattice in three dimensions, we show the minimum and maximum energies

of the lowest energy bands as a function of the lattice depth in figure 4.2.

V/ER

[K
b
(k
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12

Figure 4.2: Minimum and maximum energies of the lowest energy

bands for the three-dimensional cubic lattice. The integers in the leg-

end specify the components bx, by, bz of the band b.

We numerically calculate the density of states, as will be discussed in section 5.2, and
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Chapter 4. Density of states

show the results in figure 4.3.
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Figure 4.3: Density of states for the three-dimensional cubic lattice

4.3 Tight binding

From (D.20), the dispersion can be written as a Fourier cosine series, with the hopping

matrix elements as coefficients:

Kb(k) = −
∑

j

[

J0
bj ,j + 2

∑

l>0

J l
bj ,j cos(lkjaj)

]

. (4.6)

In the tight-binding limit,3 beyond nearest-neighbour hopping is ignored.4 In one di-

mension the density of states is then, from (4.1):5

gb(K) =
1

2πa
∣

∣J1
b,x

∣

∣

√

1 −
[

(K + J0
b,x)/2J

1
b,x

]2
, (4.7)

3We show some results in this section for general bands, but the tight-binding limit generally refers

to the ground band. For excited bands we note that J1
b,x is positive for even b and negative for odd b.

The validity of the tight-binding limit must be checked for each band, since highly excited bands are

closer to the free-particle density of states as discussed in section 4.5.
4For the importance of beyond nearest-neighbour hopping, see also sections 2.8.1, 6.2 and figure

D.1.
5Using the substitution u = − cos(ka), du = a

√
1 − u2 dk.
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4.3. Tight binding

which has infinite Van Hove singularities at the maximum and minimum energies of

the band K = −J0
b,x ± 2J1

b,x, which can also be seen from the zero derivative in 4.6.

The density of states (4.7) is shown in figure 4.4.
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Figure 4.4: Tight-binding density of states in one dimension

In two dimensions, the cubic-lattice density of states6 is shown in figure 4.5. There is

an infinite Van Hove singularity at K = −2J0
b,j and non-zero density at the band edges.
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Figure 4.5: Isotropic tight-binding density of states in two dimensions

6By convolution we can express it as a complete elliptic integral of the first kind.
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Chapter 4. Density of states

In three dimensions, the case of primary interest in this work, we compare the tight-

binding density of states to the actual density of states in figure 4.6 for the cubic-lattice

ground band. For V & 5ER, the effect of beyond nearest-neighbours is much reduced,

except for very low energies, for which the effective-mass approach of the next section

may be more appropriate.
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g 0
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Figure 4.6: Isotropic ground-band density of states in three dimensions

4.4 Effective mass

Near any point, k0, in the dispersion where we have ∇Kb(k0) = 0, the Taylor series

about that point gives:

Kb(k) ≈ Kb(k0) + ~
2
∑

j

(kj − k0,j)
2

2m∗
j

, (4.8)

where the effective mass at k0 in direction j, m∗
j , is defined by [103] (the off-diagonal

terms are zero since the potential is separable) as discussed in appendix H:

1

m∗
j

=
1

~2

[

∂2Kb(k)

∂k2
j

]

k=k0

, (4.9)

so that for a free particle,m∗
j = m. From the full form of (4.6), we see that ∇Kb(k0) = 0

whenever kj = 0 or kj = π/aj for all j. From figure 4.1 we can see that, for excited

bands in shallow lattices, there is only a small region around k0 for which this is a good

approximation.
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4.5. High energies

At the minimum energy of a band, Kmin
b = Kb(k0), if due to the second derivative test

we have m∗
j > 0 for all j from (4.9), and we assume that the effective mass applies for

all K in some region near Kmin
b , then for that region of K, from (4.1) and (4.8):

gb(K) =
1

Γ(d/2)(2π)d/2 (~2/m∗)d/2
max

(

K −Kmin
b , 0

)d/2−1
, (4.10)

where m∗ =
(

∏

j m
∗
j

)1/d

. This shows that the van Hove singularities at the minimum

energy are qualitatively the same for the effective-mass assumption as for the tight-

binding assumption: infinite in one dimension, a finite jump in two dimensions and an

infinite derivative in three dimensions.

4.5 High energies

For high energies, K ≫∑

j Vj , the most significant effect of the lattice on the density

of states is the spatially averaged energy of the lattice potential, 1
2

∑

j Vj as shown in

figure 4.7.
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Figure 4.7: Isotropic density of states in three dimensions for V =

15ER. The analytic expressions are the free-particle density of states

shifted by the minimum energy eigenvalue and the spatially averaged

energy of the lattice.
47



Chapter 4. Density of states

4.6 Combined harmonic lattice

In this section, we calculate the density of states for the combined harmonic trap and

optical lattice potential.7 We use the LDA density of states only in this section and

only for checking against the full diagonalisation.

For the harmonically trapped case, in the non-interacting LDA, when we wish to cal-

culate some function, Q[Kb(k)+Vtr(r)] of the energy, such as the total thermal number

from (3.37), we have:

1

(2π)d

∑

b

∫

dr

∫

dkQ[Kb(k) + Vtr(r)] =

∫

dE Q(E) gLDA(E), (4.11)

from (4.2) where gLDA(E) is given by the convolution:

gLDA(E) ≡ 1

(2π)d

∑

b

∫

dr

∫

BZ

dk δ[E −Kb(k) − Vtr(r)]

=
∑

b

∫ E

0

dVtr gtrap(Vtr)gb(E − Vtr), (4.12)

and we define and calculate the harmonic trap density of states as:

gtrap(Vtr) ≡
∫

dr δ[Vtr − Vtr(r)] =
(2π)d/2

Γ(d/2) (mω2)d/2
V

d/2−1
tr . (4.13)

4.6.1 Expected structure

Since the combined density of states, gLDA(E), has a rich structure, we consider what

we expect at various energies. In a region where the effective-mass approximation,

(4.10), applies, the contribution to gLDA(E) from band b is:

1

[Γ(d/2)]2(~ω)d

(

m∗

m

)d/2 ∫ E−Kmin
b

0

dV [V (E − Vtr −Kmin
b )]d/2−1

=
1

(d− 1)!(~ω∗)d

(

E −Kmin
b

)d−1
, (4.14)

where the effective trap frequencies are defined by:

ω∗
j ≡

√

m

m∗
j

ωj, (4.15)

7Some features of the combined harmonic lattice density of states in the one-dimensional tight-

binding case (and the two-dimensional case, numerically) are discussed in [107].
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4.6. Combined harmonic lattice

as in [84] and ω∗ =
(

∏

j ω
∗
j

)1/d

. We therefore expect the initial contribution from each

band (just after Kmin
b ) to the combined density of states to scale like a harmonically-

trapped particle, with power d− 1.

If we assume that the bands are rectangular with width Wb and minimum energy Kmin
b ,

so that gb(K) = 1/Wba
d for Kmin

b < K < Kmin
b + Wb and gb(K) = 0 otherwise, then

from (4.12) and (4.13):

gLDA(E) =
2(2π)d/2

dΓ(d/2) (mω2a2)d/2

∑

b

max
(

E −Kmin
b ,0

)d/2− max
(

E −Kmin
b −Wb,0

)d/2

Wb

(4.16)

≈ (2π)d/2

Γ(d/2) (mω2a2)d/2

∑

b

(

E −Kmin
b − Wb

2

)d/2−1

=
1

ad

∑

b

gtrap

(

E −Kmin
b − Wb

2

)

, (4.17)

for E ≫ Kmin
b + Wb. So, we expect the eventual contribution of the band (far after

Kmin
b +Wb) to the combined density of states to scale like the trap, with power d/2−1.

The high-energy contribution is therefore like the density of states for a particle in a

harmonic trap with no kinetic energy, we call this the ‘trap-only’ region.

For energies beyond the effective-mass region, but with Kmin
b < E < Kmin

b + Wb, the

combined density of states depends on the detailed structure of the band gb(K) with

an approximation given by (4.16).8

So, the initial contribution from the band is effective-mass like and the high-energy

contribution from the band is trap-only like. We estimate the crossover point between

these two regimes by equating the single-band contribution from equations (4.14) and

(4.17). In three dimensions,9 there is no intersection for the first excited bands for

V & 5ER and, for the ground band:

Ecross = Kmin
0 +

W0

2
+

1

128π2

(

m∗a2

~2

)3
(

Ecross −Kmin
0

)4
. (4.20)

8For Kmin
b < E < Kmin

b +Wb the rectangular assumption implies that the contribution to gLDA(E)

from band b is proportional to (E − Kmin
b )d/2. For three dimensions, this is a blend between the

effective-mass (power d− 1) behaviour near the start of the band and the trap-only (power d/2 − 1)

behaviour far after the band. For lower dimensions, the rectangular assumption is poor from figures

4.4 and 4.5.
9In one and two dimensions, one of the approximations (4.14) and (4.17) is constant so the solution
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Chapter 4. Density of states
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Figure 4.8: Isotropic LDA density of states in three dimensions

Using the tight-binding approximationsWb = 4
∑

j

∣

∣

∣
J1

bj ,j

∣

∣

∣
(D.21) andm∗

j = ~
2/
(

2J1
b,ja

2
j

)

(H.4) for the cubic lattice and assuming that the cross over is near the middle of the

band Ecross −Kmin
0 ≈ W0/2 (which seems reasonable from (4.21) and is confirmed in

is simple (although the approximation is poor as discussed in footnote 8):

Ed=1
cross −Kmin

b =
Wb

2
+

2~
2

m∗a2
≈ 3Wb

2
, (4.18)

Ed=2
cross −Kmin

b = ~

√

2π

m∗a2
≈
√

πW0

2
, (4.19)

where the last form in each case uses the tight-binding approximation given for three dimensions and,

for two dimensions is valid only for the square-lattice ground band.
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4.6. Combined harmonic lattice

figure 4.8):

Ecross ≈ Kmin
0 +

(

1

2
+

27

256π2

)

W0 ≈ Kmin
0 + 0.51W0, (4.21)

which has the same scaling, but is slightly lower than Ecross ≈ 0.86W0, given in [62].

The actual LDA density of states is compared to the expressions (4.14), (4.16), (4.17)

and (4.21) in figure 4.8 for the cubic lattice in three dimensions.

For high energies, once there have been many bands, we consider the assumption that

the bands start at the free-particle positions, adjusted by the average energy of the

lattice (as in section 4.5), Kmin
b =

∑

j

(

1
2
Vj + ~

2π2b2j/2ma
2
j

)

. We keep the other as-

sumptions leading to (4.17) and approximate the sum in (4.17) by an integral over the

region of bands b such that 0 < Kmin
b < E, then we recover the density of states for a

trap with no lattice ((4.14) with m = m∗). Evaluating this integral in band space, we

find:

gLDA(E) =
1

(d− 1)!(~ω)d

(

E − 1

2

∑

j

Vj

)d−1

, (4.22)

so, the eventual contribution of all bands has power d− 1, like the density of states of

a harmonically-trapped particle.

4.6.2 Comparative results

We compare the full diagonalisation to the LDA density of states in figure 4.9. For the

low energy LDA results, we also show the contribution from the ground band. For the

low energy plots (the left subplots of figure 4.9), we show up to the start of the second

excited band. We plot the product gLDA(E)ωd, since, for the LDA case, gLDA(E)ωd is

independent of ω from (4.13). For the full diagonalisation, we can see no dependence

of the full density of states multiplied by ω3 for varying ω apart from granularity due

to the few discrete energies for large ω at low energy.

The LDA results show excellent agreement with the full diagonalisation. We note that

the approximation (4.22) becomes valid in the V = 15ER case beyond the region of

this plot. The effective-mass region is not visible on the plot for V = 15ER due to the

scale.
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Figure 4.9: Combined harmonic cubic-lattice density of states in three

dimensions. The left subplots show region from the ground to the first

excited bands and the right subplots show many bands. The LDA is

so good that it is obscured by the full diagonalization results in all

cases. For the left subplots, we also show the LDA ground band results

for reference. We show the high energy approximation (4.22) only on

the right subplots.

4.7 Summary

We have simplified the calculation of thermal results through the use of the density of

states. We have shown numerical results for the density of states and considered the

tight-binding, effective-mass and high-energy limits. We have explained the structure

of the combined density of states, and shown that the full diagonalisation has excellent

agreement with the LDA.
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Chapter 5

Numerical implementation

In this chapter, we outline the numerical implementation of our finite-temperature

formalism described in section 3.6.

5.1 Translationally-invariant energies

We use the translationally-invariant energies from the non-interacting Bloch solutions

to find the density of states, which we use for the full numerical calculation. To do this,

we use the Fourier series [103] of the Bloch wavefunction:

ψb,k =
∑

K

cb,k−K e
i(k−K) · r, (5.1)

for K on the reciprocal lattice1 to restate Schrödinger’s equation (4.5) as the recurrence

relation:
[

~
2

2m
(kx −Kx)

2 −Kbx(kx) +
Vx

2

]

cb,kx−Kx −
Vx

4

(

cb,kx−Kx+2π/a + cb,kx−Kx−2π/a

)

= 0.

(5.2)

We form a tri-diagonal matrix2 with super-diagonal and sub-diagonal terms all equal

to −Vx/4ER,x and diagonal entries equal to . . . , (k̄x − 4)2, (k̄x − 2)2, k̄2
x, (k̄x + 2)2, (k̄x +

4)2, . . . where k̄x = kxax/π so that −1 ≤ k̄x < 1. The eigenvalues of this matrix

are then [Kbx(kx) − 1
2
Vx]/ER,x and the eigenvectors give the Fourier coefficients of the

1That is, K has elements which are integer multiples of 2π/aj.
2The tri-diagonal nature of this matrix is not, of course, a nearest-neighbour only assumption. We

are in quasi-momentum space, and the matrix is tri-diagonal because the lattice potential is sinusoidal.
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Chapter 5. Numerical implementation

corresponding wavefunctions. The (algebraically) smallest eigenvalue is from the ground

band, the second smallest is from the first excited band, etc. The more bands that are

required, the more terms that need to be retained in the matrix before truncating.

5.2 Translationally-invariant density of states

From (4.1), using the rectangular Dirac delta sequence [103, 108] with an energy spacing

∆K, for each band:

gb(K) =
1

(2π)d
lim

∆K→0

1

∆K

∫

BZ

dk







1 if |K −Kb(k)| < 1
2
∆K,

0 otherwise,
(5.3)

≈ 1

(2π)d

∏d
j=1 ∆kj

∆K

∑

k∈BZ







1 if |K −Kb(k)| < 1
2
∆K,

0 otherwise,
(5.4)

for small ∆kj ,∆K. We actually calculate the one-dimensional density of states (d =

1 in (5.4)) and get the higher-dimensional results with the convolutions gbxby(K) =
∫

du gbx(K − u)gby(u) and gb(K) =
∫

du gbxby(K − u)gbz(u).

5.3 Trap units

From (3.46) and (3.47), ñb(r) and nc(r) depend on r only through Vtr(r) = 1
2
m(ω2

xx
2 +

ω2
yy

2+ω2
zz

2), so we define the scaled co-ordinates x̄ = xωx/ω, ȳ = yωy/ω, z̄ = zωz/ω, r̄
2 =

x̄2+ȳ2+z̄2 so that Vtr(r̄) = 1
2
mω2r̄2 and dx̄dȳdz̄ = dxdydz. Our formulae then become:

nc(r̄) =
1

U00
max

[

0, µ− Vtr(r̄) − 2
∑

b

U0bñb(r̄)

]

, (5.5)

Lb(K, r̄) = K + Vtr(r̄) − µ+ 2U0bnc(r̄) + 2
∑

b′

Ubb′ ñb′(r̄), (5.6)

Eb(K, r̄) =

√

L2
b(K, r̄) − [U0bnc(r̄)]

2, (5.7)

ñb(r̄) = ad

∫ ∞

−∞

dK gb(K)

{Lb(K, r̄)

Eb(K, r̄)
n̄BE[Eb(K, r̄)] +

Lb(K, r̄) − Eb(K, r̄)

2Eb(K, r̄)

}

. (5.8)
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5.4. Interaction parameters

We can then calculate the total number using:

Nc =
2πd/2

Γ(d/2)ad

∫ ∞

0

dr̄ r̄d−1nc(r̄), (5.9)

Ñb =
2πd/2

Γ(d/2)ad

∫ ∞

0

dr̄ r̄d−1ñb(r̄), (5.10)

which is now a problem in the two dimensions K and r̄.

5.4 Interaction parameters

We calculate the one-dimensional Wannier functions from (D.22) and use their sepa-

rability (D.11) to get the on-site interaction as:

Ubb′ = g

∫

dr |wb(r)wb′(r)|2 = g

d
∏

j=1

∫

drj

∣

∣

∣
wbj

(rj)wb′j
(rj)
∣

∣

∣

2

. (5.11)

For the non-condensate off-site interaction, discussed in appendix F, we calculate:

U ′
bb′ = g

∑

i

∫

dr |wb(r)wb′(r −Ri)|2

= g
d
∏

j=1

∞
∑

i=0

∫

drj

∣

∣

∣
wbj

(rj)wb′j
(rj −Ri,j)

∣

∣

∣

2

, (5.12)

where we need many sites, Ri, to reproduce the V = 0 results given in appendix F.

For the cubic lattice in three dimensions, the densities of the three bands 001, 010 and

100 must be equal, that is, ñ001(r̄) = ñ010(r̄) = ñ100(r̄). Thus we can use this symmetry

to simplify our calculation of higher bands. For a given one of these bands, 1
3

of the

atomic population is in the same band and 2
3

is in one of the other first excited bands

so that:

U001,001ñ001(r̄) + U001,010ñ010(r̄) + U001,100ñ100(r̄)

= (U001,001 + 2U001,010)
ñ001(r̄) + ñ010(r̄) + ñ100(r̄)

3
, (5.13)

since U001,010 = U001,100. We therefore treat the three excited bands together and use

(U001,001 + 2U001,010) /3 for their self-interaction parameter.
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Chapter 5. Numerical implementation

5.5 Thomas-Fermi simplification

We use a Thomas-Fermi approximation for the condensate for all our interacting cal-

culations, as discussed in section 3.6. From (3.42), if nc(r̄) is zero (e.g. above Tc or

outside the Thomas-Fermi radius), we have the Hartree-Fock result. Otherwise, adding

nc(r̄) to both sides of (5.5) and rearranging:

Vtr(r̄) − µ+ 2U00nc(r̄) + 2
∑

b

U0bñb(r̄) = U00nc(r̄), (5.14)

so, for the ground band, from (5.6):

L0(K, r̄) = K + U00nc(r̄), (5.15)

E0(K, r̄) =
√

K2 + 2KU00nc(r̄), (5.16)

which is a useful simplification, and is automatically self-consistent with nc(r̄).

To compare to the LDA work of [58], we rearrange the equation for the non-condensate

density calculated:

ñ0(r̄) = ad

∫ ∞

−∞

dK g0(K)

{

K + U00nc(r̄)

E0(K, r̄)
n̄BE[E0(K, r̄)] +

K + U00nc(r̄) − E0(K, r̄)

2E0(K, r̄)

}

,

= ad

∫ ∞

−∞

dK g0(K)
1

2

{

K + U00nc(r̄)

E0(K, r̄)
coth

[

βE0(K, r̄)

2

]

− 1

}

, (5.17)

and we see that, although a different derivation has been used, if we restrict to the

ground band and to nearest-neighbour hopping, then our result is the same as that of

[58]. Our derivation has the advantage that (5.8) applies for excited bands and beyond

nearest-neighbour hopping. Also, we have used the density of states to reduce the

problem to two dimensions, which is perhaps why we are able to fix the total number

of particles whereas [58], using a four-dimensional calculation, calculates the simpler

case of fixed number density at the trap centre (so that the chemical potential iteration

is local). Finally, our use of trap units allows modelling of aspherical harmonic traps,

whereas their approach is stated for a spherical trap.
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5.6 Procedure

We fix the parameters N, Vj, aj , as, ωj and m throughout the entire calculation. For the

cubic lattice, we calculate the density of states gb(K) and the interaction parameters

Ubb′ once and use them for any cubic-lattice calculation. For the non-cubic lattice, we

calculate the density of states and interaction parameters when required.

We present our algorithm for the LDA calculation in figure 5.1. We note that, once we

have a choice for the chemical potential, the calculation is completely local. Therefore,

in contrast to the Gross-Pitaevskii equation approach of [56], we do not check the

target for the total number N until the calculations at each site are self-consistent.

When we ‘choose’ a value in the algorithm, we avoid fixed-point where possible (since

it may not converge) and use the Brent method [109]. We use fixed-point only to get

consistency of the interactions between bands: after the check ‘Has ñb(r̄) converged

∀b?’, the calculated values for ñb(r̄) are used for the next iteration.

While we give the general formulae in figure 5.1, we use the simplification of section

5.5 for the ground band.

For the translationally-invariant lattice, we use almost the same calculation, with Vtr(r)

set to zero, and use only one spatial point, r̄. However, due to the importance of the

low energy states, as discussed in appendix J, we make the substitution u4 = K and

use
∫

dK →
∫

4u3du so that the integrand isn’t divergent.
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∫ ∞

−∞
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Figure 5.1: Procedure for LDA calculation
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5.7 Finite-size effect

For the non-interacting gas in a combined harmonic lattice, we allow for the effect of

a positive chemical potential at condensation, equal to the minimum energy:

µfs ≡
d

2
~ω̄∗, (5.18)

where ω∗
j are the effective trapping frequencies, defined in (4.15), and ω̄∗ is their arith-

metic mean. We limit the domain of the integral (5.8) to K + Vtr(r) > µfs, which has a

negligible effect on results compared to the effect of increasing the chemical potential.

For the interacting gas, it is normal to consider the finite-size effect and mean-field

interaction shift as independent additive corrections, [54], which we do analytically in

section 7.6. For our numerical model, motivated by the non-interacting case, we could

increase the point of condensation to µ = µfs + 2
∑

b U0bñb(0). We would then have to

use:

nc(r̄) =
1

U00
max

[

0, µ− µfs − Vtr(r̄) − 2
∑

b

U0bñb(r̄)

]

, (5.19)

for our Thomas-Fermi calculation, so that the point of condensation is consistent be-

tween the condensate and non-condensate. However, µfs in (5.19) should be the differ-

ence between the Gross-Pitaevskii and Hartree-Fock minimum energies, and (5.18) is

not a good estimate of that difference. Therefore, we do not follow this approach, and

in our numerical model for the interacting gas, we do not allow for the finite-size effect.

We do not consider the finite-size effect due to factors other than the positive chemical

potential.

5.8 Summary

We have made an efficient numerical implementation of our theory which we have

clearly depicted in figure 5.1. By using the density of states and trap units, the LDA

problem has been reduced to two dimensions, even for a non-cubic lattice with an

aspherical harmonic trap. For the simpler Bose-Hubbard case, including ground band

only, and nearest-neighbours only, we have shown that our theory reduces to an existing

result [58].

59





Chapter 6

Numerical results

In this chapter we present results demonstrating the application of our mean-field

theory to experimentally realistic regimes of a Bose gas in a three-dimensional combined

harmonic lattice potential. Our results quantify lattice and interaction effects on the

thermal properties of the system.

We demonstrate the accuracy of the numerical procedure described in section 5.6 for

predicting thermal properties, by comparing with the full diagonalisation for the ideal

gas. We show the significance of various assumptions, display some important features

of cold bosons in optical lattices and compare our methods with experiment. We refrain

from discussing the critical temperature here, which we deal with in detail in chapter

7.

6.1 Finite-size effect

We consider the effect on the non-interacting condensate fraction of a positive chemical

potential at condensation, as discussed in section 5.7.

We plot the condensate fraction for ω = 0.02ωR and V = 15ER in figure 6.1.1 We chose

a small number of atoms, N = 1000, to accentuate the finite-size effect.

1We also considered the plots for other lattice depths and trap frequencies, but the plot was similar

in each case, except for scaling due to the different critical temperatures.
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Figure 6.1: Condensate fraction for a non-interacting combined har-

monic cubic-lattice in three dimensions with N = 1000, ω = 0.02ωR

and V = 15ER. The inset shows the region near the critical temper-

ature in more detail.

We see that the positive chemical potential describes the bulk of the finite-size effect

well. The LDA calculation with the finite-size effect gives excellent agreement with the

condensate fraction from the full diagonalisation, except that LDA result shows a phase

transition (that is, discontinuous behaviour) at the critical temperature, whereas the

full diagonalisation shows a more gradual change.

6.2 Beyond nearest-neighbour hopping

In this section, we consider the effect on the non-interacting condensate fraction of

beyond nearest-neighbour hopping (we use all neighbours for our numerical calculations
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6.3. Excited bands

in all other sections).

We only consider the case where excited bands are insignificant. Using nearest-neighbour

hopping for excited bands would be difficult to justify, based on figure 2.3. Also, figure

4.7 shows that, for sufficiently high energies, excited bands are free-particle-like, which

demonstrates the increased significance of beyond nearest-neighbour hopping.

We show the condensate fraction for N = 105 and ω = 0.01ωR in figure 6.2. We

see that beyond nearest-neighbour hopping is significant for V = 2ER and much less

so for V = 5ER. For V = 10ER (not shown), the condensate fractions are barely

distinguishable on an equivalent plot. The decrease in significance of beyond nearest-

neighbour hopping with increasing V/ER, agrees with what we expect from figures 2.3,

4.6 and D.1.
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Figure 6.2: Non-interacting condensate fraction for N = 105 and ω =

0.01ωR. The full diagonalisation curve is almost obscured by the all-

neighbours result.

6.3 Excited bands

In this section, we consider the significance of excited bands. We do not compare to

the full diagonalisation, since the separation into bands for that calculation is not well

defined. Since we are not comparing to the full diagonalisation, we show interacting

results. The higher the temperature, the more important excited bands are, since they

are more thermodynamically accessible. We therefore consider the significance of ex-
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Chapter 6. Numerical results

cited bands at the critical temperature. From figure 4.2, which showed us the band sizes

and gaps, for a given temperature in the order of up to a few recoil units, increasing

the lattice depth decreases the significance of excited bands.

We show the thermal number of atoms in excited bands as a proportion of the thermal

number in the ground band in figure 6.3.

V/ER

Ñ
b
/Ñ

0

first three excited bands

beyond first three excited bands

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05
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0.07

Figure 6.3: Ratio of number of thermal atoms in excited bands to

thermal atoms in the ground band at the critical temperature for the

experimental setup of [39]

The calculations are for 87Rb with as = 5.77 nm and the parameters of [39] with an

optical lattice wavelength of λ = 2a = 852 nm and a spherical trap with frequency

ω = 2π × 24 Hz. We used their maximum number of atoms, N = 2 × 105. We see that

excited bands become insignificant for V & 3ER. The significance of excited bands at

condensation would increase for an increased number of particles or a tighter trap, due

to the increased critical temperature. For sufficiently high temperatures beyond the

condensation region, excited bands become very significant.
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6.4 Quantum depletion

The experimental measurement of quantum depletion was reported in [40]. They loaded

atoms into a lattice, which was linearly ramped up to a lattice depth of V ≈ 20ER

and linearly ramped back down. ‘This ramp sequence was interrupted at various times

by a sudden switch-off of all lattice and trapping potentials’ [40]. By observing the

diffuse background peak of the momentum distribution of time-of-flight images, the

populations of the condensed and non-condensed atoms were estimated. When the

lattice was fully ramped back down, up to 20% of the atoms were observed as thermal

depletion. ‘Linear interpolation was used to subtract this small heating contribution

(up to 10% at the maximum lattice depth)’ to obtain the quantum depletion [40]. Their

results are presented in figure 6.4.2

We have calculated the zero temperature quantum depletion to compare with their

experimental results. We have reproduced the translationally-invariant lattice calcula-

tions of [40] to a level indistinguishable on the plot. The combined harmonic lattice

calculation (solid black curve) of [40] applies ‘the result from the homogeneous sys-

tem to shells of different occupancy numbers using the local density approximation’.

We used our LDA calculations3 to give improved agreement with experimental re-

sults (red curve).4 However, our calculations are still not within error bars for some

measurements, perhaps due to the linear interpolation in the experiment to allow for

the thermal depletion, as described above. The agreement at shallow lattices is worse,

where the theory should be best. We hope that future experiments in this area with

a qualitative focus will enable careful comparison with theory and be able to clearly

distinguish thermal and quantum depletion.

2We removed their one and two-dimensional data and calculations from their plot, which we do

not consider.
3We have assumed N = 1.7 × 105 atoms, which is mentioned in the paper. Although the number

of atoms throughout is unclear, using their maximum number of atoms, N = 5 × 105, makes only a

small change to the results, being close to the curve (ii).
4We note that our methods are not valid after the Mott-insulator transition. Although the n = 1

Mott-insulator transition is at V = 16.4ER, the ‘measurements were performed at a peak lattice site

occupancy number ∼ 7’ [40], and the Mott-insulator transition is at V > 20ER for n ≥ 3, which

extends our validity regime somewhat. The smoothed Mott-insulator fraction was calculated by [40]

and is shown in figure 6.4.
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Figure 6.4: Quantum depletion of 23Na in a three-dimensional optical

lattice. The data points with error bars give the experimental quan-

tum depletion. The curves are: ‘(i) the (smoothed out) Mott-insulator

fraction’; (ii) ‘the calculated quantum depletion for a homogeneous

system of per-site occupancy number n = 1 and (iii) n = 7’. The

solid curves are combined harmonic lattice calculations: the black

curve from [40] and the red curve is our result.

6.5 Effect of quasi-particles

In addition to the quantum depletion, which was considered at zero temperature in

section 6.4, the Bogoliubov quasi-particles modify the energy dispersion as in (3.42).

We compare the quantum depletion to the residual Bogoliubov effect in this section

(using the parameters of [39], as discussed in section 6.3).

In figure 6.5 we show the condensate fraction and the condensate plus quantum de-

pletion fraction. At zero temperature, the only effect of quasi-particles is the quantum

depletion. The methods with and without quasi-particles give the same results above

the critical temperature and the same critical temperature,5 since equations (5.7) and

5The critical temperature is the same if we define it as the lowest temperature for which all particles

can be accommodated as thermal atoms. We note the consistency issues near the critical temperature

discussed in [110].
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Figure 6.5: Condensate and quantum depletion fractions for the

parameters of [39]. Solid lines are for the Popov approximation

to Hartree-Fock-Bogoliubov method and dashed lines are for the

Hartree-Fock method.

(5.8) are the same when there is no condensate. In figure 6.5 we can see the zero tem-

perature increase in quantum depletion due to the increase in lattice depth (as in figure

6.4) and we can see that the nature of the Bogoliubov quasi-particle spectrum (3.42)

also increases thermal depletion relative to the Hartree-Fock prediction.

In figure 6.6 we show the total spatial density, and that of the condensate and quantum

depletion.6 The quantum depletion follows the condensate density from (3.42) and

(3.45). A larger lattice depth increases the effective interaction, decreasing the core

density and, for the Hartree-Fock case, forces all of the thermal depletion away from the

condensate region. We note that condensate fractions and number densities have been

previously produced in [58] for the similar, but simpler case of fixed number density at

the trap centre (so that the chemical potential iteration is local), nearest-neighbours

and ground band only (although, as we have shown, beyond nearest-neighbours and

excited bands are not too significant at these lattice depths). The characteristic lengths

reported in [58] suggest a lattice spacing that is two orders of magnitude less than that

used in experiments, and we have not attempted to reproduce their results.

6The total density curves all integrate to N = 2 × 105, the much higher Hartree-Fock condensate

density near the core is made up for by the slightly lower density further away due to the r2 term in

the integral.
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Figure 6.6: Spatial densities for the parameters of [39] at T =

0.8Tc. Solid lines are for the Popov approximation to Hartree-Fock-

Bogoliubov method and dashed lines are for the Hartree-Fock method.

6.6 Summary

We have shown the accuracy of the LDA method in comparison with the full diag-

onalisation after allowing for the finite-size effect. We have quantitatively shown the

decreasing significance of beyond nearest-neighbour hopping and excited bands as the

lattice depth increases. We have compared our prediction of quantum depletion with

experiment. We have examined the effect of Bogoliubov quasi-particles, so that the

quantum depletion and extra thermal depletion may be separately identified.
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Chapter 7

Critical temperature

In this chapter, we present analytical results for the ideal number density, condensate

fraction and critical temperature, and for the finite-size effect and mean-field interaction

shift. We give simple iterative procedures for including excited bands. We compare all

of these results and methods against the full numerical approach given in chapter 5.

We show that the nature of useful approximations for the translationally-invariant and

combined harmonic lattices differ distinctly. For the translationally-invariant case, the

lowest energy states are singularly important, for which we verify that an effective-mass

treatment is accurate over a broad regime. In contrast, for the combined harmonic lat-

tice, the entire ground-band structure is typically important, for which we develop

simple band shape approximations. In both the translationally-invariant and the com-

bined harmonic lattices, we show that the effective-mass treatment and the simple band

shape approximations work in complementary regimes.

7.1 Effective mass

The effective-mass approximation was considered in section 4.4 and formulae for the

effective mass are given in appendix H. To consider its range of validity, we plot extracts

of the one-dimensional translationally-invariant lattice spectrum in figure 7.1. We see

that the approximation is only valid for energies low in the ground band. Even for Vx

as small as ER,x, the approximation is poor for kx & 0.7π/ax and is certainly poor
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Chapter 7. Critical temperature

for excited bands (worse than the free-particle dispersion).1 However, we note that the

effective-mass approximation is not just for shallow lattices, provided the important

energies are sufficiently small. Even for Vx as large as 15ER,x, the approximation is still

reasonable for quasi-momentum kx . 0.3π/ax, but the range of energies which these

quasi-momentum correspond to is much less since the band is much narrower from

figure 4.2.
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Figure 7.1: One-dimensional translationally-invariant lattice spectrum

We use the effective-mass density of states from (4.10). For the translationally-invariant

case, from (3.37) and (4.4)

Ñ

Nsa3
=

(

m∗

m

)d/2

λ−d
T ζd/2(z) , (7.1)

where z = eβµ, λT = h/
√

2πmkBT and ζα(z) =
∑∞

n=1 z
n/nα is the Bose function

(some properties of this function are discussed in appendix I). Solving for the critical

temperature, so that Ñ = N and µ → 0, there is no condensation in one and two

dimensions and in three dimensions we have the well known result [111]:

T 0
c =

2π~
2

kBm∗

[

N

Nsa3ζ(3/2)

]2/3

. (7.2)

1We could recalculate the effective mass and set the energy to the correct level at the start and

end of each band (and blend the approximations together at the middle of the band), but this would

not be nearly so tractable, and in many cases it would still not be very accurate near the middle of

the bands.
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We compare the critical-temperature results to our full numerical calculation in figure

7.2. The results obviously coincide at V = 0 and the effective mass is a good approxima-

tion for V . ER since there the lattice has a perturbative effect. The approximation

is also good when the critical temperature is well within the band (we consider the

bandwidth in figure 7.4). The effective-mass results show a reasonable approximation

of the full numerical calculation in figure 7.2, even where the critical temperature is

well above ground band. This is because the low energy states are extremely important

to the calculation since the integrand to arrive at (7.1) is divergent as K → 0 and

therefore the low K region has a substantial contribution to the total integral.2 Even

though the remainder of the actual density of states is very different, this is suppressed

relative to the K → 0 behaviour.
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Figure 7.2: Comparison of actual to effective-mass critical tempera-

ture for a three-dimensional translationally-invariant lattice

2 Since the density of states (4.10) reflects the true density of states for low energies, the integrand

in this region is g(K)/(eβK − 1) ∼ kBT/
√
K which is divergent as K → 0 and we have for low K

∫K

0
dK ′g(K ′)/(eβK′ − 1) ∼ kBT

√
K. For more detail and graphs of the integrand, see appendix J.
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For the combined harmonic lattice, from (3.37) and (4.4) (or from (4.14)):

Ñ =

(

m∗

m

)d/2(
kBT

~ω

)d

ζd(z) , (7.3)

so that there is no condensation in one dimension and in two or three dimensions, the

critical temperature is the well known result [112]:

T 0
c =

~ω∗

kB

[

N

ζ(d)

]1/d

, (7.4)

where the effective trap frequencies were defined in (4.15). For three dimensions, we

compare the effective-mass results to our full numerical calculation in figure 7.3.
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Figure 7.3: Comparison of actual to effective-mass critical tempera-

ture for a three-dimensional combined harmonic lattice

We again see that the agreement is good for V . ER and when the critical temperature

is well within the ground band. The approximation is generally poor when the critical
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7.1. Effective mass

temperature is out of the ground band. For the combined harmonic lattice, the low

energy states mentioned above and in footnote 2 are not so important since the low

energy region is not divergent.3

For the finite-size effect in three dimensions, using the methodology of [113] (which

considered the finite-size effect in the no lattice case) with the modified density of

states:

δT fs
c

T 0
c

≈ − ω̄
∗

ω∗

ζ(2)

2ζ(3)2/3
N−1/3 ≈ −0.73

ω̄∗

ω∗
N−1/3. (7.5)

Since, for a cubic lattice, this is independent of V , we do not plot it here, but show it

on figure 7.12.

7.1.1 Shallow lattice interaction

In this section, we motivate a shallow lattice coupling constant, g∗, which is a modi-

fication of the no lattice coupling constant, g. We consider the three-dimensional no

harmonic trap case, with all of the atoms in the condensate. In the shallow lattice limit,

where µ > Vlatt(r), it is permissible to make the continuous Thomas-Fermi approxi-

mation for the condensate, nc(r) = (µ − Vlatt(r))/g, whereas, for deeper lattices, the

discrete approximation (3.18) becomes valid. The condensate energy in the no lattice

case is gN2/2Nsa
3 [114], so averaging over the lattice, we require that:

g∗
N2

Nsa3
= g

∫

drnc(r)
2

=⇒ g∗ =
Nsa

3

gN2

∫

dr

[

µ− 1

2

∑

j

Vj −
1

2

∑

j

Vj cos

(

2πrj

aj

)

]2

= g

[

1 +
1

8

(

Nsa
3

Ng

)2
∑

j

V 2
j

]

, (7.6)

where we have used N =
∫

drnc(r) =⇒ µ− 1
2

∑

j Vj = Ng/Nsa
3. We see in (7.6) the

interplay between the squared magnitude of the lattice
∑

j V
2
j and the squared average

no-lattice interaction energy (gN/Nsa
3)2).

We do not have a numerical model valid in this regime. The above shows some first

steps towards understanding the interacting gas in a shallow lattice.

3Since the K integrand is divergent only when r → 0 and this region is suppressed by the r2 term

in
∫∞

0 dr r2
∫

dKg(K)/(eβ(K+Vtr(r)) − 1).
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Chapter 7. Critical temperature

7.2 Simplified ground-band shape

As we have seen in figure 4.3, for a deep lattice, the density of states becomes separated

into disjoint bands. In this section we ignore the finite-size effect and interactions and

we assume that the energy of the excited bands is sufficiently high relative to the critical

temperature that they can be ignored. We will consider adjustments for these effects

in later sections. Work for section 7.1 suggests that, particularly for the combined

harmonic lattice, there is a wide regime where it is not sufficient to consider only the

effective-mass region of the band. This suggests that modelling the overall shape of

the whole band is likely to be important. We therefore use simplified shapes for the

whole ground band. Our approach will not, however, be fully accurate when the critical

temperature is so low that the fine structure of the ground band becomes important.

As we can see from figure 4.3, the width of the ground band becomes very narrow

for deep lattices. As the most simple approximation, we use a delta function at zero

energy for the density of states which we call the zero-delta approximation. We then

consider two additional approaches. The first is a delta function at the middle of the

band which we call the centred-delta approximation. The second is to spread the den-

sity evenly over the band, which we call the rectangular band assumption.4 We then

consider approximate band shapes that are more representative of the band structure:

the quadratic and triangular bands. These two assumed shapes have similar complexity

and are both included so that we can see the effect on results of these band shapes.

In all cases, except the zero-delta approximation, we expand the results as a series in

the quantity we call the ‘thermal width’, w = W/kBT . As w → 0 the results become

the zero-delta results. The series expansion is convergent when w is not too large, which

is also when approximations inherent in the simple band shapes are less important.

The value for the width,W , used in our calculations is chosen so that the average energy

of our approximate band shape (which is always at the midpoint of the approximate

band since the shapes we use are symmetrical) is equal to the average energy of the

actual density of states:

W

2
= ad

∫

dKKg0(K). (7.7)

For large lattice depths, the density of states is approximately symmetric and the use of

4These are extremes of simplicity, but not necessarily of value. For example, the infinite Van Hove

singularities discussed later in this section may cause more extreme results.
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7.2. Simplified ground-band shape

(7.7) is equivalent to using the difference between the maximum and minimum energy

of the band. For shallow lattices, the density of states has significant asymmetry as

shown in figure 7.4. The cubic-lattice tight-binding result, W = 12J from (D.19), is

often used in the literature and is shown for comparison.
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Figure 7.4: Width of the ground band

We set d to be the number of dimensions which are harmonically trapped. For example,

d = 0 for the translationally-invariant lattice and d = 3 for the combined harmonic

lattice in three dimensions. Our band shapes are chosen by comparison to the actual

density of states in three dimensions. Therefore the results should be used with caution

in one or two dimensions. The actual band shape for a one-dimensional optical lattice

has infinite Van Hove singularities at the bottom of the ground band, and at the min-

imum and maximum energy of every band in the tight-binding limit (from figure 4.4),

so would be better approximated by a shape including delta functions at both of those

points. The actual ground-band shape for a square lattice in the tight-binding limit is

infinite at the middle of the band (from figure 4.5), so would be better approximated

by a shape including a delta function there. We intend to derive further results for one

and two-dimensional optical lattices as part of later work.

For a translationally-invariant lattice, we set Ns to be the number of sites. For the

combined harmonic lattice, we set Ns = [πkBT/(mω
2a2/2)]d/2 which is a measure

of the thermally accessible number of sites and, as we shall see below, is a factor in

combined harmonic lattice results which takes the place of the translationally-invariant

lattice number of sites. 75



Chapter 7. Critical temperature

7.2.1 Zero-delta band shape

For sufficiently deep lattices, the spread in kinetic energy becomes negligible compared

to other relevant energy scales. As an extreme approximation, we then take the kinetic

dispersion to be zero, Kb(k) = 0 [62, 115]. We can then represent the density of states

with a delta function at the lowest energy of the band, g0(K) = δ(K)/ad from (4.1)

using
∫

BZ
dk = (2π/a)d. Then using (4.4), we calculate the number of thermal atoms

per site in the ground band:

ñ0(r) =

∫

adg0(K)dK

z−1 exp{β[K + Vtr(r)]} − 1

=
1

z−1 exp[βVtr(r)] − 1
. (7.8)

We use (3.37) to calculate the total number of thermal atoms. For the translation-

ally-invariant lattice, we set Vtr(r) = 0 throughout the volume so that the integrand is

constant and we recognise ζ0(z) = 1/(z−1 − 1). For the combined harmonic lattice, we

convert the integrand into a geometric series in z exp[−βVtr(r)], integrate one dimension

at a time in case of anisotropy and recognise the Bose function from (I.1). We find, for

both the translationally-invariant and combined harmonic lattice:

Ñ0 =
1

ad

∫

dr ñ0(r)

= Nsζd/2(z) , (7.9)

which was shown, for the three-dimensional combined harmonic lattice, in [62]. This

assumption of no kinetic energy dispersion only becomes valid for V ≫ 15ER, which is

well beyond our regime of interest and gives no indication of the variation with lattice

depth, so we consider improvements.

7.2.2 Centred-delta band shape

Rather than setting the dispersion to zero as section 7.2.1, if we set the dispersion

throughout the first Brillouin zone to be its average value, Kb(k) = W/2 in (4.1),

then the density of states becomes a delta function at the centre of the ground band,5

5This differs from the zero-delta band shape, because, in both cases, the energy origin is set by

µ→ 0.
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7.2. Simplified ground-band shape

g0(K) = δ(K −W/2)/ad. Then from (4.4):

ñ0(r) =
1

z−1 exp[βVtr(r) + w/2] − 1
. (7.10)

This is equivalent to setting the exponential in (4.4) to its value in the middle of

the band, combined with any density of states (noting that the density of states must

integrate to unity). From (3.37), using the same approach as discussed for the zero-delta

case above:

Ñ0 = Nsζd/2

(

ze−w/2
)

. (7.11)

We note that the three-dimensional combined harmonic lattice result with µ → 0,

Ñ0 = Nsζ3/2

(

e−w/2
)

, has been obtained previously using a completely different method

in [116] (from the first term of a Bessel function expansion in a tight-binding approxi-

mation). When µ→ 0, we expand for the translationally-invariant case as:

Ñ0 =
Ns

ew/2 − 1
= Ns

[

2

w
− 1

2
+O(w)

]

, (7.12)

and for the combined harmonic lattice we expand using (I.8), which gives convergent

series for w < 4π, in one dimension as:

Ñ0 = Ns

[

√

2π

w
+ ζ(1/2) − ζ(−1/2)w

2
+O

(

w2
)

]

, (7.13)

in two dimensions as:

Ñ0 = Ns

[

− ln
w

2
+
w

4
+O

(

w2
)

]

, (7.14)

and in three dimensions as:

Ñ0 = Ns

[

ζ(3/2)−
√

2πw − ζ(1/2)w

2
+O

(

w2
)

]

. (7.15)

We expect the centred-delta assumption to be a poor approximation at least for kBT .

W , since the shape of the band will then be important and the assumed shape is

extremely simplified.

7.2.3 Rectangular band shape

After the delta function densities of states assumed in sections 7.2.1 and 7.2.2, the next

most simple band shape is a rectangle.
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Chapter 7. Critical temperature

By a rectangular band shape, we mean g0(K) = 1/Wad for 0 < K < W and zero

otherwise, as we used in section 4.6, and as shown in figure 7.5. Although, due to

our definitions, the area and average value are necessarily the same for the actual and

approximate density of states, the approximation is poor.
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Figure 7.5: Comparison of exact cubic-lattice to rectangular density

of states

From (4.4) and (I.1):

ñ0(r) =
1

w

[

ζ1
(

ze−βVtr(r)
)

− ζ1
(

ze−βVtr(r)−w
)]

. (7.16)

We again use (3.37) to calculate the total number of thermal atoms. For the translation-

ally-invariant lattice, we use the same approach as for the zero-delta band assumption.

For the combined harmonic lattice, we use (I.1) to convert the integrand into a series,

again integrate one dimension at a time in case of anisotropy, and convert the result

back into a Bose function using (I.1) to find:

Ñ0 =
Ns

w

[

ζ1+d/2(z) − ζ1+d/2

(

ze−w
)]

. (7.17)

We consider Ñ0 in the limit µ → 0. The translationally-invariant case is divergent.

For the one and two-dimensional combined harmonic lattices, the series have the same

functional form as (7.13) and (7.14) (but different coefficients), using (I.8). We do not

show the results here, since it does not alter the conclusions we wish to make on the

reduced-dimensional cases. For the three-dimensional combined harmonic lattice, (I.8)

gives the following series, which is here convergent for w < 2π:

Ñ0 = Ns

[

ζ(3/2)− 4
√
πw

3
− ζ(1/2)w

2
+O

(

w2
)

]

. (7.18)
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7.2. Simplified ground-band shape

We consider more accurate approximations in the next sections.

7.2.4 Quadratic band shape

The simplest differentiable function that has exactly two zeros is the quadratic, which

is the band shape we choose here. By this we mean g0(K) = 6K(W − K)/W 3ad for

0 < K < W and zero otherwise. This approximation to the true density of states is

shown in figure 7.6. The approximation is much improved compared to the rectangular

density of states.
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Figure 7.6: Comparison of exact cubic-lattice to quadratic density of

states

Using (4.4) and (I.1):

ñ0(r) =
6

w3

[

wζ2
(

ze−βVtr(r)
)

− 2ζ3
(

ze−βVtr(r)
)

+ wζ2
(

ze−βVtr(r)−w
)

+ 2ζ3
(

ze−βVtr(r)−w
)]

.

(7.19)

Then, from (3.37) and (I.1) using the same approach as for the rectangular case:

Ñ0 =
6Ns

w3

[

wζ2+d/2(z) − 2ζ3+d/2(z) + wζ2+d/2

(

ze−w
)

+ 2ζ3+d/2

(

ze−w
)]

. (7.20)

Letting µ → 0, and using (I.8) we expand in series (convergent for w < 2π). For the

translationally-invariant case:

Ñ0 = Ns

[

3

w
− 1

2
+
w

24
+O

(

w3
)

]

. (7.21)
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For one and two-dimensional combined harmonic lattices, the series again have the

same form as (7.13) and (7.14) with different coefficients and we do not show the

results here. For the three-dimensional combined harmonic lattice:

Ñ0 = Ns

[

ζ(3/2)− 48
√
πw

35
− ζ(1/2)w

2
+O

(

w2
)

]

. (7.22)

7.2.5 Triangular band shape

There is a family of simplified band assumptions made up of piecewise polynomials for

which we can get thermodynamic results as sums of Bose functions. The simplest of

this family is the triangular band approximation, by which we mean:

g0(K) =
4

W 2ad



















K K < W/2,

W −K W/2 < K < W,

0 otherwise.

(7.23)

The approximation to the true density of states is shown in figure 7.7. Compared to

the quadratic band assumption, the skewness of the actual density of states means the

triangular approximation is better for deep that for shallow lattices. By V = 5ER the

approximation appears reasonable.
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Figure 7.7: Comparison of exact cubic-lattice to triangular density of

states

Using (4.4) and (I.1):

ñ0(r) =
4

w2

[

ζ2
(

ze−βVtr(r)
)

− 2ζ2
(

ze−βVtr(r)−w/2
)

+ ζ2
(

ze−βVtr(r)−w
)]

. (7.24)
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Then using (3.37) and (I.1) as for the other cases:

Ñ0 =
4Ns

w2

[

ζ2+d/2(z) − 2ζ2+d/2

(

ze−w/2
)

+ ζ2+d/2

(

ze−w
)]

. (7.25)

For µ→ 0, again using (I.8) (convergent for w < 2π), for the translationally-invariant

lattice:

Ñ0 = Ns

[

4 ln 2

w
− 1

2
+
w

24
+O

(

w3
)

]

, (7.26)

and for the three-dimensional combined harmonic lattice:

Ñ0 = Ns

[

ζ(3/2)− 8
(

4 −
√

2
)√

πw

15
− ζ(1/2)w

2
+O

(

w2
)

]

. (7.27)

7.3 Non-interacting, ground-band-only critical tem-

perature

7.3.1 Translationally-invariant

For the zero-delta band assumption with a translationally-invariant lattice, there is no

condensation since, with the entire band at zero energy, any number of particles can

be accommodated in the thermal cloud by making the chemical potential sufficiently

close to zero. Likewise, for the rectangular band shape, or any approximate band shape

with finite density at and beyond zero energy there is no condensation.6 For the other

band shapes, we may numerically solve (7.11), (7.17), (7.20) or (7.25). This is only

valid for three dimensions, since we know from the effective mass results that there is

no condensation in a one or two dimensional translationally-invariant lattice. For the

centred-delta band shape we have from (7.12):

T 0
c =

W

2kB ln(1 +Ns/N)
. (7.28)

For comparison with approximate solutions for the other band shapes below, for w . 1

(say N/Ns ≥ 2) the approximate solution is:

T 0
c ≈ W

2kB

(

N

Ns
+

1

2

)

. (7.29)

6If the minimum height is A > 0 over some energy region including zero, [0,K ′], then the density

is ñ0(r) >
∫K′

0
AdK/(eβ(K−µ) − 1) → ∞ as µ→ 0.

81



Chapter 7. Critical temperature

From the quadratic translationally-invariant results, for w . 1, the critical temperature

is7 T 0
c ≈ W

(

N/Ns + 1
2

)

/3kB using (7.21) and for the triangular case the equivalent

result is T 0
c ≈W

(

N/Ns + 1
2

)

/4kB ln 2 ≈ 0.36W
(

N/Ns + 1
2

)

/kB.

We plot the translationally-invariant critical temperatures as a function of lattice depth

in figure 7.8. The approximate quadratic band formula W
(

N/Ns + 1
2

)

/3kB is reason-

able for V & 5ER except that for the N/Ns = 0.1 case, for which (7.20) would need

to be solved. The importance of the low energy states to the translationally-invariant

lattice, was discussed in section 7.1, where we observed that it improved the effective-

mass results. For the approximate band shapes, the importance of the low energy states

is to our disadvantage, since we approximate the low energy states poorly (in none of

our simplified band assumptions in section 7.2 do we have g(K) ∝
√
K for small K).

We notice the difference between the V = 0 quadratic and triangular results in figure

7.8 further demonstrating the importance of the assumed band shape in this case. The

importance of the accuracy of the band shape decreases when V increases, since the

ratio W/kBT
0
c decreases.

7.3.2 One and two-dimensional combined harmonic lattice

In the one-dimensional case, we know from the effective mass results that there is no

condensation. For two dimensions, we may numerically solve (7.11), (7.17), (7.20) or

(7.25) for the critical temperature. We leave analytic results, numerical comparison

and more accurate band shapes for the two-dimensional combined harmonic lattice for

future work.

7.3.3 Three-dimensional combined harmonic lattice

For the zero-delta band shape we solve (7.9) to find the non-interacting critical tem-

perature in that limit, as in [62]:

T 0
L =

mω2a2

2πkB

[

N

ζ(3/2)

]2/3

. (7.30)

7From (7.19), for w ≫ 1 we get the approximate critical temperature for the quadratic case T 0
c →

W
√

N/6ζ(2)Ns/kB ≈ 0.32W
√

N/Ns/kB (for the triangular case, the multiplier is 1/
√

4ζ(2) ≈ 0.39

from (7.24)). However, for w ≫ 1, the simplified band assumptions become poor approximations.
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Figure 7.8: Three-dimensional translationally-invariant cubic-lattice

ground-band non-interacting critical temperatures as a function of

lattice depth. Solid curves were found by solving the Bose functions

(7.20), (7.25) and (7.28). For the quadratic and triangular shapes,

dashed curves are give the small w results T 0
c ≈ W

(

N/Ns + 1
2

)

/3kB

and T 0
c ≈ W

(

N/Ns + 1
2

)

/4kB ln 2 respectively. In the N/Ns = 0.1

plot, the actual all and ground bands results are indistinguishable. For

N/Ns = 5 and N/Ns = 10, the small w results are indistinguishable

from the Bose function results.

From equations (7.15), (7.18), (7.22) and (7.27) in the previous sections, we get a

series for the number of thermal atoms as a function of temperature when µ → 0. In the

thermodynamic limit, this gives the total number of atoms, at the critical temperature.

In each of these cases, the formula is of the form:

N = (kBT )3/2

[

A +B

√

W

kBT
+ C

W

kBT
+D

(

W

kBT

)2

+O
(

w3
)

]

. (7.31)
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When we set w → 0, we get the zero-delta result (7.30) in each case, showing that

we have chosen functions whose limiting form is the delta function. For finite w this

gives a series in integer powers of
√
W about the zero-delta, W = 0, result. This can

be viewed as an implicit Taylor series for the non-interacting critical temperature, T 0
c

about the zero-delta non-interacting critical temperature, T 0
L. Then, for the function

kBT (
√
W ), the derivative of which at W = 0 is kBT

′(0) =
[

dkBT/d
√
W
]

W=0
we have:

kBT
0
c = kBT

0
L + kBT

′(0)
√
W +

1

2
kBT

′′(0)W +
1

3!
kBT

′′′(0)W 3/2 +O
(

W 2
)

. (7.32)

The required derivatives are:

kBT
′(
√
W ) = −∂N/∂

√
W

∂N/∂kBT

= − BkBT + 2C
√
WkBT + 4DW 3/2/

√
kBT

3A
√
kBT/2 +B

√
W + CW/2

√
kBT −DW 2/2(kBT )3/2

, (7.33)

kBT
′′(0) =

[

∂kBT
′(
√
W )

∂
√
W

]

W=0

+

[

∂kBT
′(
√
W )

∂kBT

]

W=0

kBT
′(0) =

2(B2 − 2AC)

3A2
,

(7.34)

kBT
′′′(0) =

[

∂kBT
′′(
√
W )

∂
√
W

]

W=0

+

[

∂kBT
′′(
√
W )

∂kBT

]

W=0

kBT
′(0) =

4

27

18ABC − 5B3

A3
√
kBT

.

(7.35)

So, the effect of the band shape on the critical temperature is:

T 0
c − T 0

L

T 0
L

= −2B

3A

√
wL +

B2 − 2AC

3A2
wL +

36ABC − 10B3

81A3
w

3/2
L +O

(

w2
L

)

, (7.36)

where wL = W/kBT
0
L.

For the quadratic band assumption, we have from (7.22):

−2B

3A
=

32
√
π

35ζ(3/2)
≈ 0.620, (7.37)

B2 − 2AC

3A2
=
ζ(3/2)ζ(1/2) + 2304π/1225

3(ζ(3/2))2
≈ 0.102, (7.38)

36ABC − 10B3

81A3
= 32

√
π
ζ(3/2)ζ(1/2) + 256π/245

105ζ(3/2)3
≈ −0.016, (7.39)

so that we have:

(

T 0
c − T 0

L

)

/T 0
L ≈ 0.620

√
wL + 0.102wL − 0.016w

3/2
L +O

(

w2
L

)

. (7.40)
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Similarly for the triangular band assumption, from (7.27) we have:

(

T 0
c − T 0

L

)

/T 0
L ≈ 0.624

√
wL + 0.105wL − 0.015w

3/2
L +O

(

w2
L

)

, (7.41)

and we see that the coefficients are very similar. For a check on the extremities of the

assumptions, we note that for the centred-delta assumption, we have from (7.15):

(

T 0
c − T 0

L

)

/T 0
L ≈ 0.640

√
wL + 0.121wL − 0.010w

3/2
L +O

(

w2
L

)

, (7.42)

and for the rectangular band assumption, we have from (7.18):

(

T 0
c − T 0

L

)

/T 0
L ≈ 0.603

√
wL + 0.086wL − 0.021w

3/2
L +O

(

w2
L

)

. (7.43)

These series are convergent for w < 2π [117].8 For small wL, by considering the size of

the coefficients above, we can omit some of the higher powers of wL in these series. For

example, the w
3/2
L adjustment is small for wL < 1. For large wL, we can numerically

solve the equations (7.11), (7.17), (7.20) and (7.25).

We plot these critical temperatures and compare to the full numerical non-interacting

critical temperatures in figure 7.9. We use the extremes of experimental values of the

trapping frequency and consider a wide range of the number of particles. We see that

the centred-delta (7.11) and rectangular (7.17) do indeed provide extreme limits on the

results. Since the density of states is nearly symmetrical (figure 7.6) for V ≥ 5ER we

expect the quadratic and triangular band shapes to give a good approximation for these

lattice depths. For shallower lattices, we expect the approximation to remain acceptable

when the critical temperature is greater than the width of the band (ignoring excited

bands which are significant for shallow lattices and are considered in section 7.4). The

width of the cubic-lattice ground band for V = 0 is W = 2.0ER (from figure 7.4) and

we see that the quadratic and triangular results are reasonable even until T 0
c ≈W/2kB.

The quadratic assumption (7.20) is better than the triangular assumption (7.25) for

low V (at least when V < 5ER) and the triangular assumption is better for high V

(both approximations are excellent in this range, so the difference is not observable on

figure 7.9, for example when V > 10ER).9

The series expansions (7.40), (7.41), (7.42) and (7.43) (dashed lines in figure 7.9)

give very good results for kBT
0
c > W/2, virtually indistinguishable from the full

8The centred-delta series is convergent for w < 4π since only w/2 appears in the Bose function,

but the full centred-delta form (7.11) is more approximate than the quadratic and triangular forms.
9The triangular band assumption is better than the quadratic assumption throughout if we are

trying to approximate the nearest-neighbours density of states.
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Figure 7.9: Three-dimensional combined harmonic cubic-lattice

ground-band non-interacting critical temperatures as a function of

lattice depth. Solid approximate forms are calculated by numerically

solving (7.11), (7.17), (7.20) and (7.25). Dashed lines are calculated

from (7.42), (7.43), (7.40) and (7.41). The dashed lines are indistin-

guishable from the solid curves for the lower-right plot, and the dashed

lines approximations results are off the scale of the top-left plot.

Bose function solutions (equations (7.11), (7.17), (7.20) and (7.25)) even at V = 0

for ω = 0.02ωR, N = 106 where kBT
0
c > 0.7W . The expansions are not conver-

gent for kBT
0
c < W/2π (except as discussed in footnote 8) and for the case with

ω = 0.005ωR, N = 103, the series expansions (the dashed lines in figure 7.9) are so

poor that only the approximate form of the centred-delta result appears briefly on the

plot, and the rest of the approximate shapes do not appear at all.
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7.4 Excited bands

As in section 4.6, we set Wb to be the width of excited band b and Kmin
b to be the

minimum energy of the band. With a rectangular band assumption using (4.4) and

(I.1) the thermal number per site at r in the excited bands is:

ñb>0(r) =
∑

b>0

kBT

Wb

[

ζ1

(

ze−β[Vtr(r)+Kmin
b ]
)

− ζ1

(

ze−β[Vtr(r)+Kmin
b +Wb]

)]

. (7.44)

Then using (3.37) and (I.1), the total thermal number in the excited bands is:

Ñb>0 = Ns

∑

b>0

kBT

Wb

[

ζ1+d/2

(

ze−βKmin
b

)

− ζ1+d/2

(

ze−β(Kmin
b +Wb)

)]

. (7.45)

In the case where all excited bands are well above the current temperature (kBT ≪
Kmin

b for b > 0), using the first term in (I.1) we have:

Ñb>0 ≈ Ns

∑

b>0

kBT

Wb
ze−βKmin

b

(

1 − e−βWb
)

. (7.46)

A comparison of the actual to the approximate density of states, using the above

approximation for the excited bands and the quadratic approximation for the ground

band is given in figure 7.10. Of course, the approximation we are actually using is more

drastic than we have used for the ground band since we use the first term of the Bose

series in (7.47).

K/ER

g b
(K

)E
R
a

3

approximate
actual

0 2 4 6
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0.5

1

1.5
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Figure 7.10: Quadratic approximation for the ground band and rect-

angular approximation for the exited bands for V = 5ER for the cubic

lattice in three dimensions
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To estimate the non-interacting critical temperature allowing for excited bands, we

first obtain T 0
c ignoring the excited bands using one of the methods above (for example

(7.40)) then we calculate the number of atoms in the ground band, N0, by adjusting

for excited bands using, with µ→ 0:

N0 = N −Ns

∑

b>0

kBT
0
c

Wb

e−Kmin
b /kBT 0

c

(

1 − e−Wb/kBT 0
c

)

. (7.47)

We then recalculate T 0
c using, for example, (7.40) but replacing N in (7.40) with N0.

If N −N0 is large then iteration on T 0
c is recommended.

For the translationally-invariant lattice, over the range of parameters that we consider

in figure 7.8, in the regions where adjustment for excited bands would be significant

(all within V . 5ER), the ground-band only approximations themselves are a poor

representation of the actual ground-band critical temperatures (as we showed in figure

7.8). We therefore do not present approximate translationally-invariant lattice results

allowing for excited bands. We accept that our simple band shape translationally-

invariant lattice results are only reasonable for V & 5ER. However, we have shown in

figure 7.2 that the effective-mass approximation is generally reasonable for V . 5ER.

For the combined harmonic lattice, we compare results using this approximate approach

to the full numerical calculation in figure 7.11. We use the quadratic assumption for the

ground band by solving (7.20). For the extreme case ω = 0.005ωR the excited bands

make negligible difference to any of the actual or approximate results for N < 106,

so, unlike figure 7.9, we present the N = 106 result for that trapping frequency. We

have iterated on T 0
c where necessary (when the effect of excited bands is significant).

The agreement between the full numerical calculation and the approximate calculation

using (7.47) is excellent except near V = 0.
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Figure 7.11: Effect of excited bands on the non-interacting critical

temperature in a combined harmonic lattice using (7.47). Solid lines

solve (7.20) for the ground band and use the method described in the

text for excited bands, + results are from the full numerical calcula-

tion

7.5 Finite-size effect

In this section we find the effect on the critical temperature, δT fs
c = T fs

c −T 0
c , of a positive

chemical potential at condensation, equal to the energy of the ground state, µfs =

3~ω̄∗/2 (from (5.18), as we consider only the three-dimensional combined harmonic

lattice). We only consider the finite-size effect due to a positive chemical potential

(which was shown to give good agreement to the full diagonalisation in section 6.1).

We consider only the effect on the ground band.

We introduce some explicit notation used only in this section, in section 7.6 on the

interaction shift, and in the corresponding explanatory appendices. Generally through-
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out this thesis, a given formula has one temperature, one chemical potential and one

interaction coefficient. In these sections, we explore the effect of changing the chemical

potential and the interaction coefficient on the temperature, so we introduce explicit

notation for these sections only. For the ground-band thermal atoms calculated at tem-

perature T , chemical potential µ and interaction coefficient U , we label the ground-band

thermal number per site at r (elsewhere labelled ñ0(r) where 0 refers to the ground

band) to be ñU
T (r, µ) and the total ground-band thermal number (elsewhere labelled

Ñ0) to be ÑU
T (µ). In this section we keep U = 0, we consider U > 0 in section 7.6.

We expand in a Taylor series about the µ→ 0 critical temperature, T 0
c :

Ñ0
T fs

c
(µfs) = Ñ0

T 0
c
(0) + δT fs

c

[

∂Ñ0
T (0)

∂T

]

T=T 0
c

+ µfs

[

∂Ñ0
T 0

c
(µ)

∂µ

]

µ=0

. (7.48)

By the definition of the respective critical temperatures, we have Ñ0
T 0

c
(0) = N =

Ñ0
T fs

c
(µfs) so that:

δT fs
c = −µfs

[

∂Ñ0
T 0

c
(µ)

∂µ

]

µ=0
[

∂Ñ0
T (0)

∂T

]

T=T 0
c

. (7.49)

For the quadratic band assumption, from (7.20), (I.7) and (I.8) we get the following

expressions for the required derivatives (the results in terms of Bose functions, valid

for a wider range of w are given in appendix K.3):

[

∂Ñ0
T (µ)

∂µ

]

µ=0

=
Ns

kBT

[

8
√
π

5
√
w

+ ζ(1/2) +O(w)

]

, (7.50)

∂Ñ0
T (0)

∂T
=
Ns

T

[

3

2
ζ(3/2) − 48

√
πw

35
− ζ(1/2)

4
w +O

(

w2
)

]

. (7.51)

From (7.49), (7.50) and (7.51) we get:

δT fs
c = −µfs

kB

[

16
√
π

15ζ(3/2)
√

w0
c

+
2ζ(1/2)

3ζ(3/2)
+

512π

525ζ(3/2)2
+O

(

√

w0
c

)

]

≈ −µfs

kB

[

0.72
√

w0
c

+ 0.076

]

, (7.52)

where w0
c = W/kBT

0
c . In appendix K.4, we derive similar results for the triangular
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band assumption:

δT fs
c = −µfs

kB

[

16(2 −
√

2)
√
π

9ζ(3/2)
√

w0
c

+
2ζ(1/2)

3ζ(3/2)
+

512(5 − 3
√

2)π

405ζ(3/2)2
+O

(

√

w0
c

)

]

≈ −µfs

kB

[

0.71
√

w0
c

+ 0.068

]

. (7.53)

For a cubic lattice, using the nearest-neighbour effective mass from (H.4), so that

ω̄∗ = ω̄π
√

J/ER (we have defined ω̄ = (ωx + ωy + ωz)/3) and using the nearest-

neighbour assumption W = 12J from (D.19), we have µfs =
√

3W/ERπ~ω̄/4. In this

limit, the highest order finite-size shift in (7.52) is independent of W (except as W

influences T 0
c ):

δT fs
c ≈ −

√
3π~ω̄

4kB

{

16
√
π

15ζ(3/2)

√

kBT 0
c

ER

+

[

2ζ(1/2)

3ζ(3/2)
+

512π

525ζ(3/2)2

]

√

W

ER

+O(W )

}

.

(7.54)

In the zero-delta, W → 0, limit, we have using (7.30):

δT fs
c

T 0
L

= − 8
√

3π

15ζ(3/2)2/3

ω̄

ω
N−1/3 ≈ −1.53

ω̄

ω
N−1/3. (7.55)

The equivalent result for the triangular band approximation is:

δT fs
c

T 0
L

= −8
√

3(2 −
√

2)π

9ζ(3/2)2/3

ω̄

ω
N−1/3 ≈ −1.49

ω̄

ω
N−1/3. (7.56)

We compare the finite-size effect using the quadratic assumption to the full numerical

calculation in figure 7.12. The shift given by (7.52) is a reasonable approximation to

the ground-band shift where the series expansion is valid. The zero-delta limit is not

valid in the extreme ω = 0.005ωR, N = 103 case, but with these parameters, the series

expansion is not valid throughout. The effective-mass finite-size effect (7.5) is exact at

V = 0 for the all bands results and we can see that it remains a good approximation

for the ω = 0.005ωR, N = 103 case.
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Figure 7.12: Finite-size effect on the combined harmonic non-

interacting ground-band critical temperature

7.6 Mean-field critical temperature

In this section we find the effect of ground-band mean-field interactions on the critical

temperature: δTc = Tc − T 0
c where Tc is the critical temperature of a interacting gas in

a three-dimensional combined harmonic lattice. We allow for interactions within the

ground band only. We do not estimate the translationally-invariant lattice interacting

critical temperature, since there is no mean-field shift, the leading order correction

being due to critical fluctuations.

We will use a Taylor series expansion of the number of thermal atoms about the critical

point. Our overall approach is similar to the work of [54] for the trapped, no lattice
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case.10 However, in our case, the non-interacting gas has some divergent properties at

condensation (µ → 0) in the limit w → 0. For example, the density at the centre of

the harmonic trap from (7.10) and the derivative of the thermal number with respect

to µ from (7.50) are both infinite as w → 0.11 At V = 15ER, we have from figure 7.4

that W ≈ 0.1ER and from figure 7.11 kBT
0
c at V = 15ER is up to 2ER (for the trap

frequencies and atom numbers we consider), so that the thermal width is close to zero,

w ≈ 0.05. The effect of repulsive interactions is to force atoms away from the centre

of the trap and, as we shall see, decrease the critical temperature. As we initially turn

on the interaction parameter, U , the effect of moving away from the near-divergent

properties is significant. Further increasing the interaction parameter has a more mod-

erate effect. We want to use a linear Taylor series expansion. If we were to use the

central density and derivatives at the non-interacting critical temperature when calcu-

lating the interaction effect, the result would be significantly overstated, particularly

for deep lattices. We therefore use the first terms in a Taylor series about the interact-

ing critical temperature Tc (what we are solving for, analogous to the Brillouin-Wigner

perturbation expansion given in [118]) rather than about the non-interacting critical

temperature, T 0
c to get:

Ñ0
T 0

c
(0) ≈ ÑU

Tc
(µ) − δTc

[

∂ÑU
T (µ)

∂T

]

T=Tc

− µ

[

∂ÑU
Tc

(µ)

∂µ

]

µ

− U

[

∂ÑU
Tc

(µ)

∂U

]

U

. (7.57)

By the definition of the respective critical temperatures, we have Ñ0
T 0

c
(0) = N = ÑU

Tc
(µ)

so that:

δTc ≈ −
µ

[

∂ÑU
Tc

(µ)

∂µ

]

µ

+ U

[

∂ÑU
Tc

(µ)

∂U

]

U
[

∂ÑU
T (µ)

∂T

]

T=Tc

. (7.58)

However, to first order in U and µ, this result can be simplified by considering:
[

∂ÑU
T (µ)

∂T

]

T=Tc

≈
[

∂Ñ0
T (0)

∂T

]

T=Tc

+ U

[

∂2ÑU
T (0)

∂T∂U

]

T=Tc
U=0

+ µ

[

∂2Ñ0
T (µ)

∂T∂µ

]

T=Tc
µ=0

. (7.59)

10Our presentation, for example our (7.61), is somewhat different from that of [54], but we would

get the same final result using their method.
11We note that the finite-size effect does not have the same problem as w → 0, since although

∂Ñ/∂µ is divergent, we also have µfs → 0 and their product is finite, as shown in (7.55). We include

the finite-size effect in this interaction calculation for a coherent treatment, but if the finite-size effect

alone is being calculated, the methods of the previous section are sufficient.
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By substituting (7.59) into (7.58) and expanding the reciprocal, to first order in U and

µ we can ignore the last two terms in (7.59). Using similar equations for the other

derivatives in (7.58), we find:

δTc ≈ −
µ

[

∂Ñ0
Tc

(µ)

∂µ

]

µ=0

+ U

[

∂ÑU
Tc

(0)

∂U

]

U=0
[

∂Ñ0
T (0)

∂T

]

T=Tc

. (7.60)

Above the critical temperature, to zeroth order in U and µ (since this will be multiplied

by U), from (3.42):

∂E0(k, r)

∂U
= −2ñU

T (r, µ)
∂E0(k, r)

∂µ
. (7.61)

So, by differentiating (4.4) with respect to U , then using (7.61) and using the derivative

of (4.4) with respect to µ:

∂ñU
T (r, µ)

∂U
= −2ñU

T (r, µ)
∂ñU

T (r, µ)

∂µ
. (7.62)

Integrating with respect to r:

∂ÑU
T (µ)

∂U
= − 2

a3

∫

dr ñU
T (r, µ)

∂ñU
T (r, µ)

∂µ
. (7.63)

Condensation occurs when the chemical potential reaches value of the lowest energy

(interacting) state of the Hamiltonian, which from (3.42) (coming from above the crit-

ical temperature) is when µ → µfs + 2Uñ0
T (0, 0) to lowest order in U . Then we have

(in the same form as the trapped, no lattice shift of [54]):

δTc = −
{

µfs + 2U [1 − S(wc)]ñ
0
Tc

(0, 0)
}

[

∂Ñ0
Tc

(µ)

∂µ

]

µ=0
[

∂Ñ0
T (0)

∂T

]

T=Tc

, (7.64)

where we have defined wc ≡ W/kBTc and the spread function S(w) considered in the

next section.
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7.6.1 Spread function

The function S(w) measures of the spread of the number density weighted by its rate

of change with respect to the chemical potential:

S(w) ≡

∫

dr ñ0
T (r, 0)

[

∂ñ0
T (r, µ)

∂µ

]

µ=0

∫

dr ñ0
T (0, 0)

[

∂ñ0
T (r, µ)

∂µ

]

µ=0

=

∫

dr ñ0
T (r, 0)

[

∂ñ0
T (r, µ)

∂µ

]

µ=0

a3ñ0
T (0, 0)

[

∂Ñ0
T (µ)

∂µ

]

µ=0

. (7.65)

Since any change of the variables r in the integrals of S(w) gives the same factor in the

numerator and the denominator, we note that S(w) depends on W and T only through

the ratio w (since other T dependence is as a multiple of ri) and on the band shape

assumed (for example centred-delta, quadratic or triangular). In particular, S(w) is

independent of the harmonic trap frequencies ωi.

We note that for a gas with no lattice in a three-dimensional harmonic trap we have

[54]:

S =
1

ζ(3/2)ζ(2)

∞
∑

j,k=1

1√
j[k(j + k)]3/2

= 0.281. (7.66)

In appendix L we derive the following analytic formula for S(w) in the centred-delta

approximation (we note that the Bose functions ζ−1/2

(

e−w/2
)

and ζ1/2

(

e−w/2
)

are finite

for w > 0):

S(w) =
ew/2 − 1

2

[

ζ−1/2

(

e−w/2
)

ζ1/2(e
−w/2)

− 1

]

. (7.67)

Using (I.8) we get following series, which is convergent for w < 4π:

S(w) =
1

4
− ζ(1/2)

4
√

2π

√
w −

[

3

16
− ζ(1/2)2

8π

]

w +O
(

w3/2
)

. (7.68)

So, for the zero-delta approximation, S(0) = 1/4. From (I.1) we get the expansion for

w ≫ 1, although we note that the centred-delta approximation is poor for w ≫ 1:

S(w) =
1

2
√

2
−
(

1

4
+

1

2
√

2
− 1√

3

)

e−w/2 +O
(

e−w
)

. (7.69)

The rectangular band assumption, due to its finite density of states at zero energy,

is not sufficiently representative of the actual density of states to give a reasonable
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estimate for S(w). For that assumption we show in appendix L that S(w) = 0 and

from (7.16), we note that ñ0
T (0, 0) is divergent even for w > 0.

As we show in appendix L, for both the quadratic and triangular band assumptions,

as w → ∞ we have:

S(w) → 1

ζ(2)ζ(5/2)

∞
∑

j,k=1

1

j2k(j + k)3/2
≈ 0.325. (7.70)

We have evaluated S(w) numerically as shown in figure 7.13 below. We only show the

result for w < 2π since the expansions we will use below are valid only in that region.

We see from figure 7.13 that as w → 0, S(w) → 0.24 for both the quadratic and

triangular cases. In both cases we always have 0.240 < S(w) < 0.325.
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Figure 7.13: S(w)
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7.6.2 Interaction shift

For the centred delta case, we have from (7.64), (7.10), (7.67), (K.1) and (K.3) we get

the analytic result:

δTc = −

(

µfs +
2U

ewc/2 − 1

)

2ζ1/2

(

e−wc/2
)

− 2U
[

ζ−1/2

(

e−wc/2
)

− ζ1/2

(

e−wc/2
)

]

kB

[

3ζ3/2(e
−wc/2) + wcζ1/2(e

−wc/2)
] (7.71)

= −
(

µfs + 3
U

wc

)

2
√

2π

3ζ(3/2)kB
√
wc

+O(µfs) +O

(

U

wc

)

≈ −0.6
µfs

kB

√

kBTc

W
− 1.9

U

kB

(

kBTc

W

)3/2

,

where in the series expansion in wc using (I.8), we have taken first terms for each of

the µfs and U components. We follow the same approach for the expansions for the

quadratic and triangular cases below.

For the quadratic case, we have from (7.19) and (I.8):

ñ0
T (0, 0) =

3

w
− 1

2
+O(w). (7.72)

From (7.50), (7.51), (7.64) and (7.72) we get (we omit the higher order terms in (7.53)

which could be included if accurate calculations of S(wc) are used):

δTc ≈ −
{

µfs + 6
U [1 − S(wc)]

wc

}

16
√
π

15ζ(3/2)kB
√
wc

≈ −0.72
µfs

kB
√
wc

− 4.34
U [1 − S(wc)]

kBw
3/2
c

. (7.73)

From this result, it is clear why we cannot get a result for the interaction shift in the

zero-delta band assumption, wc → 0 limit. In appendix K.3, we derive similar results

for the triangular band assumption:

δTc = −
{

µfs + 8 ln 2
U [1 − S(wc)]

wc

}

16(2 −
√

2)
√
π

9ζ(3/2)kB
√
wc

≈ −0.71
µfs

kB
√
wc

− 3.92
U [1 − S(wc)]

kBw
3/2
c

. (7.74)

Using the approximation S(wc) ≈ 0.3, we get the approximate shift for both the

quadratic and triangular cases:

δTc = Tc − T 0
c ≈ −0.7

µfs

kB

√

kBTc

W
− 3

U

kB

(

kBTc

W

)3/2

, (7.75)

which we need to solve self-consistently for Tc.
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7.6.3 Excited bands

When interaction in excited bands is significant, the approximate methods we present

in this chapter are not adequate. However, over a wide regime of experimental interest,

it will be sufficient to treat the small excited-band occupation that occurs as non-

interacting. We note that the interacting critical temperature is often significantly

reduced from the ideal value, so that the influence of excited bands may be very different

at Tc compared to T 0
c . Therefore, we may not simply take T 0

c from (7.47) and add δTc

from (7.75). The approach we use is:

1. Calculate an initial estimate of the non-interacting critical temperature, T 0
c .

2. Calculate the ground-band interaction shift δTc using (7.75). We do not adjust

δTc in the remainder of the calculation.

3. Calculate the ground-band number N0 from (7.47), but using the temperature

T 0
c + δTc.

4. Recalculate the non-interacting critical temperature, T 0
c using N0. We do not use

a δTc adjustment in this calculation (other than the adjusted N0 from step 3), so

that if the effect of excited bands is insignificant, the resulting interacting critical

temperature is as in (7.75) as intended.

5. Iterate steps 3 and 4 to find T 0
c if necessary.

6. The critical temperature allowing for interactions in the ground band, with an

adjustment for non-interacting excited bands is then T 0
c + δTc.

7.6.4 Results

We compare our ground-band only and all-bands approximations to the results from

the full numerical calculation in figure 7.14. We have ignored the finite-size effect which

was considered in figure 7.12. We have used a = 425 nm as in [76] and a scattering

length of as = 5.77 nm. The approximate results for the ω = 0.005ωR, N = 103 case

are poor since the series expansion used is invalid in that region. Otherwise, for high

V/ER, the approximate results are good because the critical temperature is so low that

excited bands are unimportant. For low V/ER the approximate results are good when

excited bands are insignificant, and still fair when excited bands have some effect, since
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Figure 7.14: Solid lines use the quadratic approximation, + results

are from the full numerical calculation

interactions have less impact for low V/ER. We must emphasise that the full numerical

interacting calculation itself uses significant approximations in the low V/ER region,

particularly when excited bands are significant, as discussed in previous chapters.

We see from (7.75) and figure 7.14 that the effect of interactions increases as the lattice

depth increases and w decreases. The resulting decrease in critical temperature means

that the effect of excited bands on the critical temperature decreases as the lattice

depth increases.
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7.7 Summary

We have analytically derived novel, practical formulae for the critical temperature

in an optical lattice by using simplified shapes for the density of states. We have

considered both the translationally-invariant lattice and the combined harmonic lattice.

For the non-interacting case we have shown that our validity range (low to moderate

thermal width) is complementary to that of the effective-mass approximation (high

thermal width). By using the average energy of the band to calculate the width in

(7.7), we have extended the validity range, at least for the non-interacting case, into

shallow lattices. We have considered a number of possible approximate band shapes:

the extreme simplicity of the centred-delta and rectangular shapes and the reasonable

fit of the quadratic and triangular cases.

We have compared our results to full numerical calculations and have generally found

good agreement. When calculating critical temperatures by solving the Bose functions,

for example in (7.20), we get very good agreement and when we use the simple formulae,

for example (7.40) we get generally good results for w ≪ 2π.

We have derived a simple, effective adjustment for excited bands (7.47) and a simple

formula for the finite-size effect (7.52). We have derived an adjustment for mean-field

interactions in the ground band (7.75) which is valid whenever the simplified band

shape is valid. This result is fully analytically derived in the centred-delta case and

analytically derived in the quadratic and triangular cases except for the spread function

for which we have analytically derived the large w limit and numerically shown it to

vary over the moderate range 0.240 < S(w) < 0.325 in a well behaved fashion.

We have described a practical scheme for simultaneously adjusting the critical temper-

ature for both ground-band interactions and non-interacting excited bands.

What we leave for future work includes further investigation into the one and two-

dimensional cases and the effect of mean-field interactions: in a shallow lattice, in

excited bands and in a translationally-invariant lattice.
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Conclusions

8.1 Summary

Ground-breaking experiments have shown that bosons in optical lattices provide a phys-

ical system with an unprecedented degree of control, that they can generate strongly

correlated states, allow for simulation of many-body Hamiltonians and may be a useful

vehicle for quantum computing.

In contrast to the trapped gas with no lattice, few thermodynamic results for cold

bosons in an optical lattice have yet been observed or calculated.

In this thesis, we have used an extended Bose-Hubbard Hamiltonian which goes be-

yond the usual Bose-Hubbard approach, and is valid for shallower lattices and higher

temperatures, by allowing for beyond nearest-neighbour hopping and excited bands,

and we have considered an approximate interpolative scheme for off-site interactions.

We have carefully considered the extended Bose-Hubbard model parameters, includ-

ing the hopping matrix elements, the harmonic trap and interaction coefficients and

have investigated the approximations often used to obtain the Bose-Hubbard model

parameters.

We have derived the equations of the Popov approximation to the Hartree-Fock-

Bogoliubov method for our extended Bose-Hubbard Hamiltonian, and have diago-

nalised these equations in the LDA.

We have examined the density of states of the optical lattice in detail and in various

limits. We have derived new results on the structure of the combined harmonic lattice
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density of states. We have compared the non-interacting LDA density of states with

these limits and with the full diagonalisation of the combined harmonic lattice.

We have made an efficient numerical implementation of our theory and compared

the thermodynamic results with the full diagonalisation (for the non-interacting case)

and with the limited experimental results currently available. We have considered the

significance of beyond nearest-neighbour hopping and excited bands and illustrated the

properties of our model.

For the trapped gas with no lattice, the non-interacting critical temperature, the finite-

size effect and the mean-field interaction shift are all well known. In this work, we have

produced the first practical formula for these results in a lattice. In particular, we

have analytically derived an expression for the critical temperature in an optical lat-

tice by using simplified shapes for the density of states. We have considered both the

translationally-invariant lattice and the combined harmonic lattice. We have derived

simple corrections for the influence of excited bands and finite-size effects. We have

also derived a correction for mean-field interactions in the ground band, which is typ-

ically a large effect in the lattice system. We have described a practical scheme for

simultaneously adjusting the critical temperature for both ground-band interactions

and non-interacting excited bands. In all of these cases, we have compared our results

to full numerical calculations and have shown that the validity range of our method

is complementary to that of the effective-mass approximation, so that the simple de-

scriptions extend over a wide range.

8.2 Outlook

Experimental work in optical lattices is continuing apace. The lack of attention to the

finite temperature thermodynamics in a lattice has been partly due to the inability of

experiments to measure temperature in the lattice system. However, recently a practical

scheme for measuring temperature in an optical lattice has been demonstrated [1], so

it is likely that the critical temperature will be measured in the near future.

We are planning several avenues for extending this work.

First, our methods will be applied to other thermodynamic quantities. For example,
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we have used our numerical results to calculate the entropy:

S

kB

=
∑

b

∫

dr

∫

dKgb(K)
{

βEb(K, r)n̄BE [Eb(K, r)] − log
[

1 − e−βEb(K,r)
]}

, (8.1)

and from that the specific heat, C(T ) = T (∂S/∂T )N , and then the energy, can be ob-

tained. From these quantities, much useful information can be gained about the lattice

system. For example, this allows us to understand the change in temperature when the

atoms are adiabatically loaded into an optical lattice (as is done in experiments). Also,

our formalism would allow the momentum density of the expanded distribution to be

calculated and afford greater understanding of the emergence of interference patterns

(currently the role of condensation in this interference is being debated in the litera-

ture [57, 58, 93, 119]). We also believe that analytical results for these thermodynamic

quantities will be possible with simplified band shape approximations.

Second, we will investigate further the effects of the approximations inherent in the LDA

and, more generally, in the mean-field approach. Emerging experimental results will be

particularly useful for judging the significance of these approximations. One extension

to our work would be to include the next term in the semiclassical series beyond

the LDA [120]. The number of particles and sites in [53] could be increased to allow

comparison between our results and the discrete Popov approximation to the Hartree-

Fock-Bogoliubov method, with the Gross-Pitaevskii equation for the condensate. Also,

we will compare to beyond mean-field results using, for example, a stochastic Gross-

Pitaevskii approach [121]. A possible, but computationally difficult, extension is an

improved treatment of off-site interactions.

Finally, the physical regimes for our methods will be extended. We will modify the ap-

proach of this thesis for a gas of superfluid fermions in an optical lattice. We will also

further investigate the one and two-dimensional cases, using simplified band shapes

that approximate their true structure. Possible work would be to further develop the

interacting effective-mass approximation to improve the modelling of interacting par-

ticles in shallow lattices.

We believe that impressive experiments with cold gases in optical lattices will continue

to motivate much future physical discovery.
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[76] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch. Phase

coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005).
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Appendix A

Spin and statistics

After the statement of Pauli’s exclusion principle in 1925 [122], that ‘there can never

be two or more equivalent elections in an atom’, Heisenberg [123] and Dirac [124]

showed that there are two types of identical particles possible in quantum mechanics:

bosons which are symmetric under exchange and allow any number of particles in each

quantum state and fermions [125] which are anti-symmetric under exchange and satisfy

Pauli’s exclusion principle. In 1940, the spin-statistics theorem was proven: ‘particles

with arbitrary half-integer spin’ are fermions and ‘particles with arbitrary integer spin’

are bosons [126, 127]. Atoms are composite bosons, being composed of an even total

number of fermions (electrons and nucleons). The energies we will consider are far below

any of the dissociation energies, so the composite nature of our atoms has negligible

effect.

117





Appendix B

Lattice potential

To form an optical lattice, in each direction, the standing wave is created by two

opposing lasers. We consider one of the dimensions. The laser frequency, ωL, is off-

resonant with respect to an atomic transition from an unperturbed ground state (|g〉
with energy Eg) to an unperturbed excited state (|e〉 with energy Ee), the detuning

being ∆ ≡ ωL − (Ee − Eg)/~.1 The ground state is perturbed by the resulting a.c.

Stark shift which we now consider using the rotating wave approximation, for |∆| ≪
(Ee −Eg)/~.

The reactive force on the atom due to the standing wave is, from the optical Bloch

equations [128]:

F = −~∆

4

∇(Ω2)

∆2 + Γ2/4 + Ω2/2
, (B.1)

where Γ is the decay rate of the excited state, Ω is the Rabi frequency. In our case, for

a standing wave (for distances much smaller than the beam waist of the laser [86]), the

Rabi frequency is Ω = Ω0 sin(2πx/λ) where λ = 2πc/ωL is the laser wavelength. The

potential corresponding to the reactive force, F = −∇Vlatt(r), gives:

Vlatt(x) =
~∆

2
ln

(

1 +
Ω2/2

∆2 + Γ2/4

)

≈ ~∆

4

Ω2

∆2 + Γ2/4
≈ ~Ω2

4∆

= V sin2(2πx/λ), (B.2)

since |∆| ≫ Γ, assuming Ω2 ≪ 2∆2, and where V = ~Ω2
0/4∆.

1In the experiments we consider in table 2.1, the beam is red detuned, ∆ < 0.
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Appendix B. Lattice potential

With orthogonal polarisation vectors and (at least) slightly different wavelengths, the

standing waves in each direction are independent [86], giving, in d dimensions:

Vlatt(r) =

d
∑

j=1

Vj sin2 (2πrj/λj) , (B.3)

where Vj is the lattice depth, λj is the wavelength in direction j.

The decay rate is given by [129]:

Γ =
(Ee −Eg)

3

3πǫ0~4c3
|〈e| d |g 〉|2 , (B.4)

where d is the dipole operator. So, Γ ∝ Ω2
0 and the lattice depth is proportional to

Γ/∆. The spontaneous emission rate is [128, 130]:

Γ

2

Ω2/2

∆2 + Γ2/4 + Ω2/2
≈ ΓΩ2

4∆2
∝
(

Γ

∆

)2

. (B.5)

Therefore, to minimise spontaneous emission (hence realising a conservative potential),

the detuning is chosen large enough so that |∆| ≫ Γ [131].
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Appendix C

Bloch wavefunctions

As discussed in section 4.2, the potential of the non-interacting lattice is separa-

ble, so we consider Schrödinger’s equation for the one-dimensional, non-interacting,

translationally-invariant lattice which is:

− ~
2

2m

d2ψb,k(x)

dx2
+ V sin2

(πx

a

)

ψb,k(x) = Kb(k)ψb,k(x). (C.1)

This is Mathieu’s equation with amplitude q = −V/4ER and ‘characteristic value’

(Kb(k) − 1
2
V )/ER [104]. We require that ψb,k is a Bloch solution such that:

ψb,k(x) = eikxub,k(x), ub,k(x+ na) = ub,k(x) =⇒ ψb,k(x+ na) = eiknaψb,k(x), (C.2)

for integer n and k in the first Brillouin Zone (which we label BZ) which is −π/a ≤
k < π/a. We use the Born-von Karman boundary condition, with Ns sites:

ψb,k(x+Nsa) = ψb,k(x) so that ψb,k(x+Nsa) = eikNsaψb,k(x), (C.3)

then (we assume Ns even):

eiNska = 1 =⇒ k = 2πn/Nsa, n = −Ns/2, ..., 0, ..., Ns/2 − 1. (C.4)

C.1 Mathieu solutions

For non-negative integer b = 0, 1, . . . we define the position in recoil units x̄ = xπ/a

and the extended zone scheme quasi-momentum, or characteristic exponent:

ν = ka/π + sgn(k)b′ where b′ =







b b even,

−(b+ 1) b odd.
(C.5)

121



Appendix C. Bloch wavefunctions

The general solution to (C.1) is:

c1 ce|ν|(x̄, q) + c2 se|ν|(x̄, q), (C.6)

where ce and se are the even and odd Mathieu functions, respectively. For ν > 0, from

[104], the Bloch solution to (C.1) is:

ψb,k(x) = A [ceν(x̄, q) + i seν(x̄, q)] = eiνx̄ub,k(x). (C.7)

We note that if ψb,k(x) = eiνx̄ub,k(x) where ub,k(x + a) = ub,k(x) then ψb,k(x) =

eikxũb,k(x) is a Bloch function where ũb,k(x) = ei sgn(k)b′xub,k(x) =⇒ ũb,k(x+a) = ũb,k(x)

since b′ is always even.

For ν = 0, seν(x̄, q) is not defined, so we must have ψ0,0(x) = A ce0(x̄, q).

For ν < 0, we define ceν(x̄, q) ≡ ce−ν(x̄, q) and seν(x̄, q) ≡ −se−ν(x̄, q) so that (C.7)

still applies which is consistent with [104].1

For the no lattice, q = 0, case we have [105], ceν(x̄, 0) = cos νx̄ and seν(x̄, 0) = sin νx̄

so that ψb,k(x) = Aeiνx̄.

C.2 Normalisation

We note [105] that, for ka/π = ±p/s where the natural numbers p and s have no

common multiples, ψb,k(x) has period 2as (|ψb,k(x)|2 = |ub,k(x)|2 has period a) and

that the normalisation of ce and se is:
∫ 2as

0

ce2
b+p/s(x̄, q)dx =

∫ 2as

0

se2
b+p/s(x̄, q)dx = sa,

∫ 2as

0

ceκ(x̄, q)seν(x̄, q)dx = 0,

(C.8)

and for κ 6= ν:

∫ 2as

0

ceκ(x̄, q)ceν(x̄, q)dx =

∫ 2as

0

seκ(x̄, q)seν(x̄, q)dx = 0, (C.9)

1Although this isn’t stated explicitly in [104], it is consistent with their 20.5.2 which is stated ‘for

all ν’ other than zero. We note that with our Mathieu function definition for ν < 0, (C.6) is the general

solution since the characteristic value is even in ν so that the positive and negative quasi-momentum

solutions are degenerate in energy and the two positive momentum eigenfunctions form a complete

set for a given energy. Also, (C.7) is the Bloch solution for ν < 0 from (C.7) since ce−ν(x̄, q) is even

in x and se−ν(x̄, q) is odd in x.
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C.2. Normalisation

so we have:
∫ 2as

0

|ψb,k(x)|2dx = 2as|A|2, (C.10)

so that we set A = 1/
√
a to normalise over a single lattice site (subject to an overall

phase which we will utilise for our Wannier functions) so that the normalised Bloch

function is:

ψb,k(x) =
1√
a
[ceν(x̄, q) + i seν(x̄, q)] = eiνx̄ub,k(x), (C.11)

and our normalisation, in three dimensions is:
∫

drψ∗
b,k(r)ψb′,k′(r) = Nsδbb′δkk′. (C.12)
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Appendix D

Wannier functions

We show some results for Wannier functions for a general periodic potential in section

D.1, we consider the resulting hopping matrix in section D.2 and give the Wannier

function for the optical lattice in section D.3.

D.1 General properties

We define the Wannier function for band b, localised at site Ri as:1

wb(r − Ri) ≡
1

Ns

∑

k∈BZ

e−ik ·Riψb,k(r). (D.1)

were BZ refers to the first Brillouin zone. We define Ns,j to be the number of sites in

direction j. If k is on the reciprocal lattice then K ·Ri = 1 for all i so that
∑Ns

i=1 e
ik ·Ri =

Ns. Otherwise, if kj = 2πn′
j/Ns,jaj , and picking any direction l for which n′

l is not an

integer multiple of Ns,l (correcting [132]):

Ns
∑

i=1

eik ·Ri =
d
∏

j=1

Ns,j−1
∑

nj=0

e2πinjn′
j/Ns,j ∝ 1 − e2πin′

l

1 − e2πin′
l/Ns,l

= 0, (D.2)

so, for k ∈ BZ:

Ns
∑

i=1

eik ·Ri = Ns

∑

K

δk,0, (D.3)

1We choose the asymmetric form in (D.1), rather than 1/
√
Ns, since our Bloch functions are

normalised over a single site from (C.12).
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Appendix D. Wannier functions

and we then have:

ψb,k(r) =

Ns
∑

i=1

eik ·Riwb(r −Ri). (D.4)

If Ri = 0 then
∑

k∈BZ e
ik ·Ri = Ns, the number of wavevectors in BZ. Otherwise, if

Ri 6= 0 is a lattice site, then nj = Ri,j/aj is not an integer multiple of Ns,j so that:

∑

k∈BZ

eik ·Ri =
d
∏

j=1

Ns,j−1
∑

n′
j=0

e2πinjn′
j/Ns,j ∝ 1 − e2πinl

1 − e2πinl/Ns,l
= 0, (D.5)

so for Ri on the lattice:

∑

k∈BZ

eik ·Ri = NsδRi,0, (D.6)

and we have, using also (C.12):

∫

drw∗
b(r − Ri)wb′(r −Ri′) =

1

N2
s

∑

k,k′∈BZ

ei(k ·Ri−k′
·Ri′)

∫

drψ∗
b,k(r)ψb′,k′(r)

=
1

Ns
δbb′

∑

k∈BZ

eik · (Ri−Ri′)

= δbb′δii′ . (D.7)

The set of Wannier functions wb(r−Ri) is a complete set, since, from the completeness

of the energy eigenfunctions we can write f(r) =
∑

b,k cb,kψb,k(r) so that if we define

cb,i ≡
∑

k∈BZ cb,ke
ik ·Ri then from (D.4):

f(r) =
∑

b,i

cb,iwb(r − Ri). (D.8)

The Wannier functions are a decomposition of the Dirac delta function:

∑

b,i

wb(r −Ri)w
∗
b (r

′ − Ri) = δ(r− r′), (D.9)

in the sense that:
∫

dr′f(r′)
∑

b,i

wb(r −Ri)w
∗
b (r

′ − Ri) =
∑

b,i

wb(r − Ri)

∫

dr′f(r′)w∗
b (r

′ − Ri) = f(r),

(D.10)

from (D.8) and since wb(r − Ri) is orthonormal from (D.7).
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D.2. Hopping matrix

If the potential is separable, so that ψb,k(r) =
∏d

j=1 ψb,kj
(rj) then:

wb(r − Ri) =

d
∏

j=1

1

Ns,j

∑

kj∈BZj

e−ikjRi,jψbj ,kj
(rj) =

d
∏

j=1

wbj
(rj − Ri,j), (D.11)

since the sum over k ∈ BZ includes all possible combinations of kj ∈ BZj.

The integral approximation to the Wannier functions is:

wb(r −Ri) =
( a

2π

)d
∫

BZ

dk e−ik ·Riψb,k(r), (D.12)

since we have, for constant Nsa
3:

lim
Ns→∞

∑

k

= lim
Ns→∞

∑

n

=

∫

dn =
Nsa

d

(2π)d

∫

dk. (D.13)

D.2 Hopping matrix

Since Hψb,k(r) = Kb(k)ψb,k(r), where H = −~
2∇2/2m+Vlatt(r), we have (as in [133]):

Hwb(r − Ri′) =
1

Ns

∑

k∈BZ

e−ik ·Ri′Hψb,k(r)

=

Ns
∑

i=1

[

1

Ns

∑

k∈BZ

e−ik · (Ri′−Ri)Kb(k)

]

wb(r− Ri′)

= −
Ns
∑

i=1

Jb,i,i′wb(r − Ri), (D.14)

where hopping matrix, defined as (2.6), is:

Jb,i,i′ = −
∫

drw∗
b (r− Ri)Hwb(r − Ri′) = − 1

Ns

∑

k∈BZ

e−ik · (Ri′−Ri)Kb(k), (D.15)

is the Fourier transform of the energy. In particular, −Jb,i,i =
∑

k∈BZKb(k)/Ns is the

average energy in the band.

Using (C.12)
∫

drw∗
b(r −Ri)Hwb′(r − Ri′) =

δbb′

Ns

∑

k∈BZ

e−ik · (Ri′−Ri)Kb(k), (D.16)

so that there is no inter-band hopping and the hopping matrix depends only on the

difference Ri − Ri′. We can invert (D.15) to write the dispersion relation as a Fourier

series:

Kb(k) = −
Ns
∑

i′=1

Jb,i,i′ e
ik · (Ri′−Ri) = −

Ns
∑

i=1

Jb,i,0 e
−ik ·Ri. (D.17)
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Appendix D. Wannier functions

For the one-dimensional case, if the spectrum is even in kx then:

Kbx(kx) = −J0
bx,x − 2

∑

l>0

J l
bx,x cos(lkxax). (D.18)

We demonstrate the Fourier cosine series for the translationally-invariant lattice spec-

trum in figure D.1. For V = ER, we can see that a few terms are needed for the

series to approach the nearly free-particle dispersion. By V = 5ER, the ground band

is well described by nearest neighbours. For the first excited band, the approach to

nearest-neighbour dispersion with increasing V/ER is somewhat slower.

K
b
(k

)

V = ER, ground band

nearest neighbours

nearest and next nearest neighbours

all neighbours

V = ER, first excited band

ka/π

K
b
(k

)

V = 5ER, ground band

ka/π

V = 5ER, first excited band
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Figure D.1: Fourier series for the one-dimensional translationally-

invariant lattice spectrum
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D.3. Optical-lattice Wannier functions

The width of band bx is:
∣

∣

∣

∣

Kbx

(

π

ax

)

−Kbx(0)

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∑

l>0

J l
bx,x[cos(lπ) − 1]

∣

∣

∣

∣

∣

= 4

∣

∣

∣

∣

∣

∞
∑

l>0

J2l−1
bx,x

∣

∣

∣

∣

∣

, (D.19)

so, for any number of dimensions:

Kb(k) = −
∑

j

[

J0
bj ,j + 2

∑

l>0

J l
bj ,j cos(lkjaj)

]

, (D.20)

and the width of band b is:

Kmax
b −Kmin

b = 4
∑

j

∣

∣

∣

∣

∣

∑

l>0

J2l−1
bj ,j

∣

∣

∣

∣

∣

. (D.21)

In the tight-binding case where l = 1 dominates, the bandwidth is 4
∑

j

∣

∣

∣
J1

bj ,j

∣

∣

∣
.

D.3 Optical-lattice Wannier functions

Due to the separability, from (D.11), we consider one dimension. We apply a phase

factor, φ where φ = 1 for b even and when b is odd, φ+ = i when k > 0 and φ− = −i

when k < 0 (using (D.1), (C.5) and (D.13)):

wb(x−Xi) =
1

Ns,x

∑

k∈BZ+

[

φ+e−ikXiψb,k(x) + φ−eikXiψb,−k(x)
]

=
2

Ns,x

√
a

∑

k∈BZ+







cos(kXi)ceν(x̄, q) + sin(kXi)seν(x̄, q) b even,

sin(kXi)ceν(x̄, q) − cos(kXi)seν(x̄, q) b odd,

≈
√
a

π

∫ π/a

0

dk







cos(kXi)ceν(x̄, q) + sin(kXi)seν(x̄, q) b even,

sin(kXi)ceν(x̄, q) − cos(kXi)seν(x̄, q) b odd.
(D.22)

For the no lattice limit, using: ceν(x̄, 0) = cos νx̄, seν(x̄, 0) = sin νx̄ and (D.22):

w0(x−Xi) =

√
a

π

∫ π/a

0

dk cos [k(x−Xi)] =
1√
a

sinc
[

(x−Xi)
π

a

]

, (D.23)

and in general for the no lattice limit:

wb(x−Xi) =

√
a

π

∫ π/a

0

dk







cos
[(

k + bπ
a

)

x− kXi

]

b even,

− sin
{[

k − (b+ 1)π
a

]

x− kXi

}

b odd,
(D.24)

=

√
a

(x−Xi)π







sin
{

[(b+ 1)x−Xi]
π
a

}

− sin
(

bxπ
a

)

b even,

cos
[

(bx+Xi)
π
a

]

− cos
[

(b+ 1)xπ
a

]

b odd,
(D.25)
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Appendix D. Wannier functions

and:

wb(x) =
1√
a







(b+ 1) sinc
[

(b+ 1)xπ
a

]

− b sinc
(

bxπ
a

)

b even,
{

cos
(

bxπ
a

)

− cos
[

(b+ 1)xπ
a

]}

/(xπ/a) b odd,
(D.26)

and we note that wb(0) = 1/
√
a for even b and wb(0) = 0 for odd b.

We show the Wannier function for the ground band in figure D.2 (the Gaussian ap-

proximation is taken from (2.18)) and for the first and second excited band in one

dimension in figure D.3 (the harmonic oscillator approximation is similar to (2.18), but

takes the next two excited states). The Gaussian approximation, while reasonable for

deep lattices, overstates the peak height at the expense of the tails, and misses the

detailed structure of the Wannier functions.
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Figure D.2: Ground-band Wannier functions compared to the Gaus-

sian approximation
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Figure D.3: Wannier function for the first and second excited bands

for V = 5ER compared to the harmonic oscillator approximation
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Appendix E

Gaussian hopping matrix

We consider the Gaussian approximation to the nearest-neighbour hopping matrix for

a cubic lattice. Shifting the potential of (2.1) so that a barrier is at the origin (which

doesn’t change the result but improves the symmetry for this calculation) we get:

Vlatt(r) =
d
∑

j=1

Vj sin2

(

rjπ

aj

+
π

2

)

≈
d
∑

j=1

Vj

[

1 −
(

rjπ

aj

)2
]

= V

[

d−
(rπ

a

)2
]

. (E.1)

Using the Gaussian approximation from (2.18), we have:

∇2w0(r) = w0(r)

[

V

ER

(π

a

)4

r2 − d

√

V

ER

(π

a

)2
]

, (E.2)

so that:

J = −
∫

drw∗
0

(

r − a

2
x̂
)

[

− ~
2

2m
∇2 + Vlatt(r)

]

w0

(

r +
a

2
x̂
)

=

(

V π4

ERa4

)d/4∫ ∞

−∞

dr
2rd−1

Γ(d/2)
e
−

q

V
ER

h

( rπ
a )

2
+ π2

4

i

{

V

[

2
(rπ

a

)2

+
π2

4
− d

]

− d
√

V ER

}

=

(

π2

4
− d

)

V exp

(

−π
2

4

√

V

ER

)

. (E.3)

The Gaussian approximation does correctly predict that, for large V/ER, J ∼ e−c
√

V/ER

for some c. However, as shown in (2.16) and (2.17), this the prediction for c is incorrect,

and consequently, as shown in figure 2.4 the resulting approximation is poor. The

overall constant multiplier depends on d, and changes sign from d = 2 to d = 3, which

cannot be correct. The problem is that the Gaussian approximation, unlike the Wannier
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Appendix E. Gaussian hopping matrix

functions themselves, are not orthogonal. In fact the overlap integral is:

I =

∫

drw∗
0

(

r − a

2
x̂
)

w0

(

r +
a

2
x̂
)

=

(

π

a2

√

V

ER

)d/2

e−
√

V/ER
π2

4

∫

dr e−
√

V/ER(πr/a)2

= exp

(

−π
2

4

√

V

ER

)

. (E.4)

If we orthogonalise the approximate Wannier functions with Gram-Schmidt:

w′
0

(

r +
a

2
x̂
)

=
w0

(

r + a
2
x̂
)

− Iw0

(

r − a
2
x̂
)

√
1 − I2

, (E.5)

then we find that J = 0 since:

−
∫

drw∗
0

(

r − a

2
x̂
)

[

− ~
2

2m
∇2 + Vlatt(r)

]

w0

(

r − a

2
x̂
)

=

(

π2

4
− d

)

V. (E.6)

We note that this calculation should not be taken out of context, since our approxima-

tion for Vlatt(r) has no barrier at x = −a.

We reach the same conclusion, that J = 0, with the symmetric orthogonalisation:

w′
0

(

r ± a

2
x̂
)

=
w0

(

r ± a
2
x̂
)

− c w0

(

r ∓ a
2
x̂
)

√
1 − 2cI + c2

, (E.7)

where c = 1/I −
√

1/I2 − 1 ≈ I/2 for I ≪ 1.

These results suggest the Gaussian approximation has to be used with care and should

always be verified with an explicit numerical calculation.
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Appendix F

Off-site interactions approximation

We start from the interaction term of the extended Bose-Hubbard Hamiltonian (2.9):

1

2

∑

b1,b2,b3,b4

â†b1,i1
â†b2,i2

âb3,i3
âb4,i4

U i1,i2,i3,i4
b1,b2,b3,b4

=
1

2
z∗i1z

∗
i2zi3zi4U i1,i2,i3,i4

0,0,0,0
+
∑

b

[

z∗i1z
∗
i2zi3 δ̂b,i4 + z∗i1zi2zi3 δ̂

†
b,i4

]

U i1,i2,i3,i4
0,0,0,b

+
∑

b,b′

[

1

2
z∗i1z

∗
i2 δ̂b,i3 δ̂b′,i4 +

1

2
zi1zi2 δ̂

†
b,i3
δ̂†b′,i4 + 2z∗i1zi2 δ̂

†
b,i3
δ̂b′,i4

]

U i1,i2,i3,i4
0,0,b,b′

+
∑

b2,b3,b4

[

z∗i1 δ̂
†
b2,i2

δ̂b3,i3 δ̂b4,i4 + zi1 δ̂
†
b2,i2

δ̂†b3,i3
δ̂b4,i4

]

U i1,i2,i3,i4
0,b2,b3,b4

+
1

2

∑

b1,b2,b3,b4

δ̂†b1,i1
δ̂†b2,i2

δ̂b3,i3 δ̂b4,i4U i1,i2,i3,i4
b1,b2,b3,b4

. (F.1)

For the quartic term, we make the mean-field approximation as in section 3.2:

δ̂†b1,i1
δ̂†b2,i2

δ̂b3,i3 δ̂b4,i4 ≈
〈

δ̂†b1,i1
δ̂†b2,i2

〉

δ̂b3,i3 δ̂b4,i4 +
〈

δ̂†b1,i1
δ̂b3,i3

〉

δ̂†b2,i2
δ̂b4,i4 (F.2)

+
〈

δ̂†b1,i1
δ̂b4,i4

〉

δ̂†b2,i2
δ̂b3,i3 +

〈

δ̂†b2,i2
δ̂b3,i3

〉

δ̂†b1,i1
δ̂b4,i4 (F.3)

+
〈

δ̂†b2,i2
δ̂b4,i4

〉

δ̂†b1,i1
δ̂b3,i3 +

〈

δ̂b3,i3 δ̂b4,i4

〉

δ̂†b1,i1
δ̂†b2,i2

. (F.4)

We again make a Popov approximation to eliminate the terms
〈

δ̂†b1,i1
δ̂†b2,i2

〉

δ̂b3,i3 δ̂b4,i4

and
〈

δ̂b3,i3 δ̂b4,i4

〉

δ̂†b1,i1
δ̂†b2,i2

. As in the on-site case, we ignore collisional couplings be-

tween bands in the many body-state, since interactions are assumed perturbative with

respect to the band gap energy scale. Since this is the non-condensate, we also ig-

nore collisional coupling that relies on coherences between sites (that is, requiring two
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Appendix F. Off-site interactions approximation

indices at two sites) in the many-body state, to find:

∑

i1,i2,i3,i4
b1,b2,b3,b4

δ̂†b1,i1
δ̂†b2,i2

δ̂b3,i3 δ̂b4,i4U i1,i2,i3,i4
b1,b2,b3,b4

≈ 4
∑

i,b,b′

δ̂†b,iδ̂b,i
∑

i′

ñb′,i′U i,i′,i,i′

b,b′,b,b′
. (F.5)

We assume that the density varies sufficiently slowly that ñb,i ≈ ñb,j for sites Rj near Ri.

In the following, we will sum over all sites, by assuming that where the approximation

ñb,i ≈ ñb,j is poor, due to the sites being far apart, these terms will be suppressed by

the negligible Wannier function overlap. Then we have:

∑

i1,i2,i3,i4
b1,b2,b3,b4

δ̂†b1,i1
δ̂†b2,i2

δ̂b3,i3 δ̂b4,i4U i1,i2,i3,i4
b1,b2,b3,b4

≈ 4g
∑

i,b,b′

δ̂†b,iδ̂b,iñb′,i

∑

i′

∫

dr |wb(r)wb′(r − Ri′)|2

= 4
∑

i,b,b′

δ̂†b,iδ̂b,iñb′,iU
′
bb′ , (F.6)

which is the same as (3.12) with U ′
bb′ substituted for Ubb′ where:

U ′
bb′ = g

∑

i′

∫

dr |wb(r)wb′(r − Ri′)|2 . (F.7)

For a coherent state, such as the condensate, we assume that the complex ampli-

tude, varies sufficiently slowly that zi ≈ zj , for sites Rj near Ri (exactly true in the

translationally-invariant case). As above, we assume that contributions between sites

far apart are suppressed by the negligible Wannier function overlap. We have, for site

Ri1:

∑

i2,i3,i4

z∗i1z
∗
i2zi3zi4U i1,i2,i3,i4

0,0,0,0

= g
∑

i2,i3,i4

z∗i1z
∗
i2zi3zi4

∫

drw∗
0(r −Ri1)w

∗
0(r − Ri2)w0(r − Ri3)w0(r − Ri4) (F.8)

≈ g |zi1 |4
∑

i2,i3,i4

∫

drw∗
0(r −Ri1)w

∗
0(r− Ri2)w0(r− Ri3)w0(r− Ri4)

= g |zi1 |4
∫

drw∗
0(r −Ri1)

[

∑

i2

w∗
0(r− Ri2)

][

∑

i3

w0(r −Ri3)

][

∑

i4

w0(r − Ri4)

]

= g |zi1 |4
∫

drw0(r) [ψ0,0(r)]
3

= |zi1 |4 U ′′
00,

where we have used
∑

i wb(r−Ri) = ψb,0(r) from (D.4), that ψ0,0(r) = ce0(z̄, q) is real

and periodic on the lattice from section C, and that w0(r) is real from (D.22). The
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F.1. Interaction coefficients

result again takes the same form as (3.12) with U ′′
00 substituted for U00 where:

U ′′
00 = g

∫

drw0(r) [ψ0,0(r)]
3 . (F.9)

Similar arguments could be used for the terms involving interactions between the con-

densate and the non-condensate. The above results are appropriate for the pure thermal

gas, for example, for finding the critical temperature from above, and for the pure con-

densate at zero temperature. To quantify the effect of off-site interactions on the ther-

mal depletion, terms for interactions between the condensate and the non-condensate

would be needed.

F.1 Interaction coefficients

In this section, we compare the behaviour of the interaction coefficients Ubb′ , U
′
bb′ and

U ′′
00.

Both all-sites interaction coefficients, U ′
bb′ and U ′′

00, include their corresponding on-site

component, Ubb′ , in their sums, (F.7) and (F.8). For the non-condensate interaction

coefficient, since we have excluded interference, all other terms in the sum are positive,

so that off-site interactions always increase the interaction coefficient (relative to Ubb′).

For the condensate, interference is included in the sum, so the effect of off-site inter-

actions depends on the integrand1 w0(r)[ψ0,0(r)]
3 compared to [w0(r)]

4 which we plot

in figure F.1 (since the potential is separable we consider the one-dimensional case –

for higher-dimensional cases, differences between the coefficients are accentuated, since

the d-th power of each integral is taken).

For V = 0, there is no interference at x = 0,2 but interference elsewhere is significant

and positive. For V = 10ER, the all-sites integrand is lower at x = 0, due to inter-

ference from neighbouring sites, and the interference elsewhere is less significant. As

shown in figure F.2, the overall effect of off-site interactions is to reduce the condensate

interaction coefficient for moderate lattice depths.

1The functions ψ0,0(r) and w0(r) are real from section C.1 and from (D.22).
2Since the Wannier functions in the sum,

∑

iw0(r−Ri) = ψ0,0(r), are then sinc functions which

are zero at neighbouring sites.
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Figure F.1: Difference between all-site and on-site integrands for the

one-dimensional condensate interaction coefficients
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Figure F.2: Comparison of on-site to all-sites interaction coefficients

for the ground band in one dimension

We show the ground-band interaction coefficients in three dimensions in figure 2.8.

The excited-band interaction coefficients are shown in figure 2.9. The effect of off-site

interactions is significant for much deeper lattices for excited bands than for the ground

band reflecting the greater spread of the excited-band Wannier functions.
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F.2. No lattice limit

F.2 No lattice limit

We consider the LDA formulae from section 3.6 when there is no lattice. The Hamil-

tonian (3.34) would give us Kb(k) = ~
2k2/2m. If we were to have Ubb′ = g/ad for all

b, b′ then U0bnc(r) = gnc(r)/a
d and:

∑

b′

Ubb′ ñb′(r) = g
ñ(r)

ad
, (F.10)

where the divisor ad converts our per-site densities into per-volume, and if we also

treat nc(r) and ñb(r) as the condensate and non-condensate densities (rather than

as envelope functions, with densities defined by (3.3) and (3.5), although the total

condensate and non-condensate numbers do not depend on this distinction, from (3.4)

and (3.6)) then all of our LDA equations would be the same as we would get from a

no lattice calculation [56], in spite of our expansion of the field operators in a Wannier

function basis. From our results of section 2.10, we see that this is not the case for

on-site interactions only.

Including off-site interactions, we can easily see that the condensate gives the correct

limit from (F.9):

U ′′
00 = g

d
∏

j=1

1

a2
j

∫ ∞

−∞

drj sinc

(

rjπ

aj

)

=
g

ad
, (F.11)

since ψ0,0(rj) = 1/
√
aj from section C.1 and w0(rj) = sinc (rjπ/aj)/

√
aj from (D.23).

For the non-condensate, we include only paired terms in the sum (F.5), so that the

calculation is somewhat more involved. We define the following integral:

Ibb′(n) =

∫ ∞

−∞

w2
b (x)w

2
b′(x− na)dx. (F.12)

From the calculations behind section 2.10.3 that I00(0) = 2/3a and for b > 0, I0b(0) =

5/12a and Ibb(0) = 1/2a. We also have I00(n) = 1/(n2π2a) so that, using ζ(2) = π2/6,

we have I00(1+) ≡∑∞
n=1 I00(n) = 1/6a where . The ground-band interaction coefficient

in one dimension then gives the correct limit U ′
00 = g(2/3a+2/6a) = g/a. The ground-
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Appendix F. Off-site interactions approximation

band interaction coefficient in three dimensions also gives the correct limit:

U ′
00

g
= I3

00(0) + 6
∑

n1>0

n2=n3=0

∏

j

I00(nj) + 12
∑

n1>0,n2>0

n3=0

∏

j

I00(nj) + 8
∑

nj>0

∏

j

I00(nj)

= I00(0)3 + 6I00(0)2I00(1+) + 12I00(0)I2
00(1+) + 8I3

00(1+)

=

(

2

3a

)3

+ 6

(

2

3a

)2
1

6a
+ 12

2

3a

(

1

6a

)2

+ 8

(

1

6a

)3

=
1

a3
. (F.13)

For excited bands, off-site interaction calculations are not so simple, but we recognise

numerically:

I10(n) =

∫ ∞

−∞

w2
1(x)w

2
0(x− na)dx =

1

n2π2a







2 n odd,

1 n even,
(F.14)

I11(n) =

∫ ∞

−∞

w2
1(x)w

2
1(x− na)dx =

1

n2π2a







1 n odd,

3 n even.
(F.15)

So, for the ground-first-excited band interactions in one dimension:

I10(1+) =

∞
∑

n=1

∫

w2
1(x)w

2
0(x− na)dx =

1

π2a

{

2

[

ζ(2) − ζ(2)

4

]

+
ζ(2)

4

}

=
7

24a
,

=⇒ U ′
10 = g

(

5

12a
+ 2

7

24a

)

=
g

a
. (F.16)

And, for the intra-first-excited interactions in one dimension:

I11(1+) =
∞
∑

n=1

∫

w2
1(x)w

2
1(x− na)dx =

1

π2a

[

ζ(2) − ζ(2)

4
+

3ζ(2)

4

]

=
1

4a
, (F.17)

=⇒ U ′
11 = g

(

1

2a
+ 2

1

4a

)

=
g

a
. (F.18)

The general integral in three dimensions is:

U ′
abc,ijk

g
= Iai(0)Ibj(0)Ick(0)

+ 2Iai(1+)Ibj(0)Ick(0) + 2Iai(0)Ibj(1+)Ick(0) + 2Iai(0)Ibj(0)Ick(1+)

+ 4Iai(1+)Ibj(1+)Ick(0) + 4Iai(1+)Ibj(0)Ick(1+) + 4Iai(0)Ibj(1+)Ick(1+)

+ 8Iai(1+)Ibj(1+)Ick(1+). (F.19)
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F.2. No lattice limit

So, ground-first-excited-band interactions in three dimensions give the correct limit:

a3U ′
000,001

g
=

(

2

3

)2
5

12
+ 4

1

6

2

3

5

12
+ 2

(

2

3

)2
7

24
+ 8

2

3

1

6

7

24
+ 4

(

1

6

)2
5

12
+ 8

(

1

6

)2
7

24

= 1,

a3U ′
001,001

g
=

(

2

3

)2
1

2
+ 4

1

6

2

3

1

2
+ 2

(

2

3

)2
1

4
+ 4

(

1

6

)2
1

2
+ 8

1

6

2

3

1

4
+ 8

(

1

6

)2
1

4

= 1,

a3U ′
010,001

g
=

2

3

(

5

12

)2

+ 2
1

6

(

5

12

)2

+ 4
2

3

5

12

7

24
+ 8

1

6

7

24

5

12
+ 4

2

3

(

7

24

)2

+ 8
1

6

(

7

24

)2

= 1. (F.20)
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Appendix G

Bogoliubov diagonalisation

To calculate the tunnelling term, we first consider a property of the shift operator, Ŝi′,i,

defined on page 33. Since Jb,i,i′ = J∗
b,i′,i, we have:

∑

i

∑

i′

x∗iJb,i,i′Ŝi′,iyi =
∑

i,i′

x∗iJb,i,i′yi′ =
∑

i,i′

(

Jb,i′,iŜi,i′xi′

)∗

yi′

=
∑

i

∑

i′

(

Jb,i,i′Ŝi′,ixi

)∗

yi, (G.1)

by interchanging the roles of the dummy variables. This result continues to apply if we

exclude, for example, beyond nearest or beyond next-nearest neighbours by symmetri-

cally setting Jb,i,i′ = 0 for hopping terms not required. From (3.16), since the diagonal

terms in L̂ are real, we therefore have1
∑

i x
∗
i L̂b,iyi =

∑

i

(

L̂b,ixi

)∗

yi so that:

∑

i

x∗i L̂b,iyi =
1

2

[

∑

i

(

L̂b,ixi

)∗

yi +
∑

i

x∗i L̂b,iyi

]

, (G.2)

and, from (3.27):

∑

i

K̂2,b,i =
1

2

∑

i,j,k

′
[

(Eb,j + Eb,k)
(

α̂†
b,jα̂b,ku

∗
b,i,jub,i,k − α̂b,jα̂

†
b,kvb,i,jv

∗
b,i,k

)

−(Eb,j −Eb,k)
(

α̂b,jα̂b,kvb,i,jub,i,k − α̂†
b,jα̂

†
b,ku

∗
b,i,jv

∗
b,i,k

)]

. (G.3)

First considering the term (Eb,j − Eb,k)
(

α̂b,jα̂b,kvb,i,jub,i,k − α̂†
b,jα̂

†
b,ku

∗
b,i,jv

∗
b,i,k

)

, this is

clearly zero for j = k and from vb,i,k × (3.28)+ub,i,k × (3.29) and applying L̂ to the left:

(Eb,j + Eb,k)(ub,i,jvb,i,k − vb,i,jub,i,k) = 0, (G.4)

1This result shows that L̂ is Hermitian under the inner product 〈x|y〉 =
∑

i x
∗
i yi
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Appendix G. Bogoliubov diagonalisation

so, for j 6= k we have:

vb,i,jub,i,k = ub,i,jvb,i,k, (G.5)

since Eb,k is non-negative [95]. Therefore, the sum of each pair of opposite off-diagonal

elements of the coefficients of α̂b,jα̂b,k is zero. The same argument works for the off-

diagonal coefficients of α̂†
b,jα̂

†
b,k using the complex conjugate of (G.5).

Now considering the term:

∑

j,k

(Eb,j + Eb,k)
(

α̂†
b,jα̂b,ku

∗
b,i,jub,i,k − α̂b,jα̂

†
b,kvb,i,jv

∗
b,i,k

)

=
∑

j,k

(Eb,j + Eb,k)
[

α̂†
b,jα̂b,k

(

u∗b,i,jub,i,k − v∗b,i,jvb,i,k

)

− δjk |vb,i,j|2
]

. (G.6)

where we have used (3.19) and exchanged the dummy variables j and k for the α̂b,jα̂
†
b,k

terms. From u∗b,i,k × (3.28) + v∗b,i,k × (3.29) and applying L̂ to the left:

(Eb,j − Eb,k)(ub,i,ju
∗
b,i,k − vb,i,jv

∗
b,i,k) = 0, (G.7)

so taking the complex conjugate for j 6= k we have u∗b,i,jub,i,k = v∗b,i,jvb,i,k, eliminating

the off-diagonal terms, and using (3.26) for the diagonal terms we are left with:

∑

i

K̂2,b,i =
∑

j

′

Eb,jα̂
†
b,jα̂b,j −

∑

j

′

Eb,j

∑

i

|vb,i,j|2 . (G.8)

The Hamiltonian is therefore reduced to the diagonal form:

K̂ = −
∑

i,i′

J0,i,i′z
∗
i zi′ +

∑

i

[

vi − µ+
U00

2
|zi|2

]

|zi|2 +
∑

b,j

′

Eb,j

[

α̂†
b,jα̂b,j −

∑

i

|vb,i,j|2
]

.

(G.9)
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Appendix H

Effective mass

We will use the derivative, (4.9), for our calculations, unless otherwise stated. We

consider the accuracy of analytic approximations to the ground-band effective mass in

the shallow and deep lattice limits. For |kx| ≪ π/ax [104]:

K0(kx)

ER,x
=

Vx

2ER,x
+

(

axkx

π

)2

+
(Vx/4ER,x)

2

2 [(axkx/π)2 − 1]
+O

(

Vx

ER,x

)4

, (H.1)

so for Vj < 4ER,j we have:

m

m∗
j

= 1 −
V 2

j

32E2
R,j

+O

(

Vj

ER,j

)4

. (H.2)

In the opposite, Vj ≫ ER,j limit, from (4.9) and (D.20):

m

m∗
j

=
π2

ER,j

∑

l>0

l2J l
0,j, (H.3)

which, in the tight-binding limit becomes:

m

m∗
j

=
π2J1

0,j

ER,j

. (H.4)

A comparison of these approximations for the ratio of the mass to the effective mass

is shown in figure H.1.
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Appendix H. Effective mass
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m
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deep lattice approximation (H.4)
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Figure H.1: Ratio of mass to effective mass
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Appendix I

Bose function

We define the Bose function as:

ζα(z) ≡ 1

Γ(α)

∫ ∞

0

du uα−1

z−1eu − 1
, (I.1)

where 0 ≤ z ≤ 1, analytically continued over the entire complex α-plane, except for

the singularity (the harmonic series) when α = 1 and z = 1 [117]. For α > 0 and z < 1

we have (for z = 1 and α < 1 we use the analytically continued form):

ζα(z) =
∞
∑

n=1

zn

Γ(α)

∫ ∞

0

du uα−1e−nu =
∞
∑

n=1

zn

nα
. (I.2)

From d’Alembert’s test, this last form of ζα(z) converges if 0 ≤ z < 1 since the ratio

of successive terms → z as n → ∞. From analytic continuation, this last form also

applies for α ≤ 0 if z < 1.

We define the Riemann zeta function ζ(α) ≡ ζα(1) and see that:

ζα(z) → z as z → 0 or as α→ ∞, (I.3)

ζα(z) → z

1 − z
as α → 0, (I.4)

ζα(1) = ζ(α) =

∞
∑

n=1

n−α for α > 1, (I.5)

ζ1(z) = − ln(1 − z). (I.6)

We have, from (I.2):
∂ζα
(

ef(x)
)

∂x
= ζα−1

(

ef(x)
)

f ′(x). (I.7)
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Appendix I. Bose function

A useful series expansion for −2π < x < 0, α ≥ 0 is:

ζα(ex) =



































1/(e−x − 1) α = 0,

xα−1

(α− 1)!
[Hα−1 − ln(−x)] +

∞
∑

n=0,n 6=α−1

ζ(α− n)

n!
xn α = 1, 2, 3, 4, 5, . . . ,

Γ(1 − α)(−x)α−1 +

∞
∑

n=0

ζ(α− n)

n!
xn otherwise,

(I.8)

where we have converted from the form of [117] using:

Hα−1 =
d

2
+

Γ′(α)

Γ(α)
, Hn =

n
∑

m=1

1

m
,H0 = 0. (I.9)

For expansions up to order α− 2, the xα−1 term in (I.8) can be ignored.
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Appendix J

Translationally-invariant lattice

integrand

In this appendix, we consider the numerics of the translationally-invariant lattice calcu-

lation and justify the accuracy of the effective-mass critical temperatures. We consider

the case when the integrand for the ground-band density is g0(K)/(eK/kBT − 1) (for

example at or below the critical temperature for a non-interacting gas with µ → 0, or

at the critical temperature for an interacting gas, so that µ → 2
∑

b′ Ubb′ ñb′(r̄), where

we ignore the finite-size effect for a translationally-invariant lattice). For low K, the

effective-mass approximation is reasonable from section 4.4, so that the integrand is

then:
∫ K

0

g0(K
′)dK ′

eK ′/kBT − 1
∝
∫ K

0

K ′d/2−2
dK ′ ∝ Kd/2−1, (J.1)

so that, even for the three-dimensional case, the integrand has a divergence at K = 0

(and the integral is divergent for one dimension reflecting the lack of condensation in

that case), so that this low energy region is very important to the integral.

To improve the numerical calculations, we transform the above integral using K = u4

in three dimensions so that:

∫ K

0

g0(K
′)dK

eK ′/kBT − 1
=

∫ u

0

g0(u
′4)

eu′4/kBT − 1
4u′

3
du′ ∝

∫ u

0

u′du′ ∝ u2 =
√
K, (J.2)

so that the integrand is zero at the origin and initially linear thereafter. We could

substitute K ∝ p2 so that the integrand is initially constant, but an initially zero

integrand improves numerics.
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Appendix J. Translationally-invariant lattice integrand

We consider the deep lattice case, V = 15ER, where the actual and effective-mass

density of states are very different, except for the low energy region, as shown in figure

J.1. We note that the first excited band does not start until K > 6ER which emphasises

just how different the effective-mass density of states is and ensures that the excited

bands will not be significant for the temperatures we are considering (in figure 7.2).

K/ER

g
(K

)E
R
a

3

actual
effective mass

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure J.1: Comparison of three-dimensional density of states for V =

15ER

Since the integrand is divergent, we cannot see the important region by plotting it

directly. Instead we plot the transformed integrand of (J.2) in figure J.2. We have used

the same horizontal scale in both cases (the interval K/ER ∈ [0, 1] in figure J.1 is

equivalent to u/E
1/4
R ∈ [0, 1] in figure J.2). We use kBT = 0.1ER, a typical critical

temperature for this lattice depth. We see that the integrands are rather different in

shape, but the linear region (the effective-mass region) where they agree has some

importance, the high energy region is exponentially suppressed by the temperature

and the integral or area under the curves is similar.
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Figure J.2: Integrand of (J.2) for V = 15ER at kBT = 0.1ER
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Appendix K

Simplified ground-band shape

finite-size effect

We consider the finite-size effect for the three-dimensional combined harmonic lattice,

extending the results of section 7.5 by giving the derivatives in terms of the Bose

function forms which are valid for higher w than the series expansion, and we derive

the finite-size effect for each of the band shapes.

K.1 Centred-delta

From (7.11), (I.7) and (I.8) the derivatives are:

[

∂Ñ0(µ)

∂µ

]

µ=0

= Nsβζ1/2

(

e−w/2
)

(K.1)

= Nsβ

[

√

2π

w
+ ζ(1/2)− ζ(−1/2)

2
w +O

(

w2
)

]

, (K.2)

∂Ñ0(0)

∂T
=
Ns

T

[

3

2
ζ3/2

(

e−w/2
)

+
w

2
ζ1/2

(

e−w/2
)

]

(K.3)

=
Ns

T

[

3

2
ζ(3/2) −

√
2πw − ζ(1/2)

4
w +O

(

w2
)

]

. (K.4)
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Appendix K. Simplified ground-band shape finite-size effect

From (7.49), (K.1) and (K.3) we get:

δT fs
c = −µfs

kB

2ζ1/2

(

e−w0
c/2
)

3ζ3/2(e
−w0

c/2) + w0
cζ1/2(e

−w0
c/2)

(K.5)

= −µfs

kB

[

2
√

2π

3ζ(3/2)
√

w0
c

+
8π

9ζ(3/2)2
+

2ζ(1/2)

3ζ(3/2)
+O

(

√

w0
c

)

]

. (K.6)

K.2 Rectangular

From (7.17), (I.7) and (I.8) the derivatives are:

[

∂Ñ0
T (µ)

∂µ

]

µ=0

=
Nsβ

w

[

ζ(3/2)− ζ3/2

(

e−w
)]

(K.7)

= Nsβ

[

2

√

π

w
+ ζ(1/2)− ζ(−1/2)w

2
+O

(

w2
)

]

, (K.8)

∂Ñ0
T (0)

∂T
=

Ns

wT

[

5

2
ζ(5/2) − 5

2
ζ5/2

(

e−w
)

− wζ3/2

(

e−w
)

]

(K.9)

=
Ns

T

[

3

2
ζ(3/2) − 4

√
πw

3
− ζ(1/2)w

4
+O

(

w2
)

]

. (K.10)

From (7.49), (K.7) and (K.9) we get:

δT fs
c = −µfs

kB

ζ(3/2)− ζ3/2

(

e−w0
c

)

5
2
ζ(5/2)− 5

2
ζ5/2(e

−w0
c ) − w0

cζ3/2(e
−w0

c )
(K.11)

= −µfs

kB

[

4
√
π

3ζ(3/2)
√

w0
c

+
32π

27ζ (3/2)2
+

2ζ(1/2)

3ζ(3/2)
+O

(

√

w0
c

)

]

. (K.12)
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K.3. Quadratic

K.3 Quadratic

From (7.20), (I.7) and (I.8) the derivatives are:
[(

∂Ñ

∂µ

)

T

]

µ=0

=
6Nsβ

w3

[

wζ(5/2)− 2ζ(7/2) + wζ5/2

(

e−w
)

+ 2ζ7/2

(

e−w
)]

(K.13)

= Nsβ

[

8
√
π

5
√
w

+ ζ(1/2) − ζ(−1/2)w

2
+O

(

w2
)

]

, (K.14)





(

∂Ñ

∂T

)

µ





µ=0

=
27Ns

w3T

[

wζ(7/2)− 2ζ(9/2) + wζ7/2

(

e−w
)

+ 2ζ9/2

(

e−w
)]

− 6Ns

w2T

[

ζ(7/2)− ζ7/2

(

e−w
)

− wζ5/2

(

e−w
)]

(K.15)

=
Ns

T

[

3

2
ζ(3/2) − 48

√
πw

35
− ζ(1/2)w

4
+O

(

w2
)

]

. (K.16)

From (7.49), (K.13) and (7.51) we get:

δT fs
c = −µfs

kB

[

16
√
π

15ζ(3/2)
√

w0
c

+
2ζ(1/2)

3ζ(3/2)
+

512π

525ζ(3/2)2
+O

(

√

w0
c

)

]

. (K.17)

K.4 Triangular

From (7.25), (I.7) and (I.8) the derivatives are:
[

∂Ñ0
T (µ)

∂µ

]

µ=0

=
4Ns

kBTw2

[

ζ(5/2)− 2ζ5/2

(

e−w/2
)

+ ζ5/2

(

e−w
)]

(K.18)

=
4Ns

kBT

[

2
√
π
(

2 −
√

2
)

3
√
w

+
ζ(1/2)

4
+O(w)

]

, (K.19)

∂Ñ0
T (0)

∂T
=

14Ns

w2T

[

ζ(7/2) − 2ζ7/2

(

e−w/2
)

+ ζ7/2

(

e−w
)]

+
4Ns

wT

[

−ζ5/2

(

e−w/2
)

+ ζ5/2

(

e−w
)]

(K.20)

=
Ns

T

[

3

2
ζ(3/2) − 8

√
π

15

(

4 −
√

2
)√

w − ζ(1/2)

4
w +O

(

w2
)

]

. (K.21)

From (7.49), (K.18) and (K.21) we get:

δT fs
c = −µfs

kB

[

16(2 −
√

2)
√
π

9ζ(3/2)
√

w0
c

+
2ζ(1/2)

3ζ(3/2)
+

512(5 − 3
√

2)π

405ζ(3/2)2
+O

(

√

w0
c

)

]

.

(K.22)
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Appendix L

Spread function

We derive some results for the spread function for the three-dimensional combined

harmonic lattice.

L.1 Centred delta

From (7.10) we have:

[

∂ñ0
T (r, µ)

∂µ

]

µ=0

=
β exp[βVtr(r) + w/2]

{exp[βVtr(r) + w/2] − 1}2 . (L.1)

We recognise that, only for the centred delta shape, the product of the density and its

derivative takes the following easy to integrate form:

ñ0
T (r, µ)

∂ñ0
T (r, µ)

∂µ
=

1

2

(

1

β

∂2

∂µ2
− ∂

∂µ

)

ñ0
T (r, µ), (L.2)

so that we have:

1

a3

∫

dr ñ0
T (r, 0)

[

∂ñ0
T (r, µ)

∂µ

]

µ=0

=
1

2

[(

1

β

∂2

∂µ2
− ∂

∂µ

)

Ñ0
T (µ)

]

µ=0

=
Nsβ

2

[

ζ−1/2

(

e−w/2
)

− ζ1/2

(

e−w/2
)]

, (L.3)

where we have used (K.1) and we get the following analytic result for the spread

function:

S(w) =
ew/2 − 1

2

[

ζ−1/2

(

e−w/2
)

ζ1/2(e
−w/2)

− 1

]

. (L.4)
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Appendix L. Spread function

L.2 Rectangular

We show that a rectangular band assumption would lead us to the incorrect con-

clusion for the spread function. The ratio ñ0
T (r, 0)/ñ0

T (0, 0) = 1 if r = 0. For any

other r, the numerator is finite and the denominator is infinite from (7.16) so that

ñ0
T (r, 0)/ñ0

T (0, 0) = 0. As r → 0:

[

∂ñ0
T (r, µ)

∂µ

]

µ=0

→ β

w

[

1

Vtr(r)
− 1

ew − 1

]

, (L.5)

so that r2 [∂ñ0
T (r, µ)/∂µ]µ=0 is finite. Also

[

∂Ñ0
T (µ)/∂µ

]

µ=0
is finite from (K.7) so that

we would falsely conclude that S(w) = 0.

L.3 Quadratic

The integrand of the numerator of the spread function is:

[

ñ(r)

(

∂ñ(r)

∂µ

)

T

]

µ=0

=
36β

w6a6

×
[

wζ2
(

e−βVtr(r)
)

− 2ζ3
(

e−βVtr(r)
)

+ wζ2
(

e−βVtr(r)−w
)

+ 2ζ3
(

e−βVtr(r)−w
)]

×
[

wζ1
(

e−βVtr(r)
)

− 2ζ2
(

e−βVtr(r)
)

+ wζ1
(

e−βVtr(r)−w
)

+ 2ζ2
(

e−βVtr(r)−w
)]

. (L.6)

As w → ∞, using (7.19), (7.65), (7.50) and (L.6):

S(w) → 1

ζ(2)ζ(5/2)

∞
∑

j,k=1

1

j2k(j + k)3/2
≈ 0.325, (L.7)

where we have used:

1

a3Ns

∫

drζ2
(

e−βVtr(r)
)

ζ1
(

e−βVtr(r)
)

=
1

a3Ns

∞
∑

j,k=1

1

j2k

∫

dr exp [−(j + k)βVtr(r)]

=

∞
∑

j,k=1

1

j2k(j + k)3/2
≈ 0.7173. (L.8)
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L.4. Triangular

L.4 Triangular

The integrand of the numerator of the spread function is:

[

ñ(r)

(

∂ñ(r)

∂µ

)

T

]

µ=0

=
16β

w4a6

×
[

ζ2
(

e−βVtr(r)
)

− 2ζ2
(

e−βVtr(r)−w/2
)

+ ζ2
(

e−βVtr(r)−w
)]

×
[

ζ1
(

e−βVtr(r)
)

− 2ζ1
(

e−βVtr(r)−w/2
)

+ ζ1
(

e−βVtr(r)−w
)]

. (L.9)

As w → ∞, using (7.24), (7.65), (K.18), (L.8) and (L.9):

S(w) → 1

ζ(2)ζ(5/2)

∞
∑

j,k=1

1

j2k(j + k)3/2
, (L.10)

as in the quadratic case.
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