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Abstract

The macroscopic dipole fluctuations of two clusters of vortices in a circular domain is inves-
tigated. An analytic solution for two vortices in the domain is first derived by perturbation,
giving a prediction on the frequency of the dipole oscillation and aspect ratio of the elliptical
trajectory. Simulations of dipolar clusters comprised of many vortices were done to check
the analytic predictions. The dipole fluctuation spectra as a function of energy was explored,
finding good agreement with our analytical result over a broad range of system energies,
particularly at high energy.



Table of contents

1 Introduction 1

2 Background 4
2.1 Cavity Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Superfluid Helium in two dimensions . . . . . . . . . . . . . . . . . . . . 5
2.3 Special properties of fluids in two dimensions . . . . . . . . . . . . . . . . 8

3 Physical system and model 10
3.1 Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Motivating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Point vortex model 13
4.1 Point vortices in the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Bounded Circular Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Analytic Results 17
5.1 Stationary Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Linear Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Numerical methods 22
6.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Numerical model tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Numerical Results 26
7.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Perturbation trajectories for two vortices . . . . . . . . . . . . . . . . . . . 26
7.3 Dipolar vortex clusters at the stationary positions . . . . . . . . . . . . . . 27



Table of contents vi

7.4 Perturbed dipolar vortex clusters . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Symmetric zero angular momentum states . . . . . . . . . . . . . . . . . . 33
7.6 Annealed zero angular momentum states . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 42
8.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 43

Appendix A Work in progress 45



Chapter 1

Introduction

Vortices are a feature of many physical phenomena, from neutron stars [1] to turbulent flows,
to tornados to the bathtub. In classical fluids they occur in regions where the fluid particles
have an angular momentum, with the fluid often expelled from the centre of rotation. Vortices
also exist in more exotic phases of matter, such as plasmas [2], degenerate quantum gasses [3]
and superfluids[4]. The physical characteristics of vortices in a superfluid are distinct from
those in a classical fluid. Vortices in a classical fluid can decay by diffusion, whereas vortices
in a superfluid occur in an inviscid flow. The superfluid vortices have quantized circulation
[5] rather than continuous circulation and the core of the vortices are much smaller than their
classical counterparts.

In this project the vortex dynamics of superfluid helium in a complex condensed matter
system are investigated. The motivation for this project is to build a model of an experiment
conducted at the University of Queensland [6]. The experimenters set out to create an
enhanced optomechanical micro-toriodial resonator by using helium as a photo-convective
superfluid to enhance the radiation pressure used to drive the resonator. By preparing a
2µm thick silicon wafer with a layer of silicon dioxide and using photolithographic methods,
a microscopic silicon disk on a raised pedestal can be etched out[7]. During the process
of lithography, a CO2 laser melts the rim of the disk into glass, creating a micro-toriodal
whispering gallery mode resonator.

The experimental group at the University of Queensland obtained one of these resonators
with an inner radius of 3µm and an outer radius of 37.5µm. Figure 1.2 shows a scanning
tunnel microscope image of the resonator. The resonator was placed inside a helium-3
cryostat containing low pressure helium-4 gas. The pressure of the gas was selected to ensure
that the helium transitioned directly to the superfluid state at a temperature of 1K, bypassing
the normal fluid phase [6]. Once the temperature had been lowered below 1K, a thin film of
helium-4 coated the resonator and silicon base.
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Techniques from cavity optomechanics allow optical degrees of freedom to be coupled
to mechanical degrees of freedom in micro-scale mechanical systems. The coupling is
achieved in this system by introducing laser light into the micro-toroid via tapered optical
fibre, exciting the whispering gallery modes of the resonator.

The radiation pressure of the light can be used to drive mechanical oscillations in the
resonator. The Queensland team exploited the properties of the liquid helium to increase
the strength of the optomechanical coupling over the radiation pressure alone by an order of
magnitude[8]. By using a property of superfluid helium known as the fountain effect, the
optical heat created by the laser induces the superfluid helium to travel up the silicon pedestal
towards the heat source. Upon reaching the light, the superfluid then evaporates off the side
of the resonator imparting an inwards mechanical force.

[33]. Furthermore, superfluid flow, once initiated, has been
observed to persist for many hours without appreciable
decay [34]. This unique flow persistence provides the
possibility to apply persistent pressure on a mechanical
element after the optical field is removed, in a form of
nonvolatile optomechanical memory [17].
The configuration we use here to realize superfluid

photoconvective forcing is represented in Fig. 1(b). A
microtoroidal resonator is covered in a several-nanometer-
thick film of superfluid helium [35], which forms naturally
due to van der Waals forces. Absorption of the circulating
laser field at the microtoroid periphery (red glow) causes
localized heating. This increase in temperature generates

superfluid helium flow up the pedestal towards the heat
source via the fountain effect (blue arrows). At the
periphery, superfluid helium is evaporated (red arrows),
resulting in a force on the microtoroid that, on average, is
directed radially inwards. The magnitude of this radial
force is given by

Fradial ¼ − dðmvradialÞ
dt

ð1Þ

¼ 4

π2
_mvrms; ð2Þ

where _m is the mass flow rate of evaporated helium. The net
radial velocity vradial is calculated by integrating the
contribution from isotropic evaporation in the outwards
facing half-space with a root-mean-square (rms) velocity of

vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBTevap

mHe

s

; ð3Þ

where Tevap is the temperature of evaporated atoms and
mHe is the mass of a helium atom (see Supplemental
Material [36]).
In steady state, the mass flow rate of the superfluid is

determined by balancing the optical heat load with the
energy dissipated through normal fluid counterflow or
evaporation of the film (see Supplemental Material for
further discussion [36]). While in bulk superfluid systems
the energy dissipation is typically dominated by counter-
flow, for thin films the normal fluid fraction is viscously
clamped to the surface [37], and evaporation dominates. To
prevent the continuous accumulation of fluid at the heat
source, the rate of evaporation must be equal to the influx
from superfluid flow. For an absorbed optical power Pabs,
the superfluid mass flow rate is then _m¼Pabs=ðL−hμvdWiÞ,
where L is the latent heat of vaporization and hμvdWi is the
van der Waals potential of the superfluid film (see
Supplemental Material [36]), and the resulting inward
radial force from helium evaporation is

Fradial ¼
4

π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBTevap

mHe

s
Pabs

L − hμvdWi
: ð4Þ

Note that, similar to photothermal forces [38], this expres-
sion is independent of the cavity finesse allowing photo-
convective forces to be applied effectively where only a
weak cavity, or no cavity, is present. For comparison, if the
incident light is fully absorbed, the radiation pressure force
is given by FRP ¼ PabsF=c, where F is the cavity finesse
and c is the speed of light. For a 1 K superfluid evaporation
temperature, the ratio Fradial=FRP ∼ 4 × 105=F , indicating
that, in our configuration, the superfluid photoconvective
force is similar in magnitude to the radiation pressure force
from a cavity with a finesse of around 400 000. For our

FIG. 1. (a) In bulk, a local heat source generates flow of
superfluid helium (blue arrows) and counterflow of normal fluid
(red arrow), imparting momentum onto the oscillator. (b) Repre-
sentation of a microtoroid covered in a thin film of superfluid
helium. Heat around the periphery caused by optical absorption
generates fluid flow (blue arrows). At low pressures the super-
fluid then transitions directly into the gas phase and imparts
momentum on evaporation (red arrows). (c) Superfluid-mediated
photoconvective forcing may be readily extended to other
optomechanical systems such as photonic-phononic crystal
cavities, membranes, and nanostrings. Evaporation of a thin film
from a photonic-phononic crystal cavity (left) due to localized
optical heating would actuate the mechanical breathing modes
commonly used in quantum optomechanics experiments. A
mechanical membrane (middle) could be driven by bulk flow
if one half was immersed in bulk superfluid helium via the
mechanism of (a). The string modes of a nanostring (right) could
be actuated by coating its top surface with an absorbing material
upon which light is focused. This would cause preferential
vertical evaporation of a thin superfluid film self-assembled on
the device.

D. L. MCAUSLAN et al. PHYS. REV. X 6, 021012 (2016)

021012-2

Fig. 1.1 Schematic of photo-convective superfluid motion in the experimental system. The
system contains a micro-toroidal optical resonator situated on a pedestal. A thin film of
superfluid helium coating the optical device travels up the pedestal, toward a focal point of
optical heating via the fountain effect. Figure reproduced from [8].

Fig. 1.2 Scanning tunnel microscope image of micro-toriodial resonator. Figure reproduced
from [8].
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The superfluid that does not evaporate travels into the inner radius of the flat disk on
top of the resonator. It is the region of fluid inside this disk that will be modelled to gain
understanding of the system.

Chapter 2 provides a background on Cavity Optomechanics, Liquid Helium and fluids in
two dimensions. Chapter 3 sets out the physical system and the assumptions of the model.
Chapter 4 introduces the point vortex model in the plane and then the bounded circular
domain. Chapter 5 gives the results of an analytic treatment of two point vortices in the
bounded circular domain. Chapter 6 details the numerical method and defines the units
used in numerical simulations. Chapter 7 contains the results of the numerical simulations
preformed. Finally, Chapter 8 provides a summary of the project.



Chapter 2

Background

2.1 Cavity Optomechanics

The field of cavity optomechanics studies the interaction between electromagnetic radiation
and micro-mechanical motion. Since a photon carries a momentum of p = h̄k (where k is the
wave number), a large number of photons can be used to create a radiation pressure. Precise
control over the degrees of freedom of an optical field can be used to excite specific modes of
a mirco-mechanical system. A physical system in which there is a coupling between optical
and mechanical degrees of freedom is known as an optomechanical system [9].

The simplest optomechanical system to examine is the Fabry-Perot resonator. The
resonator contains two mirrors a distance L apart. These mirrors can support resonances of
[10]

ωcav,m = π
c
L
, (2.1)

where m is the mode number and c is the speed of light. The separation between resonances
is given by the free spectral range [10]

∆ωFSR = π
c
L
. (2.2)

Photons scattering from an atom or molecule is known as Ramen scattering [11]. Raman
scattering is the inelastic scattering of a photon and matter. Raman scattering can impart or
take away energy from the mechanical vibration of an object. The loss or gain of vibrational
energy is described by the Stokes/Anti-Stokes process [12]. In the Stokes process the
outgoing photon has a lower frequency than the incoming photon and the vibrational energy
is increased. In the Anti-Stokes process the outgoing photon has a higher energy than the
incoming photon and the vibrational energy is decreased. A single photon Raman scattering
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off an object changes very little mechanical vibration energy. In cavity optomechanics, the
Raman scattering effect can become significant by scattering against small objects with a
large number of photons. In the case of the Fabry-Perot resonator, the mirrors reflect the
photons back and forth greatly increasing the number of photon collisions. The optical
finesse gives the average number of round trips a photon makes before decaying. It is defined
as [10]

F ≡ ∆ωFSR

κ
, (2.3)

where κ is the photon cavity decay rate due to imperfections in mirror transparencies and
scattering outside of the cavity. The quality factor of the cavity is defined as

Qopt =
ωcav

κ
. (2.4)

A different kind of resonator is known as a whispering gallery mode resonator. Examples
of a whispering gallery mode resonators include glass and crystal spheres with a high internal
reflection. Photons inside the spheres are reflected back inside the sphere at the inner surface
with minimal loss.

In 2005 it was shown that a mirotoroidial resonator could be used as an optical cavity with
attractive features [13]. The microtoroid offered the possibility of obtaining a high optical
finesse with the ability to couple the optical field to the mechanical modes of the resonator.
As the radiation pressure distorts the physical structure of the resonator, the optical path
length is changed which shifts the optical resonance frequency, creating an optomechanical
coupling. The Queensland team amplified the optomechanical coupling of the microtoroidial
resonator by using a photo-convective superfluid [8]. The optical field not only coupled to
the mechanical modes, but also the third sound modes of the thin liquid helium film. This
coupling may be able to be used to measure the motion of vortices in the superfluid film by
looking at the frequency splitting of the optical field [6].

2.2 Superfluid Helium in two dimensions

Cooling Helium-4 down below 4.22K at atmospheric pressure produces a colourless liquid
called Helium I. Helium I contracts when cooled and boils when heated, but has a much
lower viscosity than what is predicted by classical physics. This low viscosity can only be
explained by quantum mechanics, making Helium a quantum fluid [14].

Cooling Helium I down below 2.18K produces Helium II. This transition temperature is
called the λ point due to the shape of the phase diagram. Helium II is also a superfluid many
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interesting properties. It does not boil but evaporates directly to gas and it has a thermal
conductivity hundreds of times more than copper.

In 1941 Landau proposed a phenomenological two fluid model to describe liquid helium
II [15]. In this model, the liquid has a normal fluid and super fluid component, each with it’s
own density and velocity. At the λ temperature, the fluid is composed solely of the normal
component and at zero temperature only the superfluid component remains. The ratio of
normal fluid to superfluid decreases linearly from the λ point to zero temperature.

Landau derived his equations of motion for Helium II by using Galileo’s relativity
principle and the relevant conservation laws (mass and density)[16]. At sufficiently low
velocities, the equations of motion that result are in the form of Euler’s equation of an ideal
fluid for the superfluid component (2.5), and the incompressible form of the Naiver-Stokes
equation for the normal vicious component (2.6) [17]

∂us
∂ t

+(us ·∇)us =
−∇P

ρs
, (2.5)

∂un
∂ t

+(un ·∇)un −ν∇
2un =

−∇P
ρn

, (2.6)

where us and us are the superfluid and normal fluid velocity, P is the pressure, ν is the
kinematic viscosity and ρs a d ρn are the superfluid and normal fluid density. The thermal
properties of helium II add a thermomechanical term, ρsST to the equations of motion [17].

ρs
∂us
∂ t

=−ρs

ρ
∇p+ρsS∇T +

ρsρn

2ρ
∇(un −us)

2 −Fns, (2.7)

ρs
∂us
∂ t

=−ρs

ρ
∇p+ρsS∇T +

ρsρn

2ρ
,∇(un −us)

2 −Fns +η∇
2un (2.8)

where η is the dynamic viscosity and Fns is the mutual friction between the normal and
superfluid components. These two equations can be linearised to obtain velocities for first
and second sound. First sound is a propagation of pressure, with the normal and superfluid
components moving in phase. In second sound heat takes the place of pressure and the
components move out of phase. This is what allows superfluid helium to have its remarkable
thermal properties, giving it the highest known thermal conductivity of any material.

Superfluid films form naturally on surfaces owing to the combination of ultra-low vis-
cosity and attractive Van der Waals forces [6]. To first approximation third sound in a thin
film has the normal component remaining at rest and a surface wave propagating through the
superfluid component [18] .
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In 1938, Laszlo Tisza published a paper also using a two fluid model, but this time it
treated the superfluid component as a manifestation of Bose-Einstein condensation [19]. By
first looking at a single particle of helium, the quantum version of the Euler equation can be
derived. Schrodinger’s equation of motion is

ih̄
∂ψ

∂ t
=

−h̄2

2m
∇

2
ψ −V ψ. (2.9)

By using the Madelung transformation [20], the wave function is set to ψ =
√

ρ exp iφ where
ρ is the density. The probability current j is given by

j =
ih̄
2m

(ψ∇ψ
∗−ψ

∗
∇ψ) =

h̄
m

ρ∇φ . (2.10)

Given that the current has the form j = ρu, the velocity is then

u =
h̄
m

∇φ . (2.11)

Onsager showed that the phase of ψ must wind by integer amounts of 2π [5]. This means
that ∫

c
∇φ ·dl = 2πn (n = 0,±1,±2, ..). (2.12)

Defining κ = h/m, the fluid circulation around a closed curve C is given by

ΓC ≡
∮

C
u ·dl = κσ (σ = 0,±1,±2, ..), (2.13)

where σ is the vortex charge. The vorticity is given by

ω = (∇×u). (2.14)

To derive the vorticity, note that the phase of a charge ±1 vortex located at the origin is
given by

φ =±arctan
(y

x

)
=±θ , (2.15)

for polar angle θ . Then the velocity is given by

u =
h̄
m

∇φ =

(
r̂

∂

∂ r
+ θ̂

1
r

∂

∂θ

)
φ =± h̄

mr
θ̂ . (2.16)

Since the fluid is confined to a two dimensional plane and the vorticity is defined as a
curl of the velocity, only the z component of the vorticity needs to be calculated
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ω = (∇×u)z = (∂x∂y −∂y∂x)φ = 0, (2.17)

Hence the fluid is irrotational and vorticity is zero everywhere inside the fluid. However
vortices can occur where the density of the fluid is zero.

2.3 Special properties of fluids in two dimensions

Since the fluids that will be modelled are inviscid, incompressible and confined to two
dimensions, some useful mathematical simplifications can be used. Let u = (u,v,0) be the
flow velocity in two dimensions. If

∇ ·u = 0, (2.18)

is satisfied then we say the fluid is incompressible. The velocity potential can be defined as
φ , such that

u =
h̄
m

∇φ , (2.19)

the gradient of the velocity potential gives the flow velocity. By virtue of the incompressibility
of the fluid, the velocity potential satisfies the Laplace equation away from the vortex cores

h̄
m

∇
2
φ = 0. (2.20)

To visualise the flow of the fluid, each fluid particles trajectory can be plotted as a
streamline. The stream function gives the streamlines and is defined by use a vector potential
ψ , where

u =
h̄
m
(∇×ψψψ). (2.21)

Since the fluid is incompressible and the streamline is always tangent to the velocity
vector, the stream function must be give a constant value along the streamline. Since
u = (u,v,0), the curl of the vector potential implies ψψψ = (0,0,ψ). The velocity potential and
stream function are related by
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v =
h̄
m

∂φ

∂x
=

h̄
m

∂ψ

∂x
u =

h̄
m

∂φ

∂y
=− h̄

m
∂ψ

∂y
, (2.22)

which are in the same form as the Cauchy-Riemann equations. If a complex function is
analytic with complex argument z = x+ iy and satisfies the Cauchy-Riemann equations then
that function is holomorphic. We then define

w(z) = φ(x,y)+ iψ(x,y), (2.23)

as the complex potential of the flow. Then the real part of the complex potential, φ is
the velocity potential, and the imaginary part, ψ is the stream function. Since w(z) is
holomorphic, the complex velocity is given by

dw
dz

= u− iv. (2.24)

These properties allow transformation to the complex plane from the real plane, provided the
map is an analytic function. This is useful when the flow is inside a complicated geometry,
because the problem can be mapped to a simple geometry.



Chapter 3

Physical system and model

3.1 Physical System

Fig. 3.1 Large-scale dipolar flow about cylindrical defect on top of microtoroidal resonator,
causing orientation locking.

3.1.1 Physical System

The system consists of several physical components:

1. Length scales.—A thin film of helium consisting of both superfluid and normal fluid.
The helium film has been measured to be on the order of ∼10nm thick. The size of
the disk on top of the torus has a radius of 3.5 µm. The vortex core size is of order
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the atomic radius (∼ 1.5Ao) [17], and this scale is much smaller than the fluid layer
thickness.

2. Quasi-2D system.—However, there is significant normal fluid, and the normal fluid is
clamped to the surface, providing a significant source of damping. It is expected that
the damping will suppress vortex bending, allowing the fluid to be approximated as 2D.
The inner wall of the toroid acts as a hard wall boundary for vortex motion, creating a
well-defined disk domain for 2D vortex motion.

3. Superfluid excitations.—Since the normal fluid is clamped to the surface, the only
modes of superfluid excitation are those of third-sound, corresponding to phonon
excitations of the superfluid moving relative to a stationary normal cloud.

4. Superfluid forcing.—Due to the evaporation of helium caused by optical heating on the
toroidal perimeter, there is a large flux of superfluid through the system. According to
the experimental observations, the flow speed of superfluid through the system is of
order ∼ 1m/s [8]. Manufacturing defects cause focal points of heating. It is assumed
there will be a single dominant point of heating on the toroidal perimeter.

5. Symmetry breaking.—A cylindrical defect will cause a symmetry breaking state to
emerge with particular orientation locked to the defect.

6. Steady state.—Due to the strong forcing and damping, we assume the system involves
a quasi-steady state containing many quantum vortices but that it is approximately
neutral in net charge, consistent with orientation locking and dipolar flow. We assume
the steady-state vortex number is not changing appreciably with time. Such a system
will contain significant vortex energy. See Figure 3.1 for a schematic.

7. Frequency splitting.—Measurements of frequency splitting between oppositely propa-
gating photons in the mocrotoroid are consistent with a lower bound of 600 vortices
on the disk surface [21].

3.2 Motivating the Model

1. A large-scale dipolar flow structure comprised of quantum vortices will couple to
the phonon modes of the mechanical oscillator [9]. These vibrational modes in turn
generate a signal in the outcoupled light field, a probe of the superfluid dynamics.
These vortices may have characteristic dipole moment frequencies of oscillation that
are coupled to the mechanical modes of the micro-resonator. By using a point vortex
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model in a cylindrically bounded region, the vortex dynamics of this system are
modelled and analysed.

2. The optomechanical coupling between the superfluid motion and the mechanical
oscillator will be dominated by the large scale motion of the dipolar vortex structure [9].
In this project we focus on understanding the fluctuation spectra of a large-scale vortex
dipole.



Chapter 4

Point vortex model

4.1 Point vortices in the plane

In a three dimensional a fluid with vorticity, there are vortex lines that can stretch and tangle
into complicated geometrical configurations. Modelling vorticity in three dimensions is a
hard numerical problem to solve, which often leads to limiting the area of investigation to
a plane perpendicular to all the vortex lines. This limit gives vortices in two dimensions
with finite area, greatly reducing complexity. If the fluid is ideal and incompressible with
embedded vorticity, a further simplification can be made by using the point vortex model
[22].

Since the density of the vortices is low and the core size of the vortices in the thin film of
superfluid helium-4 is small relative to the size of the disk on top of the resonator, the vortices
can be approximated as points, making the point vortex model an ideal approximation to
model the system. So the expression for the vorticity is

ω = (∇×u)z = κ ∑
α

σαδ
(2)(r− rα), (4.1)

where σ =±1 for the sign of the charge. Charges higher than ±1 are possible, but in practice
they are unstable and only charges of ±1 are relevant in superfluid helium. The stream
function is related to the vorticity by Poisson’s equation

−∆ψ(r) = ω(r). (4.2)
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Now since

G(r)≡− 1
2π

ln |r|, (4.3)

is the Greens solution for a delta function in the plane, then

−∆G(r) = δ
(2)(r). (4.4)

The general solution for point vortices is

−∆ψ(r) = κ ∑
α

σαG(r− rα). (4.5)

This leads to the Hamiltonian for vortices in the plane

H ≡ mρ0

2

∫
d2r|u|2, (4.6)

Where m and ρ0 are the mass and density of the superfluid respectively. By expanding out

H =
ρ0

2

∫
d2r(∇ψ(r))2 =

−ρ0

2

∫
d2rψ(r)∆ψ(r) =

ρ0

2

∫
d2rψ(r)ω(r). (4.7)

Kirchoff was the first to show how to state the system in terms of Hamilton’s canonical
form [23]

H =−ρ0κ2

4π

N

∑
α

N

∑
α ̸=β

σασβ log
(rα − rβ

ξ

)
. (4.8)

where the healing length keeps the log dimensionless. Hamilton’s equations in their general
form are

q̇α =
∂H
∂ pα

, ṗα =− ∂H
∂qα

, (4.9)

The specific form of Hamilton’s equations for the point vortex model are

κσα ẋα =
∂H
∂yα

, κσα ẏα =− ∂H
∂xα

, (4.10)

Hence xα and yα are canonically conjugate. The Hamiltonian only has an interaction energy
as there is no kinetic energy term since in the point vortex model the vortices have no mass.
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Helmholtz was the first to introduce the equations of motion for the point vortex model in
1858 [24]. The vortex equations of motion are

ẋα = γ

N

∑
β ̸=α

−σβ yαβ

r2
αβ

, ẏα = γ

N

∑
β ̸=α

σβ xαβ

r2
αβ

, (4.11)

where xαβ = (xα − xβ ), yαβ = (yα − yβ ), r2
αβ

= x2
αβ

+ y2
αβ

and we define a convenient unit
of circulation

γ ≡ h̄
m

=
κ

2π
. (4.12)

4.2 Bounded Circular Domain

To apply the point vortex model to our system, the boundaries on the disk must be enforced.
The method of images can be used to solve the system. If a vortex is placed at position rα

inside disk of radius R, Then an image vortex placed at

rim
α =

rαR2

||rα ||2
, (4.13)

will ensure that there is no radial velocity on the boundary of the disk. Figure 4.1 shows
the arrangement of a positive charged vortex placed inside a disk of radius R and the
corresponding negative charged image vortex at the inverse point. The previously used
Greens function for the unbounded plane does not satisfied the new boundary condition. An
additional term must be added.

G(1)
B =

1
2π

log

(
R

||rα || · ||r− rim
α ||

)
. (4.14)

The total Greens function is now

GT =
1

2π

[
log ||r− rα ||− log

(
R

||rα || · ||r− rim
α ||

)]
. (4.15)

The Hamiltonian is then

H =−ρ0κ2

4π

[
N

∑
α ̸=β

log ||r− rα ||−
N

∑
α

log

(
R

||rα || · ||r− rim
α ||

)]
. (4.16)

Finally, by using a conformal map, the Hamiltonian and equations of motion are trans-
formed to be in terms of complex position.
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Fig. 4.1 Vortex and Image Vortex

H =−ρ0κ2

4π

[
N

∑
α ̸=β

σασβ log
||zα − zβ ||
|R2 − zαz∗

β
|
−

N

∑
α

σα log(R2 −|zα |2)

]
. (4.17)

Giving the equation of motion for vortex α as

ż∗α =−ρ0κ2

4π

[
N

∑
α ̸=β

σβ

zα − zβ

−
N

∑
α

σβ z∗
β

R2 − z∗
β

zα

]
. (4.18)



Chapter 5

Analytic Results

5.1 Stationary Solution

By exploiting the symmetry of the disk, the equation of motion for only one vortex is needed.
A positive vortex is placed at position z = d, and a negative vortex at z =−d where the phase
is set to zero for both vortices. Setting the phase to zero causes no loss of generality in the
results because of the symmetry of the disk.

x

y

R

z1 z2

(b)

(a)

✏

d

Fig. 5.1 a) Perturbation Schematic: d is the stationary distance from the origin, R is the
radius of the disk and z1 and z2 mark the positive and negative charged vortex respectively.
b) Shows the perturbation of each vortex, where ε is the magnitude of the perturbation.

The equation of motion (4.18) is then used

ż∗2 =−iγ

[
1

z2 − z1
+

z∗1
R2 − z∗1z2

−
z∗2

R2 −|z2|2

]
(5.1)

By setting the equation of motion equal to zero, the stationary points can be solved for.
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1
z2 − z1

+
z∗1

R2 − z∗1z2
−

z∗2
R2 −|z2|2

= 0 (5.2)

1
2d

− d
R2 +d2 −

d
R2 −d2 = 0 (5.3)

d2 =
−4R2 +

√
(4r2)2 +4R2

2
(5.4)

Solving gives a stationary point of d2 = R2(
√

5−2), or

d =
R

φ 3/2 (5.5)

where φ = (1+
√

5)/2 is the golden ratio.

5.2 Linear Perturbation

Next the two vortices are perturbed by small amount ε . Initially the perturbation was
anticipated to result in circular orbits about the stationary positions but this approach lead to
unphysical results. Here we assume that the perturbation will result in elliptical orbits about
the stationary positions and we find consistent solutions. The initial equations are

z1 =−d − ε(eiωt −qe−iωt) (5.6)

z2 = d + ε(e−iωt −qeiωt) (5.7)

The equation of motion for ż∗2 = iωε(eiωt +qe−iωt) is then
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iωε(eiωt +qeiωt) =−iγ

[
1

(d + ε(e−iωt −qeiωt))− (−d − ε(eiωt −qe−iωt))

− d + ε(e−iωt −qeiωt)

R2 − (d + ε(e−iωt −qeiωt))(d + ε(e−iωt −qeiωt))

− d + ε(eiωt −qe−iωt)

R2 − (d + ε(e−iωt −qeiωt))(d + ε(eiωt −qe−iωt))

]
(5.8)

We expand and simplify

−ωε

γ
(eiωt +qeiωt) =

[
1

(2d +2ε cosωt(1−q)

− d + ε(e−iωt −qeiωt)

R2 +d2 +2dε(e−iωt −qeiωt)

− d + ε(eiωt −qe−iωt)

R2 −d2 −2dε cosωt(1−q)

]
(5.9)

Since ε is small, we can Taylor expand to first order

−ωε

γ
(eiωt +qeiωt) =

1
2d

(
1− ε

d
(1−q)cosωt

)
− d + ε(e−iωt −qeiωt)

R2 +d2

(
1− 2εd

R2 +d2 (e
−iωt −qeiωt)

)

−d + ε(eiωt −qe−iωt)

R2 −d2

(
1+

2dε

R2 −d2 (1−q)cosωt

)
(5.10)

The stationary solution (5.3) can be identified, eliminating three terms, to give, upon
expanding the complex exponentials and dropping the common factor of ε:

−ω

γ
[(1+q)cosωt + i(1−q)sinωt] = [i(1+q)sinωt − (1−q)cosωt]

R2 −d2

(R2 +d2)2

− [(1−q)cosωt + i(1+q)sinωt]
1

R2 −d2

− (1−q)cosωt

(
1

2d2 +
2d2

(R2 −d2)2

)
(5.11)
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Identifying the real and imaginary parts gives

ω

γ
=

(1−q)
(1+q)

1
l2
1
, (5.12)

ω

γ
=

(1+q)
(1−q)

1
l2
2
. (5.13)

where we define the two convenient length scales

1
l2
1
≡ R2 −d2

(R2 +d2)2 +
1

R2 −d2 +
1

2d2 +
2d2

(R2 −d2)2 (5.14)

1
l2
2
≡ R2 −d2

(R2 −d2)2 −
R2 −d2

(R2 +d2)2 , (5.15)

and equating (5.14) with (5.15) we find the aspect ratio of the ellipse

1−q
1+q

=
l1
l2
, (5.16)

and the frequency of orbit

ω

γ
=

1
l1l2

(5.17)

We can now use properties of the Golden Ratio ϕ , that satisfies several useful equations,
summarised here:

ϕ
2 −ϕ −1 = 0, ϕ(ϕ −1) = 1,

1
ϕ

= ϕ −1, 2−ϕ =
1

ϕ2 =
1

ϕ +1
, ϕ =

ϕ +1
ϕ

,

(5.18)

Using these properties, we have

d2 = R2/ϕ
3, R2 −d2 = 2R2/ϕ

2, R2 +d2 = 2R2/ϕ, (5.19)

and we then find the lengths

1
l2
1
=

1
2R2 (1+ϕ +ϕ

2 +ϕ
3) =

1
2R2 (3+4ϕ),

1
l2
2
=

ϕ

2R2 , (5.20)
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and the aspect ratio

l1
l2

=
√

1+3ϕ ≃ 2.4195 (5.21)

and finally, choosing the unit γ = h̄/m as defined in (4.12), from (5.17) and (5.20) we have
frequency

ω =
h̄

2mR2

√
4+7ϕ ≃ h̄

mR2 1.9574. (5.22)

In summary, ω is the frequency of dipole oscillations for small amplitude perturbations,
and the aspect ratio defines the ratio of the elliptical trajectories the vortices trace out when
oscillating around the stationary positions.



Chapter 6

Numerical methods

6.1 Units

The computational simulations of the point vortex model used non-dimensional units. This is
done to avoid the computer calculating numbers very large or very small numbers, which
would introduce numerical error. The physical variable is denoted by the variable on its own,
the dimensionless variable with a bar over top and the characteristic length is given by the
variable with a subscript of zero. The variables

E = ĒE0 x0 = ξ L = L̄L0 (6.1)

define the energy, length and angular momentum. The following choices for the charac-
teristic lengths were made:

E0 =
ρ0h̄
m

(6.2)

x0 = ξ (6.3)

where ξ is the healing length of the superfluid. In helium II, the healing length is ≈ 1.5Ao

[17]. The non-dimensional radius of the disk is also defined in terms of the healing length.
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R = R̄x0 = R̄ξ (6.4)

The physical radius of the inner disk in the Queensland’s team experiment had a radius of
2.5µm. Using the Hellium II healing length gives a non dimensional radius of R̄ ≈ 16,666.
The characteristic time scale, t0, is defined as

t0 =
(R̄ξ )2m

h̄
(6.5)

And angular momentum

L0 = R2
ρ0κ (6.6)

In what follows, all data is presented in terms of dimensionless variables, unless otherwise
stated.

6.2 Numerical model

Mathew Reeves wrote the original code in Matlab for the point vortex model that the
simulations were built from. The integration routine used was ode45, with a relative tolerance
of 1×10−3. The initial code base was heavily modified, to generate vortex clusters, calculate
angular momentum, anneal vortex states and in the later stages of the project the entire code
base was changed to use complex positions rather than x and y coordinates.

The simulation represents vortices of positive sign (anti-clockwise rotation) as red points,
and vortices of negative sign (clockwise rotation) as blue points. Vortices can be placed
in specific positions inside the domain, or they can be generated automatically to preset
conditions. In the interests of simplicity and consistency, all simulations had a radius
of R̄ = 100. The macroscopic dipole moment was calculated for each time step in the
simulations. This is done by taking the weighted sum of the distance of positive and negative
vortices from the origin, and dividing the result by the radius of the disk

D =
1
N ∑

α

καrα . (6.7)
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It is important to understand where the simulation can produce unexpected behaviour.
The equations of motion for the point vortex model are

ẋα = γ

N

∑
β ̸=α

−σβ yαβ

r2
αβ

, ẏα = γ

N

∑
β ̸=α

σβ xαβ

r2
αβ

, (6.8)

where xαβ = xα − xβ , yαβ = yα − yβ , r2
αβ

= x2
αβ

+ y2
αβ

. The point vortex equations are
known as a stiff numerical problem. If the inter-vortex distance is very small, the algorithm
for the equations of motion is going to compute a very large velocity. If the value of the
velocity is too large, the computer will not be able to meet the tolerance requirements of the
integration routine and halt. To avoid the simulation halting a softening factor was introduced.
This was done by adding 0.0001 to r2

αβ
each time the equations of motion are calculated.

The cost of the softening factor is to weakly break the conservation of energy. Softening
is equivalent to adding some small scale damping which is physically justified [25]. Since
the softening factor is independent of direction, the violation of energy conservation should
fluctuate in no particular direction around the initial energy value for large numbers of close
vortex approaches. The softening factor also introduces the possibility of a vortex being
pushed out of the domain of the disk. These issues make it imperative to check that all
vortices remain inside the domain for the duration of the simulation and that the energy is
conserved to a reasonable approximation.

6.3 Numerical model tests

Simple checks were preformed to ensure that the computational simulations corresponded
with known analytic solutions of the point vortex model. First a vortex was placed close to
the boundary. The velocity should be greater for a vortex close to the boundary than a vortex
at a distance further away. The direction that the positive and negative charged vortices move
within the domain must also agree with the model. The vortex simulation produced the
expected behaviour with these simple checks.

Next the validity of the simulation was checked with the stationary solutions calculated in
Chapter 5. In figure 6.1, two vortices of opposite charge were initially placed at the stationary
distance d from the origin. The configuration was then simulated for t̄ = 3001 steps. The
vortices remained phase locked at the stationary distance from the origin in agreement with
the analytic result.
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Fig. 6.1 a) Two vortices remaining at each stationary distance d after t̄ = 3,001 steps with
disk radius R̄ = 100. b) Energy versus time for the simulation in figure a) .

Checking the energy conservation is an important task to ensure the simulation working
correctly. Figure 6.1b, shows the energy of the system versus time. The energy was reason-
ably conserved to at least 4 decimal places for the total duration of the simulation giving
confidence in the result.
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Fig. 6.2 Power spectral density plot of two vortices initially placed at the stationary points
and evolved for 3001 time steps

The power spectral density of the two vortex stationary system was calculated. Figure
6.2 shows the power spectral density of the dipole moment centred around a frequency of
zero, agreeing with the analytic prediction of the vortices remaining stationary.



Chapter 7

Numerical Results

7.1 Overview of results

First the trajectories of two vortices perturbed from the stationary positions is investigated.
To eliminate dipolar clusters precessing around the origin two general approaches are used.
This first is to create vortex clusters with zero angular momentum, and the second is to break
the symmetry of the disk.

There are two methods used to create the vortex clusters with zero angular momentum.
The first method is to create symmetrical circular arrangements of vortices around the
stationary points or around the points of perturbation. The second method is to populate the
disk with random vortices in symmetric areas around the stationary or perturbation points,
and then work the arrangement into a state of low angular momentum and specific energy by
a process called annealing.

7.2 Perturbation trajectories for two vortices

To check the analytic prediction for the aspect ratio of the ellipse, two vortices of opposite
charge in the stationary configuration were perturbed by varying magnitudes. Figure 7.1
shows the trajectories of the vortices after perturbation by discrete magnitudes. The smallest
trajectory of each vortex result from a perturbation magnitude of 1/50 of the distance from the
origin to the stationary position. The largest trajectories result from a perturbation magnitude
of 2/3 of the distance from the origin to the stationary point.

The aspect ratio was calculated by taking the ratio of the largest width to the largest length.
Table 7.1 shows the results from perturbation by magnitude ε . The smallest perturbation gives
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Fig. 7.1 Vortex Trajectories as magnitude of perturbation is changed

Table 7.1

ε
d
50

d
10

d
5

d
3.5

d
2

d
1.5

Aspect Ratio 2.4195 2.4155 2.4033 2.3872 2.3229 2.2512
Agreement 100% 99.83% 99.33% 98.67% 96.01% 93.04%

an exact agreement to at least 4 digits. The largest perturbation is still in good agreement, at
93.04%. The analytic prediction for the ratio was

l1
l2

=
√

1+3ϕ ≃ 2.4195 (7.1)

7.3 Dipolar vortex clusters at the stationary positions

To investigate the stability of a large number of vortices clustered around each stationary
point, two domains were defined around each stationary point as shown in figure 7.2. The
radius of each circular domain was d/4. The circular domains were randomly populated
with vortices of the correct sign in order to create a large dipole. This method creates two
clusters of vortices whose centres of mass are not perfectly at the stationary points, but as the
number of vortices is increased each centre of mass approachs the stationary points by the
law of large numbers.

The simulation of the dipolar clusters was run until t̄ = 100,000. Figure 7.3a shows the
positions of the vortices at the final time step. The green and magenta lines trace out the
history of the centre of mass for the positive and negative signed clusters respectively. The
vortex clusters have spread out, but the energy of the system has been conserved. With no
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Fig. 7.2 Bounded circular domain with smaller circular domains around stationary points
available to be populated by vortices. Vortices of positive sign are randomly populated inside
the dashed red circle on the right while vortices of negative sign are randomly populated
inside the dashed blue circle on the left.
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Fig. 7.3 a) Two vortex clusters of opposite sign with 50 vortices each at time t̄ = 100,000.
The black line represents the macroscopic dipole moment. The green and magenta lines trace
out the centre of mass of each cluster through time. b) Magnification of centre of mass lines
at time t̄ = 100,000. The green dots mark out the centre of mass positions of the positive
vortex cluster and the magenta dots the negative vortex cluster.
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defect to break the symmetry of the disk, the centre of mass of each cluster has precessed
around the origin. The negatively signed vortices have precessed at a closer distance to the
origin than the positively signed vortices, but this is only an artefact of the random population
of vortices specific to this simulation.

Each cluster displayed a complex internal motion, but the centre of mass of each cluster
did not deviate far from the stationary distance. Despite a small perturbation being built into
the system due to the random population process, there does not appear to be an elliptical
trajectory around the relative stationary points for each cluster. Figure 7.3b shows the centre
of mass traces for each cluster in a small region of the disk. The traces appear chaotic, with
no clear pattern.
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Fig. 7.4 a) Two vortex clusters of opposite sign with 50 vortices each at time t̄ = 10,000.
The black line represents the dipole moment. The green and magenta lines trace out the
centre of mass of each cluster through time. b) Magnification of centre of mass lines at time
t̄ = 10,000. The green dots mark out the centre of mass positions of the positive vortex
cluster and the magenta dots the negative vortex cluster.

To investigate closer, the system is observed over different intervals of time. Figure 7.3a
shows the system from t̄ = 1 to t̄ = 10,000. The clusters have not yet made an entire rotation
around the origin. In figure 7.4b, the close up of the centre of mass trace lines show no
elliptical trajectories, only slight variations around a circular path.

Figure 7.5a shows the system between the time intervals of t̄ = 40,000 to t̄ = 50,000.
There are parts of the trajectories that are clearly elliptical. Figure 7.5b shows the trajectories
clearly. There is an elliptical loop followed by a relatively straight line joining the next loop
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Fig. 7.5 a) Two vortex clusters of opposite sign with 50 vortices each from time t̄ = 40,000
to time t̄ = 50,000. The black line represents the dipole moment. The green and magenta
lines trace out the centre of mass of each cluster through time. b) Magnification of centre of
mass lines from time t̄ = 40,000 to time t̄ = 50,000. The green dots mark out the centre of
mass positions of the positive vortex cluster and the magenta dots the negative vortex cluster.

for each clusters centre of mass. There appears to be an elliptical loop for a cluster when the
other cluster is following a relatively straight trajectory.

The last interval of time to be observed is from t̄ = 90,000 to t̄ = 100,000. Figure 7.6a
shows that the centre of mass for each cluster have stopped tracing out consistent patterns
in this time interval relative to the pervious time interval. The lengths and widths of the
elliptical trajectories vary by a large amount. Figure 7.6b shows the upper right region of the
disk, where the trajectories are clear. The motion of the positive signed cluster in this region
is becoming chaotic.

Putting the whole picture together, the system starts out precessing about the origin since
the centre of mass of each cluster is not precisely at the stationary points. The small deviations
from the stationary points cause the precession trajectories to deviate. As the system evolves,
the deviations grow and behave like a perturbation. But the analytic perturbation of two
vortices perturbs both vortices by the same magnitude in opposite directions. The random
effective perturbation of each cluster in this simulation leads to the chaotic trajectories. To
investigate whether the trajectories will alternate between elliptical and chaotic requires a
simulation over a longer period of time.
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Fig. 7.6 a) Two vortex clusters of opposite sign with 50 vortices each from time t̄ = 90,000
to time t̄ = 100,000. The black line represents the dipole moment. The green and magenta
lines trace out the centre of mass of each cluster through time. b) Magnification of centre of
mass lines from time t̄ = 90,000 to time t̄ = 100,000. The green dots mark out the centre of
mass positions of the positive vortex cluster and the magenta dots the negative vortex cluster.

Despite the inability to resolve the aspect ratio for the sometimes existent elliptical trajec-
tories of the vortex clusters, the frequency of oscillation for the clusters can be determined
by examining the fluctuation spectra of the macroscopic dipole moment.
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Fig. 7.7 Power spectrum of the macroscopic dipole moment for large dipolar vortex clusters
at the stationary points.



7.4 Perturbed dipolar vortex clusters 32

Figure 7.7 shows the power spectral density of the macroscopic dipole moment. The
dominant zero mode signal was removed by subtracting the mean of the macroscopic dipole
moment from the macroscopic dipole moment before Fourier analysis. Two sharp and
narrow peaks are centred around the numerical frequency of ω =±0.009739. To check this
against the analytic result that was derived in Chapter 5, the numerical angular frequency
must be divided by half the number of vortices in the simulation and multiplied by the
non-dimensional radius of the disk squared. This is because the analytic angular frequency
was calculated for two vortices, but each cluster has N/2 times that many vortices. The
multiplication by the non-dimensional radius squared returns the result to a form easy to
compare with the analytic result. For a reminder, the analytic result was

ω ≃ h̄
mR2 1.9574. (7.2)

The numerical angular frequency in comparable form is

0.009739
50

R2 = 1.9478 (7.3)

This result is in strong agreement with the analytic prediction of angular frequency about
the stationary positions, despite the trajectories of the centre of masses behaving erratically.

7.4 Perturbed dipolar vortex clusters

By using the dipolar vortex cluster generating process from the previous section, but shifting
the centre of both circular domains by a distance ε = d

10 away from the origin, the perturbation
of two large dipolar clusters can be investigated. Figure 7.8a shows the simulation from time
t̄ = 1 to time t̄ = 3,000. The green and magenta lines trace out the history of the centre of
mass for the positive and negative signed clusters respectively. Figure 7.8b shows the traces
are elliptical as they precess about the origin. An effective algorithm to calculate the average
aspect ratio of these elliptical trajectories has not yet been implemented. The fluctuation
spectra of the macroscopic dipole moment gives an angular frequency of

0.0095505
50

R2 = 1.9101 (7.4)
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Fig. 7.8 a) Two vortex clusters of opposite sign with 50 vortices each from time t̄ = 1 to time
t̄ = 3,000. The black line represents the dipole moment. The green and magenta lines trace
out the centre of mass of each cluster through time. b) Magnification of centre of mass lines
from time t̄ = 1 to time t̄ = 3,000. The green dots mark out the centre of mass positions of
the positive vortex cluster and the magenta dots the negative vortex cluster.

a 97.5% agreement with the analytic result. Clearly the perturbation of two dipolar vortex
clusters comprised of N vortices behaves like the perturbation of two vortices of charge N/2.

7.5 Symmetric zero angular momentum states

To eliminate the precession of the dipolar vortex clusters about the origin, symmetric circular
rings of vortices were created around each stationary point such that there was no net angular
momentum. The distance between the circular rings can be scaled so that the energy of the
system can be varied. A smaller distance between vortices of like sign increases the energy
of the system. In each simulation in this section, there were 24 vortices in total, with 12
vortices of positive sign around the stationary point to the right, and 12 vortices of negative
sign around the station point to the left.

The scale of the distance between the circular rings of vortices were chosen to create
energy states starting from Ē = 60 down to Ē = 10 with steps of Ē = 5 in between. Figure
7.9 shows these initial states. The highest energy states are very dense, almost point like. In
order to probe the behaviour of the system at lower energies, the circular arrangement can
not be used because scaling the circular rings further would place vortices outside of the disk.



7.5 Symmetric zero angular momentum states 34

x̄
-100 0 100

ȳ

-100

-50

0

50

100

x̄
-100 0 100

ȳ
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Fig. 7.9 Initial symmetric circular vortex states. Top row from left to right shows initial
energy of 60, 55, 50, The second row shows 45, 40, 35, third row 30, 25, 20 and the last row
shows 15, 10

Each simulation was run until t̄ = 100,000. The fluctuation spectra of the dipole moment
was calculated for each energy state. In order to remove the dominant zero mode signal
from the fluctuation spectra, the mean of the macroscopic dipole moment was subtracted. To
investigate how the system diverges from the analytic results as the energy is changed, the
widths of the spectrum around the dipole frequency peaks were measured.

Table 7.2 shows the results of the spectral analysis of the macroscopic dipole moment.
The frequencies have again been converted into a form for easy comparison with the analytic
result, by diving by N/2 and multiplying by the non-dimensional radius squared. The high
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Table 7.2 Circular Symmetric States

Energy Dipole Frequency Analytic Agreement FWHM

60 1.9375 98.98% 0.8713

55 1.9375 98.98% 0.8689

50 1.9375 98.98% 0.8689

45 1.9375 98.98% 0.7064

40 1.9375 98.98% 0.7418

35 1.9375 98.98% 0.7678

30 1.9375 98.98% 1.364

25 1.9900 98.33% 1.007

20 2.0417 95.69% 2.715

15 1.9375 98.98% 2.041

10 1.6758 85.61% 1.052

energy states give a consistent frequency value in close agreement with the analytic result.
The lower energy states diverge from this result, with some states giving a higher frequency
than the analytic result and others a lower frequency.

The full width half maximums of the dipole frequency peaks were calculated by fitting a
Gaussian over the peaks and using the relation

FWHM = 2
√

2ln2σ , (7.5)

where σ is the standard deviation of the Gaussian fit. The high energy states have a con-
strained width, while the low energy states have divergent widths.

To get a better sense of what is going on in the system, we compare the spectra and final
states of the system at the lowest energy Ē = 10 and the highest energy Ē = 60. Figure
7.10a shows the power spectrum for the system with energy Ē = 10. The red line marks the
analytic result for the dipole frequency. The spectrum around the dipole frequency is made
up of three large peaks of varying power, with smaller oscillations about them. This is in
contrast to the power spectrum for the system with energy Ē = 60 shown in figure 7.11a,
where the there is a narrow and sharp peak about the dipole signal, with the dashed red line
marking the analytic signal that is in very close agreement.

Figure 7.10b shows the final state of the system with energy Ē = 10 at t̄ = 100,000 . The
vortices have spread out into a non symmetrical arrangement, with the centre of mass of
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Fig. 7.10 Power spectrum of the macroscopic dipole moment and final state of simulation for
system with energy 10. The red lines show the analytic frequency.

each cluster having precessed around the origin. Figure 7.11b shows the circular vortex state
with energy Ē = 60 at t̄ = 100,000. The vortices have maintained their dense symmetrical
arrangement.

In summary, the lower energies evolve into chaotic states, while the high energy states
maintain their symmetric form. These dense symmetric arrangements act as if each cluster
were vortex of charge N/2, where N is the number of vortices in the arrangement. Despite
no precession around the stationary point, the fluctuation spectra still gives a small angular
frequency signal mostly clearly seen in the power spectrum of the lowest energy state. To
see precession around the origin the system by the highest energy state would require the
system to be evolved for a longer period of time.

7.6 Annealed zero angular momentum states

In order to create dipolar vortex clusters with lower energy and that are more likely to occur
physically, an annealing process is applied to the result of vortices being randomly populated
inside the smaller circular domains. The annealing process randomly selects a vortex. It
then generates a new random position for the vortex within the domain of the disk. If the
new location lowers the angular momentum and moves towards the desired energy value, the
the new location is accepted and the annealing process selects another vortex and repeats
until the required angular momentum and energy level conditions are met to within a given
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Fig. 7.11 Power spectrum of the macroscopic dipole moment and final state of simulation for
system with energy Ē = 60. The red lines show the analytic frequency.

tolerance. The tolerance for the energy values was Ē = ±0.1 of the target value, and the
tolerance for the angular momentum was L̄ =±1×10−4.

The initial zero angular momentum states that were generated by this annealing process
are shown in Figure 7.12. The top row from left to right has an energy of Ē = 45, Ē = 40
and Ē = 35. The middle row has energies of Ē = 30, Ē = 25 and Ē = 20 and the bottom row
has energies of Ē = 15, Ē = 10 and Ē = 5. By positioning positive and negative vortices
together, the annealing process can reduce the energy of the system.

The spectra of the macroscopic dipole momentum for each energy was calculated, with
the mean of the macroscopic dipole moment subtracted from the macroscopic dipole moment
before Fourier analysis. Figure 7.13 shows the power spectral density of the annealed states
from highest energy to lowest. The x axis has been limited to show only the parts of the
spectrum with any significant signal. At high energy, there is a strong dipole signal. There is
also a large very low frequency centred around zero.

Table 7.3 shows the dipole frequency for the annealed energy states. The high energy
states give a reasonable agreement with the analytic frequency prediction. A curve was fit to
the dipole frequency for each energy state and the divergence from the analytic prediction
but the relationship between the two variables while following a trend is stochastic. The full
width half maximum could not be calculated, as the peaks in the power spectrum were no
longer clearly defined, due to line broadening with several peaks contributing around the
dipole frequency.
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Fig. 7.12 Initial annealed zero angular momentum vortex states. The top row from left to
right has an energy of Ē = 45, Ē = 40 and Ē = 35. The middle row has energies of Ē = 30,
Ē = 25 and Ē = 20 and the bottom row has energies of Ē = 15, Ē = 10 and Ē = 5.

As part of the checks that are done for each result, an anomaly appeared for the lowest
energy state. Figure 7.14 shows the angular momentum versus time for each of the annealed
zero angular momentum energy states. The angular momentum is not perfectly conserved for
any states, but for the systems with initial energy Ē = 45 down to Ē = 10 it is approximately
conserved. The lowest energy system, Ē = 5 has a divergent angular momentum at t̄ = 2343.
By investigating the error, it was found that the softening factor had placed some vortices
outside the boundary of the disk.

Three more attempts were made to simulate the Ē = 5 state. The annealing process was
repeated and inspected for any anomalies. The generated state was then run with a reduced
softening factor of 1×10−5, but vortices continued to be pushed across the boundary. The
softening factor was reduced by an order of magnitude again, but the problem persisted.
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Fig. 7.13 Power spectral density of the macroscopic dipole moment for the zero angular
momentum annealed energy states. The top row from left to right has an energy of Ē = 45,
Ē = 40 and Ē = 35. The middle row has energies of Ē = 30, Ē = 25 and Ē = 20 and the
bottom row has energies of Ē = 15, Ē = 10 and Ē = 5.

Finally, the softening factor was removed, but the computation halted as the integration
routines tolerances could not be met. These issues make the results from the Ē = 5 states
invalid. To proceed to simulate lower energy states with high vortex numbers, the introduction
of boundary and vortex-antivortex pair annihilation may need to be introduced.
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Table 7.3 Annealed zero angular momentum states

Energy Dipole Frequency Analytic Agreement

45 1.7970 91.81%

40 1.6462 84.10%

35 1.5456 78.96%

30 1.5080 77.04%

25 1.4828 75.75%

20 1.3320 68.05%

15 1.1058 56.49%

10 0.7540 38.52%

5 0.3896 19.90%
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Fig. 7.14 Angular momentum versus time. The top row from left to right has an energy of
Ē = 45, Ē = 40 and Ē = 35. The middle row has energies of Ē = 30, Ē = 25 and Ē = 20
and the bottom row has energies of Ē = 15, Ē = 10 and Ē = 5. The lowest energy state
clearly diverges.



Chapter 8

Conclusion

8.1 Concluding Remarks

The motivation for this study came from the experiment at the University of Queensland
[8]. The physical experiment was a complex condensed matter system with diverse physical
features, many of which are very challenging to model. We choose to focus on the character-
istics of the macroscopic vortex dipole fluctuations in the superfluid helium II believing they
were relevant to the experiment.

We found that for high energy dipolar clusters, the dominant source of fluctuations stems
from fluctuations of the macroscopic dipole moment. We calculated the frequency of this
mode analytically and found good agreement with our numerical results over a broad range
of energies, particularly at the high energy limit. A systematic study of the relationship
between the macroscopic dipole moment and the energy of the system was presented, with
the line broadening of the spectrum also explored.

Given that the fluctuations of the macroscopic dipole moment may couple to the phonon
modes of the mechanical oscillator and optical modes of the evanescent optical field, we
hope to tie these results to the motivating experiment in the near future. An explanation of
the work that is continuing is briefly discussed in appendix A.

The analytic results derived in this project have broader applications than the motivating
experiment. Clusters of vortices can be produced in BEC’s [26] and recent work in systems
with negative temperatures in confined two-dimensional quantum fluids produce clusters of
high energy vortices in similar form to the work presented here [27].
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Work in progress
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Fig. A.1 Vortices in an annular domain.

To better approximate the physical system, work has begun to put a cylindrical defect
into the simulations. A paper by P.K. Oktay outlines the process to derive the hamiltonian
and equations of motion of vortices in the annular domain [28]. As shown in figure A.1,
the simulations for vortices in an annular domain are currently working. The point vortex
model in the annular domain requires the use of Q-calculus to specify the infinite set of
image charges. The numerical implementation uses a truncated form of the full equations of
motion.

The Hamiltonian for the annular domain may not be able to be manipulated to move the
inner cylinder from the origin to another position to mimic the defect. If the Hamiltonian for
the annular domain can not be modified, a paper by D. Crowdy [29] contains the formalism
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for point vortices inside multiply the connected domain. The formalism is mathematically
complicated, but can be used to derive the specific solution for an inner cylinder inside the
circular domain to mimic the defect.
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