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Abstract

Atomic Bose-Einstein condensates (BEC) are systems of interacting matterwaves that can
exist in very low temperatures, demonstrating interesting nonlinear and finite temperature
behaviour. The stochastic projected Gross-Pitaevskii equation (SPGPE) is used as a model
for finite temperature BEC, by treating the low energy modes as a coherent region, and
the high energy modes as a thermal reservoir. In this work we investigate the regime
where particle exchange between these two regions is forbidden. This is achieved by having
the two regions containing quantum mechanically distinguishable particles, a regime which
occurs in the experimental technique of sympathetic cooling. Because the only allowed
interactions between the two regions are number conserving, we are able to employ the
energy-damped stochastic Gross-Pitaevskii equation.

The centre of mass motion of the condensate is found analytically to have the form of a
damped harmonic oscillator subject to a random driving force. Analytic expressions for
the damping and noise were found in terms of the system parameters.

These results were validated by finding analytical expressions for the two-time correlation
functions of position and velocity for the damped harmonic oscillator with a random driving
force, and comparing these with two-time correlation functions found using SPGPE simu-
lations. Two physical regimes were investigated, one with a thermal cloud and condensate
of 87Rb , and one with a thermal cloud of 87Rband a condensate of 23Na .

This comparison showed excellent agreement for low temperatures, as was expected because
for our analytic results we had assumed the coherent region wavefunction had the form of
the zero temperature Thomas-Fermi state. The higher temperature validity regime was
investigated using the Penrose-Onsager criterion, and showed the expected divergence of
the condensate wavefunction from the Thomas-Fermi state.
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Chapter 1

Introduction

Bose-Einstein condensation, was first achieved in a dilute alkali vapour in 1995 [1], and
since then there has been significant experimental and theoretical work into the various
properties and phenomena of these ultracold matterwaves. The Gross-Pitaevskii equation
provides an excellent description of the zero temperature limit [2], describing all interactions
in a single interacting condensate mode. The zero temperature limit is not physically
attainable and we are forced to work at finite temperature, however at these temperatures
the non-condensate fraction quickly becomes a significant feature of the system and as such,
finite temperature theories must be employed, especially when approaching the critical
temperature.

One finite temperature approach is the stochastic projected Gross-Pitaevskii equation [3],
which treats the lower energy modes as a classical field, and the higher energy modes
as a thermal reservoir. This theory takes into account the thermal interactions between
the non-condensate and condensate regions. This theory includes both number-damping
processes, in which the number of particles in the condensate changes, and energy-damping
processes, where the number of particles is conserved, but energy is exchanged between
the regions.

In this project we investigate the e↵ects of energy-damping by considering a situation where
number-damping processes are forbidden; where the thermal reservoir is a separate species
to the low energy classical field. This is analogous to the sympathetic cooling regime, where
a condensate is surrounded by an uncondensed thermal cloud with the aim of transferring
energy between the two without the losses of particles that come from evaporative cooling
[4].

We follow from the results of [5], and [6], in the regime where the condensate is pseudo-
one dimensional, and the surrounding thermal cloud is three dimensional. Both of the
components are contained in separate but overlapping harmonic potentials. An important
theorem that can be applied to trapped interacting gases is the Kohn theorem, which
states that the centre of mass motion will be independent of the interparticle interactions.
Because of this, we expect the centre of mass motion of the condensate in a harmonic trap
to undergo simple harmonic motion. This motion will be modified by the interactions with
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the thermal component, resulting in damping and thermal noise.

The aims of this research are:

1. To find an analytical description for the centre of mass motion of the energy-damped,
one dimensional condensate in a three dimensional thermal cloud. The analytical
description of this quantum system will be understood by relating it to a simple
classical model.

2. To find consistent physical parameters where our pseudo 1D model is valid while also
being experimentally achievable.

3. To test our analytic results, by simulating the condensate numerically using the
SPGPE with the physical parameters, and to find two-time correlation functions to
compare with the classical model.
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Chapter 2

Background

2.1 Bose-Einstein Condensation

Bose-Einstein condensation is a phenomena that may occur in a dilute gas of indistin-
guishable bosonic particles at very low temperature, in the order of 100 nK. This was first
predicted by Einstein in 1924 based on the work of Bose on photon statistics. For an ideal
non-interacting Bose gas at equilibrium the statistics can be described by the Bose-Einstein
distribution[2],

nBE(✏) =
1

e(✏�µ)/kBT �1
(2.1)

where nBE(✏) is the number of particles with energy ✏, in a system with chemical potential
µ and temperature T . The chemical potential µ imposes a constraint on the number of
particles in the system. Below a critical temperature Tc where µ approaches the lowest
energy state, or in the ideal case µ approaches 0, a phase transition occurs resulting in
macroscopic occupation of the ground state. At this temperature the de Broglie wavelength
of an individual particle becomes comparable to the mean interparticle distance, this results
in a coherent matter wave which is the Bose Einstein condensate.

Early evidence of BEC was in superfluid Helium, but the strong interparticle interactions
stop the formation of a large condensate fraction. The first BEC achieved in an atomic
gas was in 1995[1], using 87Rb in a magnetic trap at 170 nK.

2.2 Zero Temperature Theory

2.2.1 Gross-Pitaevskii Equation

At zero temperature BEC is well described by the Gross-Pitaevskii Equation (GPE),

i~@ (x, t)
@t

=

✓

� ~2
2m
r2 + V (x, t) + g| (x, t)|2

◆

 (x, t) (2.2)
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2.2. ZERO TEMPERATURE THEORY

where V (x, t) is the external potential. The variable g is the nonlinear interaction coe�cient
and characterises the interactions between the particles in the condensate. It is related to
the s-wave scattering length, as, and mass, m, of the condensate particles by

g =
4⇡as~2

m
. (2.3)

The GPE describes the dynamics of BEC well when the temperature is much less than the
critical temperature. However when the temperature rises and the non-condensate fraction
becomes more appreciable, the condensate, non-condensate and the interactions between
the fractions play a significant role, and the GPE is not su�cient.

We can also define the time-independent GPE,

µ (x) =

✓

� ~2
2m
r2 + V (x) + g| (x)|2

◆

 (x), (2.4)

where µ is the chemical potential of the condensate.

2.2.2 Thomas-Fermi Approximation

A solution to the time-independent GPE at zero temperature is obtained by assuming the

kinetic term is negligible, and choosing the wavefunction ansatz, � = exp
⇣

� iµt
~

⌘

 (x).

For this ansatz the density is has no time dependence and only the phase evolves in time.
Neglecting the kinetic energy terms is the essence of the Thomas-Fermi approximation.
Substituting this into the GPE we obtain,

µ exp

✓

� iµt

~

◆

 (x) =
�

V (x) + g| (x)|2
�

exp

✓

� iµt

~

◆

 (x). (2.5)

For  (x) 6= 0 this can be solved for a region of the stationary Thomas-Fermi wavefunction,
and for other regions we say  (x) = 0, which is also consistent with our ansatz. This result
can be written as

 TF (x) = max



0,

r

1

g
(µ� V (x))

�

. (2.6)

In a 1D system with a harmonic potential V (x) = 1
2m!

2x2, this becomes

 TF (x) =

8

<

:

r

µ
g

⇣

1� x2

R2

⌘

|x| < R

0 |x| > R

(2.7)

where R is the Thomas-Fermi radius,

R =

r

2µ

m!2
. (2.8)
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CHAPTER 2. BACKGROUND

Hence the Thomas-Fermi density profile is an inverted parabola for |x| < R ,

nTF (x) = | TF (x)|2 = n0

✓

1� x2

R2

◆

(2.9)

with peak density n0 = µ/g. This is a very good zero temperature approximation. For the
wavefunction of condensate in a harmonic trap, the main di↵erence is a smoothing out of
the corners around x = ±R due to the kinetic energy contribution, Figure 2.1.
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Figure 2.1: Comparison of the Thomas-Fermi state with the real ground state. (a) The Thomas-
Fermi State in red dashes, compared with the real ground state, the black line. The green line
shows the harmonic trap potential, and the blue dashed line shows the system chemical potential,
µ, in units of ~!. (b) The divergence at x = +R, showing how the ground state di↵ers from the
Thomas-Fermi at the edge of the condensate.

2.3 Kohn Mode Oscillations

The Kohn Theorem, was discovered in 1961 by W. Kohn, and states that the cyclotron
resonance of an interacting electron gas is independent of the interparticle interactions[7].
This was later generalised to the case of an interacting harmonically trapped atomic gas
by Dobson [8].

In the context of harmonically trapped BEC the Kohn theorem may be applied, leading to
a mode of oscillation known as the Kohn mode. This form of oscillation is characterised by
rigid sloshing of the density profile, with only the x-o↵set varying in time, and the shape of
the condensate remaining constant. According to the Kohn theorem the centre of mass of
an undamped system will oscillate at the characteristic frequency of the trap, regardless of
any interparticle interactions. This oscillation will be described by simple harmonic motion
[5].

5



2.4. FINITE TEMPERATURE BEC

2.4 Finite Temperature BEC

For zero temperature BEC, the GPE provides a very accurate model, as the system can be
treated entirely as one coherent matter wave. For physical systems however, we are forced
to work in finite temperature regimes. As the temperature increases, the number particles
which are incoherent and form a thermal cloud will increase, and the population of the
actual condensate will be reduced. These interactions between the incoherent regions and
the condensate must be taken into account for an accurate model.

The interactions with the non-condensate region and the condensate will e↵ect the Kohn
mode oscillations in the form of thermal damping and driving. For this work we will use
two important measures appropriate for describing finite temperature BEC. The first is
two-time correlation functions of the condensate centre of mass (Section 5.2), which are
involved in measuring the movement of the condensate and the e↵ect of noise. We also
use the Penrose-Onsager criterion for determining the occupation and spatial distribution
of the condensate fraction (Section 6.2.2), this is important for finite temperatures as the
condensate fraction decreases.

6



Chapter 3

C-field Formalism and the
SPGPE

Here we give an outline of the C-field formalism used for describing finite temperature
BEC and how it is used to give a formulation of the stochastic projected Gross-Pitaevskii
equation (SPGPE). Here we are following the formulation originally from [9], as well as
[10], [11] and [5].

For finite temperature BEC, the system is highly Bose degenerate with many highly occu-
pied modes, and may be described as a classical field. C-field methods described shortly
exploit this property and can be used to give accurate and physically interpretable descrip-
tions.

3.1 E↵ective Field Theory

To understand the field description of BEC, we start with the second-quantised Hamiltonian
for a Bose gas,

Ĥ =

Z

d3x ̂†(x, t)Ĥsp ̂(x, t) +
1

2

Z

d3x

Z

d3x0 ̂†(x, t) ̂†(x0, t)U(x� x0) ̂(x0, t) ̂(x, t)

(3.1)
where Ĥsp is the single particle Hamiltonian,

Ĥsp =
~2
2m
r2 + V (x, t). (3.2)

Here as is in Section 2.2.1 V (x, t) is the external potential.  ̂(x, t) and  ̂†(x, t) are the
Bose field annihilation and creation operators respectively.  ̂(x, t) annihilates a particle
at position x and time t, while  ̂†(x, t) creates a particle at position x and time t. These
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3.2. PROJECTED FIELD THEORY

operators have the standard Bosonic field commutation relations:
h

 ̂(x, t),  ̂†(x0, t)
i

= �(x� x0) (3.3)
h

 ̂†(x, t),  ̂†(x0, t)
i

= 0 (3.4)
h

 ̂(x, t),  ̂(x0, t)
i

= 0. (3.5)

The interparticle interaction potential has a range determined by the e↵ective size of the
atoms, however because of the extremely low temperatures required for Bose-Einstein con-
densation, the atoms have very low thermal energy. Hence they have a thermal de Broglie
wavelength greater than the interparticle interaction range. This allows us to ignore the
e↵ect of high momentum interactions. Formally this can be achieved by introducing an
interparticle interaction of contact form,

U(x� x0) = g�(x� x). (3.6)

Here the strength of the interactions is characterised by the s-wave scattering length, as it
is in the standard GPE, Equation 2.3. This description of the interactions is known as an
e↵ective field theory, and has the e↵ective Hamiltonian

Ĥeff =

Z

d3x ̂†(x, t)Ĥsp ̂(x, t) +
g

2

Z

d3x ̂†(x, t) ̂†(x, t) ̂(x, t) ̂(x, t). (3.7)

This e↵ective field theory is ultraviolet divergent, but this is resolved in the next section
by introducing an energy cuto↵ for the field operator.

3.2 Projected Field Theory

Having already neglected the e↵ect of high energy interactions by treating the interparticle
interactions as a contact potential, we can divide the range of energies into two regions
separated by an energy cuto↵ ✏cut. The C region , is the region below the new energy
cuto↵, ✏n  ✏cut, and has the highly occupied low energy modes, this allows us to treat
it as partially coherent. The I region (I for incoherent) contains all the modes above this
energy cuto↵, ✏cut < ✏n, Figure 3.1. Modes in the I region of higher energy and so are
expected to have occupation of order 1.

In this theory C is treated entirely quantum mechanically, while I is assumed to be fully
thermalised.

To formally describe the C and I regions two projectors are defined; P projects into the
C region neglecting modes above ✏cut, and Q projects into the I region, neglecting modes
below ✏cut.

Tt is useful to express the projectors in the basis of single particle eigenstates, acting on
an arbitrary object F (x)

P{F (x)} =
X

n2C

�n(x)

Z

d3x0�⇤
n(x

0)F (x0) (3.8)
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CHAPTER 3. C-FIELD FORMALISM AND THE SPGPE

Figure 3.1: A schematic showing how the energy range is divided into the C and I regions, by
introducing an energy cuto↵ ✏

cut

.

and

Q{F (x)} =
X

n2I

�n(x)

Z

d3x0�⇤
n(x

0)F (x0). (3.9)

Hence the e↵ective field operator can be expressed as,

 ̂(x, t) =  ̂
C

(x, t) +  ̂
I

(x, t) (3.10)

where,

P
n

 ̂(x, t)
o

=  ̂
C

(x, t) (3.11)

and
Q

n

 ̂(x, t)
o

=  ̂
I

(x, t). (3.12)

Because C and I share no eigenmodes, the composition of a P and Q of any function is
zero,

P{Q{F (x)}} = Q{P{F (x)}} = 0. (3.13)

After projection into the C region, the commutation relations of  ̂
C

(x, t) now use the
course-grained, C-field delta function,

h

 ̂
C

(x, t),  ̂†
C

(x0, t)
i

= �
C

(x,x0) (3.14)

where
�
C

(x,x0) =
X

n2C

�n(x, t)�
⇤
n(x

0, t). (3.15)
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3.3. DECOMPOSITION OF THE EFFECTIVE FIELD HAMILTONIAN

If this sum was not restricted to C then this would be a true Dirac delta function, however
the C-field delta does have the same action when acting on function consisting of only
modes in the C region. If F (x) = P{F (x)}, then

Z

d3x0�
C

(x,x0)F (x0) = F (x). (3.16)

3.3 Decomposition of the E↵ective Field Hamiltonian

The e↵ective field Hamiltonian, Equation 3.7, can be decomposed using our projected field
theory, giving the result,

Ĥeff = Ĥ
C

+ Ĥ
I

+ Ĥ
C,I (3.17)

where Ĥ
C

depends only on the C-field operator  ̂
C

(x, t), Ĥ
I

depends only on the I-field
operator  ̂

I

(x, t), and Ĥ
C,I depends on both the C and I-field operators. Ĥ

C

and Ĥ
I

are

relatively simply expressed, and have the same form of Ĥeff ,

Ĥ
C

=

Z

d3x  ̂†
C

(x, t)Ĥsp ̂C

(x, t) +
g

2

Z

d3x ̂†
C

(x, t) ̂†
C

(x, t) ̂
C

(x, t) ̂
C

(x, t) (3.18)

Ĥ
I

=

Z

d3x ̂†
I

(x, t)Ĥsp ̂I

(x, t) +
g

2

Z

d3x ̂†
I

(x, t) ̂†
I

(x, t) ̂
I

(x, t) ̂
I

(x, t). (3.19)

Ĥ
C,I is the Hamiltonian for the interactions between the C and I regions, and can be split

into three more terms,

Ĥ
C,I = Ĥ

(1)
C,I + Ĥ

(2)
C,I + Ĥ

(3)
C,I (3.20)

where

Ĥ
(1)
C,I =g

Z

d3x  ̂†
I

(x, t) ̂†
I

(x, t) ̂
I

(x, t) ̂
C

(x, t) + h. c. (3.21)

Ĥ
(2)
C,I =2g

Z

d3x  ̂†
I

(x, t) ̂
I

(x, t) ̂†
C

(x, t) ̂
C

(x, t) (3.22)

+
g

2

Z

d3x ̂†
I

(x, t) ̂†
I

(x, t) ̂
C

(x, t) ̂
C

(x, t) + h. c.

Ĥ
(3)
C,I =g

Z

d3x  ̂†
C

(x, t) ̂†
C

(x, t) ̂
C

(x, t) ̂
I

(x, t) + h. c. (3.23)

where h. c. denotes the Hermitian conjugate. The terms involving Ĥsp and one  ̂
C

and  ̂
I

term each go to zero because the single particle modes in each region are orthogonal.

3.4 Wigner Formalism and Phase Space Methods

Phase space methods are an important tool for understanding and modelling BEC. For our
C-field approach, all modes in the C region have significant occupation, which prompts us
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CHAPTER 3. C-FIELD FORMALISM AND THE SPGPE

to describe it using a classical field. In this case we express the state as a Wigner function,
which is one of various representations of a state as a quasi-probability distribution in
phase space[12].

3.4.1 Coherent States

Coherent states are very useful for describing BEC, and essential for the derivation of the
SPGPE. These are a set of minimum uncertainty quantum states, and so their behaviour
is closest to a classical description of any quantum state. Some systems display purely
quantum phenomena, and cannot be described classically, but coherent states provide the
closest description. A coherent state |↵i, is an eigenstate of the annihilation operator,
â,

â |↵i = ↵ |↵i (3.24)

where ↵ is a complex eigenvalue. These coherent states form an overcomplete basis and so
any state can be expressed as a linear combination of them.

3.4.2 The Density Operator

A very useful way of describing a mixed state is as the density operator,

⇢̂(t) =
X

i

pi | i, ti h i, t| (3.25)

where | i, ti are the elements of the statistical ensemble that make up the mixed state
and have the corresponding probability pi. The density operator is an ideal description
of quantum statistical ensembles because it accounts for both the statistical and quantum
uncertainty of a system. The expectation value of an operator Â for a system described
by the density operator ⇢̂ is,

hÂi = tr
n

⇢Â
o

. (3.26)

The time evolution of a system can be described by the time evolution of the density
operator, which is found using the von Neumann equation,

i~@⇢̂
@t

=
h

Ĥ, ⇢̂
i

. (3.27)

3.4.3 Wigner Function of a Single Mode

Phase space methods, such as the Wigner representation, rely on expressing the density
operator in terms of ↵, the eigenvalue corresponding to the coherent state |↵i. In the
Wigner representation, this is done using the Wigner function[12],

W (↵,↵⇤) =
1

⇡2

Z

d2� exp[��↵⇤ + �⇤↵]�(�,�⇤) (3.28)
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which is the Fourier transform of the symmetrically ordered characteristic function,

�(�,�⇤) = tr
n

⇢̂ exp
h

�â† � �⇤â
io

. (3.29)

Because ↵ and ↵⇤ are complex conjugates, they have two degrees of freedom between them,
and can be treated as independent variables.

For any density operator, we are able to define a Wigner function. There exist mappings
from creation and annihilation operators acting on the density operator to equivalent forms
of di↵erential operators acting on the corresponding Wigner function:

â⇢̂ !
✓

↵+
1

2

@

@↵⇤

◆

W (↵,↵⇤) (3.30)

â†⇢̂ !
✓

↵⇤ � 1

2

@

@↵

◆

W (↵,↵⇤) (3.31)

⇢̂â !
✓

↵� 1

2

@

@↵⇤

◆

W (↵,↵⇤) (3.32)

⇢̂â†  !
✓

↵⇤ +
1

2

@

@↵

◆

W (↵,↵⇤) (3.33)

These mapping relations can be used to go from the density matrix, to the evolution of the
Wigner function.

3.4.4 Generalisation to a Quantum Field

These mappings from the density matrix to the Wigner function can be generalised to
the action of quantum field operators on the density matrix using expansion of the field
operator in terms of creation and annihilation operators,

 ̂
C

(x) =
X

n2C

ân�n(x). (3.34)

Using the definition of projected functional derivatives[10, 11],

�̄

�̄ 
C

(x)
⌘

X

n2C

�⇤
n(x)

@

@↵n
(3.35)

�̄

�̄ ⇤
C

(x)
⌘

X

n2C

�n(x)
@

@↵⇤
n
, (3.36)
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CHAPTER 3. C-FIELD FORMALISM AND THE SPGPE

the mappings from the action of the field operators on the density matrix to the action of
projected functional di↵erential operators on the Wigner function are:

 ̂
C

(x)⇢̂
C

 !
✓

 
C

(x) +
1

2

�̄

�̄ ⇤
C

(x)

◆

W
C

(3.37)

 ̂†
C

(x)⇢̂
C

 !
✓

 ⇤
C

(x)� 1

2

�̄

�̄ 
C

(x)

◆

W
C

(3.38)

⇢̂
C

 ̂
C

(x) !
✓

 
C

(x)� 1

2

�̄

�̄ ⇤
C

(x)

◆

W
C

(3.39)

⇢̂
C

 ̂†
C

(x) !
✓

 ⇤
C

(x) +
1

2

�̄

�̄ 
C

(x)

◆

W
C

(3.40)

We can used these mappings to relate the coherent region density operator to the time
evolution of the Wigner function.

3.5 The Stochastic Projected Gross-Pitaevskii Equation

The evolution of the full system is governed by the von Neumann equation,

i~ @
@t
⇢̂ =

h

Ĥ
C

+ Ĥ
I

+ Ĥ
C,I, ⇢̂

i

. (3.41)

We are able to find the master equation for just the C region by defining the C region
density operator,

⇢̂
C

⌘ tr
I

{⇢̂}, (3.42)

which eliminates the degrees of freedom of the I region. This is possible as the C and I
regions are uncorrelated ans thus the density operators for the two regions are separable.
This results in the master equation for the C region,

@⇢̂
C

@t
=
@⇢̂

C

@t

�

�

�

�

H

+
@⇢̂

C

@t

�

�

�

�

�

+
@⇢̂

C

@t

�

�

�

�

✏

. (3.43)

Using the mappings Equations 3.37–3.40, after applying the truncated Wigner approxi-
mation by ignoring the e↵ect of third order functional derivatives, this master equation
can be mapped to an Fokker-Planck equation [13, 12]. This Fokker-Planck equation is
subsequently mapped to a stochastic di↵erential equation, the SPGPE, with three terms,
corresponding to the terms in Equation 3.43[3].

The first term in the SPGPE (Equation 3.43) is simple Hamiltonian evolution for the C
region, without the e↵ect of interactions with the I region, and can be expressed as,

d 
C

|H P
⇢

� i

~LC

 
C

(x, t)dt

�

(3.44)

where,

L
C

= � ~2
2m
r2 + V (x, t) + g| 

C

(x, t)|2. (3.45)
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3.5. THE STOCHASTIC PROJECTED GROSS-PITAEVSKII EQUATION

The second term is responsible for number-damping and involves processes where the in-
teractions between the C and I regions do not conserve particle number (Figure 3.2a).
Generally this is the dominant interaction between the two regions and it’s properties have
been investigated in other research[14, 15]. For this regime however, because the conden-
sate is surrounded by a cloud of distinct atoms, this term is ignored, which is discussed
more in Section 4.2.1 .

2.8. THE STOCHASTIC PROJECTED GROSS-PITAEVSKII EQUATION

(a) Growth (b) Scattering

Figure 2.4: Schematic showing the different types of interactions between the coherent and
incoherent regions. In (a) two incoherent region particles collide leading to uneven energy
transfer, causing one to enter the coherent region: this is the growth process. In (b) atoms
from the coherent and incoherent regions collide but only transfer energy and remain in their
respective regions: this is the scattering process.

the growth process dWG(x0, t) has the properties:

hdW ⇤
G(x, t)dWG(x0, t)i = 2G(x)�

C

(x,x0)dt, (2.76)

and

hdWG(x, t)dWG(x0, t)i = hdW ⇤
G(x, t)dW ⇤

G(x0, t)i = 0. (2.77)

As for the energy-damping terms also known as scattering terms, it is important to note that
this scattering which involves collisions between the condensate and non-condensate regions
that transfer only energy, and couples to the matterwave current density defined:

j
C

(x) ⌘ ih̄

2m

�

r�⇤
C

(x)�
C

(x) � �⇤
C

(x)r�
C

(x)
�

. (2.78)

The scattering rate function M(x � x0) in the energy damping term of Eq. (2.74) is given by
the Boltzmann integral. Associated with the scattering process, the real noise dWM(x, t) is
given by:

hdWM(x, t)dWM(x0, t)i = 2M(x � x0)dt. (2.79)

The scattering term has an integral over the scattering rate multiplied by the divergence of the
condensate matterwave current density and also contains multiplicative noise, making it quite
complicated than the term for the condensate growth. The two main types of inter-regional
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and
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j
C
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2m

�

r�⇤
C

(x)�
C

(x) � �⇤
C

(x)r�
C

(x)
�
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The scattering rate function M(x � x0) in the energy damping term of Eq. (2.74) is given by
the Boltzmann integral. Associated with the scattering process, the real noise dWM(x, t) is
given by:

hdWM(x, t)dWM(x0, t)i = 2M(x � x0)dt. (2.79)

The scattering term has an integral over the scattering rate multiplied by the divergence of the
condensate matterwave current density and also contains multiplicative noise, making it quite
complicated than the term for the condensate growth. The two main types of inter-regional
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(b) Energy-damping

Figure 3.2: From [5]. Schematic showing the di↵erent interactions between the C and I regions.
(a) A number-damping process, whereby the number of particles in each region is not conserved.
(b) An energy-damping process where the number of particles in each region is unchanged, but
there is transfer of energy.

The third term is the energy-damping term, and corresponds to processes where there is
an exchange of energy between the C and I regions, but the particle number is conserved
(Figure 3.2b). These processes are also referred to as scattering processes. It may be
expressed as,

d 
C

|✏ = P
⇢

� i

~V✏(x, t) C

(x, t)dt+ i 
C

(x, t)dW✏(x, t)

�

. (3.46)

V✏(x, t) can be interpreted as an energy-damping potential and has the form

V✏(x, t) = �~
Z

d3x0✏(x� x0)r0 · j(x0, t) (3.47)

with the C-field density current is,

j(x, t) =
i~
2m

[ 
C

(x, t)r ⇤
C

(x, t)�  ⇤
C

(x, t)r 
C

(x, t)]. (3.48)

✏(x) is defined as the Fourier transform of the scattering kernel,S(k), with a factor of the
energy damping rate,

✏(x) =
M

(2⇡)3

Z

d3k eik·x S(k) (3.49)

where the energy damping rate for indistinguishable particles is,

M =
16⇡a2s

e(✏cut�µ)/kBT �1
. (3.50)
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CHAPTER 3. C-FIELD FORMALISM AND THE SPGPE

The noise term in the energy-damping term is defined by its correlations,

dW✏(x, t)dW✏(x0, t) =
2kBT

~ ✏(x� x0)dt, (3.51)

where · · · represents the average over many di↵erent realisations. This noise is real, and due
to the ✏(x� x0) term in the correlator, is non-local in position. It appears in the SPGPE
multiplied by the wavefunction, so is multiplicative. This makes it much more di�cult to
deal with numerically compared to additive noise, such as is part of the number-damping
term.
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Chapter 4

Physical Regime

The specific regime being investigated in this work is a two component system; a pseudo-1D
condensate (component 1) surrounded by a thermal cloud of a distinct species (component
2) (Figure 4.1). For this research the components are treated as bosonic. This regime
is analogous to a sympathetic cooling regime, which is used experimentally to cool con-
densates via exchange of energy with an uncondensed thermal cloud. In this regime, the
condensate and the thermal cloud are confined in two separate, but spatially overlapping
traps.

Figure 4.1: A schematic demonstrating the pseudo-1D partially condensed component 1 in the
3D thermal cloud of component 2.

4.1 Use of C-field Methods

C-field theory provides a useful way to model this two-component system. At low tempera-
tures component 1, the condensate, will have a high condensate fraction and low occupation
of higher energy modes. Treating the higher energy levels as having negligible occupation
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CHAPTER 4. PHYSICAL REGIME

prompts us to define an energy cuto↵ for the condensate, ✏cut,1, such that all occupied
modes are in the C region. For an e↵ective 1D system there must be no excitations of
the transverse modes of the condensate. For high enough transverse frequencies, we can
choose the energy cuto↵ of the condensate to be lower than energy of the first excited
transverse mode. Because modes above this cuto↵ are neglected, the transverse excitations
are e↵ectively frozen out, and the system can be treated as 1 dimensional.

Conversely, the thermal cloud has a negligible condensate fraction and so we can treat
all modes as being in the I region. Treating all of the modes as being in the I region is
equivalent to defining an energy cuto↵ for the second component, ✏cut,2, and taking it to
zero, ✏cut,2 ! 0. This evidently leaves no modes in the C region for component 2.

This di↵ers from the standard C-field treatment of a finite temperature BEC where both
the C and I regions are of the same species, and I just represents the uncondensed frac-
tion. In this regime, the C and I regions are made up from separate but interacting species.
Component 2 still behaves like the I region, and can be treated as a thermal reservoir. How-
ever because the two components are composed of di↵erent species, no particle exchange
between the C and I regions is allowed, and the only transfer of energy is via scattering
interactions.

Figure 4.2: Schematic showing the use of C field methods for describing this two component
system. The energy cuto↵, ✏

cut,1, is chosen such that transverse oscillations in component 1 are
forbidden. Component 1 is treated as having only appreciable occupation in the C region, while
component 2 is treated as being entirely incoherent.

4.2 One Dimensional Energy Damped SPGPE

4.2.1 Energy Damping

Because the C and I regions are assumed to be of separate species, only number conserving
interactions are allowed. The number of particles in each component is constant, and all
interactions between the two regions will only transfer energy. This prompts the simpli-
fication of the SPGPE, by removing the number damping term, resulting in the energy
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4.2. ONE DIMENSIONAL ENERGY DAMPED SPGPE

damped SPGPE,

(S)d 
C

(x, t) = P
⇢

� i

~LC

 
C

(x, t)dt� i

~V✏(x, t) C

(x, t)dt+ i 
C

(x, t)dW✏(x, t)

�

. (4.1)

This equation has the standard Hamiltonian evolution given by L
C

(Equation 3.45), and
also time evolution due to the energy damping potential, V✏(x, t) and the noise associated
with the energy damping processes, dW✏(x, t).

4.2.2 Reduced Dimensionality

To be able to treat the condensate as a one dimensional system we have to make adjust-
ments to the SPGPE to remove the dependence on the transverse directions. This is done
by integrating over the transverse directions, where the condensate is in the unexcited state
and is assumed to be Gaussian. Here we use results from [10] and [16]. Transforming the
energy damped SPGPE (Equation 4.1) into one dimension, we obtain,

(S)d 
C

(x, t) = P
⇢

� i

~LC

 
C

(x, t)dt� i

~V✏(x, t) C

(x, t)dt+ i 
C

(x, t)dW✏(x, t)

�

. (4.2)

All of the terms here are now the one dimensional equivalents,

L
C

 
C

(x, t) =

✓

� ~2
2m

@2

@x2
+ V (x) + g1| C

(x, t)|2
◆

 
C

(x, t) (4.3)

where g1 = 2~!?,1a11 is the one dimensional form of the non-linear interaction coe�cient,
obtained by integrating non-linear interaction term of the full GPE over the transverse
directions.

The energy damping potential in one dimension is given by,

V✏(x, t) = �~
Z

dx0✏(x� x0)
@

@x0 j(x
0, t), (4.4)

where j(x, t) is the one dimensional current density,

j(x, t) =
i~
2m



 
C

(x, t)
@

@x
 ⇤

C

(x, t)�  ⇤
C

(x, t)
@

@x
 

C

(x, t)

�

. (4.5)

✏(x) is now the energy damping rate multiplied by the Fourier transform of the scattering
kernel, both of which have distinct one dimensional forms,

✏(x) =
M
2⇡

Z

dk eikx S1(k) (4.6)

where the one dimensional form of the energy damping rate which is modified to take into
account for component 1 and component 2 consisting of distinct particles, and after taking
✏cut,2 ! 0 is,

M =
8⇡a212

e�µ2/kBT �1
(4.7)
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and the one dimensional scattering kernel is,

S1(k) =
1

q

8⇡a2?,1

erfcx

✓

a?,1|k|p
2

◆

(4.8)

where erfcx(x) = exp(x2) erfc(x) is the scaled complementary error function. The noise
associated with the energy damping in one dimension has correlations in position defined
by,

dW✏(x, t)dW✏(x0, t) =
2kBT

~ ✏(x� x0)dt. (4.9)

4.3 Choice of Physical Parameters

Here we discuss the restrictions on the physical parameters such that our regime is leads to
a physically valid theory. There are several parameters that describe the two components,
and these must be chosen such that we are within the desired physical regime. We chose
the temperature of the system such that we are in the correct thermal regime, where
component 1 is partially condensed and component 2 can be treated as a thermal cloud.
The geometry of the traps must allow us to be in the correct dimensional regime. Our
choices of temperature and trap geometry must also be physically consistent with the
component populations and chemical potentials. For this work the principle frequency
for analytic and numeric investigation is the loose component 1 frequency, !x,1, so we
define,

⌦ = !x,1. (4.10)

4.3.1 Temperature Regime

The physical regime that is being investigated imposes several restrictions on the choice of
parameters. The temperature of the system, which is the same in each component, must
be in the range where component 2 is thermalised, and component 1 has a large enough
condensate fraction such that it is well described by the Thomas-Fermi state. Broadly the
temperature must be greater than Tc,2 and less than Tc,1,

Tc,2 < T . Tc,1 (4.11)

although more restrictions are also imposed.

Component 2, a thermal cloud, can be reasonably treated as a 3D ideal gas, with critical
temperature given by [2]

Tc,2 =
~!̄2

kB

✓

N2

⇣(3)

◆1/3

, (4.12)

where N2 is the population of component 2, !̄2 is the geometric mean trapping frequency
of component 2,

!̄2 = (!x,2 !y,2 !z,2)
1/3 =

�

!x,2 !
2
?,2

�1/3
. (4.13)
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Because component 1 is confined to a one-dimensional subspace of a harmonic trap, deeper
analysis is required to find the critical temperature. We can find a reasonable approxima-
tion for critical temperature for component 1 by ignoring the interaction e↵ects [17], and
numerically solving

N1 =
kBTc,1

~⌦ ln

✓

2kBTc,1

~⌦

◆

, (4.14)

this corresponds to all of the particles in component 1 being excited above the ground
state. Under these same approximations, the condensate fraction of component 1 is given
by

N1,0

N1
= 1� T ln (2kBT/(~⌦))

Tc,1 ln (2kBTc,1/(~⌦))
(4.15)

where N1 is the total population of component 1 and N1,0 is the population of component
1 in the ground state. For the validity of our analytical approach, the condensate fraction
must be high enough such that the wavefunction is still approximately Thomas-Fermi, so
that this can be used as an analytical ansatz.

For our 2 component system, the number of particles in each component is conserved
independently, and so the number of particles in each of the components sets the respective
chemical potential for each component.

4.3.2 Trapping Geometry

As stated before, for component 1 to be treated as one dimensional no particles can be
excited in the transverse direction. This can be achieved by setting the chemical potential
less than the energy of the first transverse excited state,

µ1 < ~!?,1. (4.16)

This means that the energy of component 1 is less than what would be required to excite
the condensate in the transverse direction.

At the same time, we must also make sure that the condensate is not too squeezed in
the transverse direction, because our model relies on 3D scattering within the condensate.
This can be ensured by making sure that the harmonic transverse oscillator length, a?,1,
is much greater than the s-wave scattering length,

s

~
m1!?,1

= a?,1 � a11. (4.17)

Because component 2 is modelled as an ideal gas, there are few restrictions placed on
the trap geometry. This allows us change !x,2 and !?,2 while still being in the desired
regime.
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Chapter 5

Analytical Results

In this section we start by performing a revised and generalised derivation for the conden-
sate equation of motion from a previous work [5].

5.1 Condensate Centre of Mass Motion

5.1.1 Centre of Mass of a Multiparticle Wavefunction

Because the condensate is described by a multiparticle wavefunction of N1 particles of mass
m, the wavefunction is normalised to N1

Z

| |2dx = N1. (5.1)

The expectation value of the position of the centre of mass, X, can be found by

X =
hx̂i
N1

=
1

N1

Z

 ⇤x̂ dx (5.2)

where x̂ is the single particle position operator. Similarly, the velocity of the centre of mass
of the condensate can be found by

V =
hp̂i
N1m

=
1

N1m

Z

 ⇤p̂ dx (5.3)

where p̂ is the single particle momentum operator

p̂ = �i~ @
@x

. (5.4)

It is assumed that the wavefunction remains approximately as a Thomas-Fermi wavefunc-
tion with an position o↵set, which we can use as an ansatz for this analytical work

 TF (x, t) =

s

µ

g1

✓

1� (x�X(t))2

R2

◆

eiP (t)x/~ . (5.5)
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This has the density profile:

nTF (x, t) ⌘ | TF (x, t)|2 = n0

✓

1� (x�X(t))2

R2

◆

(5.6)

where n0 is the peak density, R is the 1D Thomas-Fermi radius, and g1 is the 1D interaction
parameter

n0 =
µ

g1
, R =

r

2µ

m⌦2
g1 = 2~!?,1a1. (5.7)

The total number of particles in a Thomas-Fermi state is found by

N1 =

Z X(t)+R

X(t)�R
nTF (x, t)dx =

Z X(t)+R

X(t)�R
dx n0

✓

1� (x�X(t))2

R2

◆

. (5.8)

(5.9)

Thus,

N1 =
4µR

3g1
. (5.10)

It is also useful to evaluate the 1D current density for the Thomas-Fermi state:

j(x, t) =
i~
2m



 (x, t)
@

@x
 ⇤(x, t)�  ⇤(x, t)

@

@x
 (x, t)

�

. (5.11)

For  (x, t) =  TF (x, t),

 (x, t)
@

@x
 ⇤(x, t) =� µ

g1

(x�X(t))

R2
+
�iP (t)

~
µ

g1

✓

1� (x�X(t))

R2

◆

(5.12)

=� µ

g1

(x�X(t))

R2
+
�iP (t)

~ nTF (x, t). (5.13)

And so,

j(x, t) =
i~
2m



�iP (t)

~ nTF (x, t)�
+iP (t)

~ nTF (x, t)

�

=
P (t)

m
nTF (x, t). (5.14)

Thus giving us the expression for current density,

j(x, t) = nTF (x, t)V (t). (5.15)

5.1.2 Derivation of Equation of Motion

Following the results of [6] and [5], starting from the equation for the field momentum

P ( , ⇤) =

Z

dx  ⇤(x, t)

✓

�i~ @
@x

◆

 (x, t) (5.16)
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we apply a change of variables using the Ito rules[13], and evaluate the functional derivatives
of P ( ⇤, ). This leads to a Langevin equation for the field momentum:

dP (t) = F (t)dt+
p

G(t)dW (t) (5.17)

where

F (t) =�
Z

dxnTF (x, t)
@

@x
Vext + F✏(x, t) (5.18)

G(t) =2~kBT

Z

dx

Z

dx0✏(x� x0)
@

@x
nTF (x, t)

@

@x0nTF (x
0, t), (5.19)

and the noise term dW (t) is a real Wiener process defined with, dW (t) = 0 and
dW (t)dW (t) = dt[6].

F (t) has two terms that can be evaluated separately; the first term which depends on
the external potential Vext(x), and F✏(x, t) which depends on an e↵ective energy damping
potential V✏(x, t).

The external potential is Vext =
1
2m⌦

2x2 so @
@xVext = m⌦2x,

�
Z

dxnTF (x, t)
@

@x
Vext =�

Z

dx| |2m⌦2x (5.20)

=� ⌦2mN1X. (5.21)

For the second term[16],

F✏(t) = �
Z

dx nTF (x, t)
@

@x
V✏(x, t). (5.22)

We have the form of V✏(x, t), and can apply integration by parts

V✏(x, t) = �~
Z

dx0✏(x� x0)
@

@x0 j(x
0, t) (5.23)

= �~✏(x� x0)j(x0, t)|X+R
X�R + ~

Z

dx0 @

@x0 ✏(x� x0)j(x0, t). (5.24)

The first term is equal to zero because there is no density at x = X ± R, so the current
density, j(x, t), also goes to zero here. Thus,

V✏(x, t) = ~
Z

dx0 @

@x0 ✏(x� x0)j(x0, t). (5.25)

We know ✏(x) (Equation 4.6) is the inverse Fourier transform of the scattering kernel S1(k)
[18, 16] so,

@

@x0 ✏(x� x0) =
M
2⇡

Z 1

�1
dk(�ik) eik(x�x0) S1(k). (5.26)
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We can now use Equations 5.25 and 5.26 to find @
@xV✏(x, t) for Equation 5.22

@

@x
V✏(x, t) =

~M
2⇡

Z

dx0
Z 1

1
dk k2 eik(x�x0) S1(k)nTF (x, t)V (t). (5.27)

So F✏(x, t) can be evaluated as, using 5.25,

F✏(t) =�
Z

dx nTF (x, t)
@

@x
V✏(x, t) (5.28)

=� V (t)
~M
2⇡

Z

dk S1(k) k
2

✓

Z

dx nTF (x, t) e
ikx

◆ ✓

Z

dx0 nTF (x
0, t) e�ikx0

◆�

.

(5.29)

We will now evaluate G(t) using integration by parts, remembering that nTF (x, t) = 0 for
x /2 [X �R, X +R]

G(t) =2~kBT

Z

dx

Z

dx0✏(x� x0)
@

@x
nTF (x, t)

@

@x0nTF (x
0, t)

=2~kBT



nTF (x, t)

Z

dx0 ✏(x� x0)
@

@x0nTF (x
0, t)

�x=1

x=�1

�2~kBT

Z

dx nTF (x, t)
@

@x



Z

dx0✏(x� x0)
@

@x0nTF (x
0, t)

�

.

The first term in the second equation goes to zero and by applying the same method again,
we arrive at

G(t) =2~kBT

Z

dx

Z

dx0 nTF (x, t) nTF (x
0, t)

@

@x

@

@x0 ✏(x� x0) (5.30)

=
M~kBT

⇡

Z

dk S1(k) k
2

✓

Z

dx nTF (x, t) e
ikx

◆ ✓

Z

dx0 nTF (x
0, t) e�ikx0

◆�

.

(5.31)

The integral terms in G(t) and F✏(t) (Equations 5.31 and 5.29), are the same. This integral
is computed in Appendix A.

Using the form of S1(k)

S1(k) =
1

q

8⇡a2?

erfcx

✓

|k|a?p
2

◆

, (5.32)

Z

dk S1(k) k
2

✓

Z

dx nTF (x, t) e
ikx

◆ ✓

Z

dx0 nTF (x
0, t) e�ikx0

◆�

=

32n2
0

R
q

8⇡a2?

Z 1

0
dz erfcx

✓

�zp
2

◆

z2
✓

cos(z)

z2
� sin(z)

z3

◆2

(5.33)

where
� = a?/R. (5.34)
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The more elongated the condensate is, the smaller � will be.

And so F✏(t) and G(t) can be expressed as

F✏(t) = �2ẊmN1� (5.35)

G(t) = 4kBTmN1� (5.36)

where,

� =
1

2⇡

~Mn2
0I

R
q

8⇡a2?mN1

(5.37)

where,

I(�) =
Z 1

0
dz z2 erfcx

✓

�zp
2

◆ ✓

4 sin(z)

z3
� 4 cos(z)

z2

◆2

(5.38)

Because the condensates are cigar shaped, they will be very elongated, so � will be close
to zero. As a reference we can find value of I at � = 0 is

I(0) = 8

3
⇡, (5.39)

and I(�) is plotted in Figure 5.1.
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Figure 5.1: I plotted as a function of �

Using Equations 5.7 and 5.10,

� =
3

16⇡

~M⌦2I
q

8⇡a2?g
. (5.40)

Using the forms for F (t) and G(t) we now have the expression for the Langevin equation
for the field momentum,

dP (t) = F (t)dt+
p

G(t)dW (t) (5.41)

=
⇣

�⌦2mN1X � 2Ẋ�mN1

⌘

dt+
p

4kBTmN1�dW (t). (5.42)

(5.43)
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We can thus find a Langevin equation for velocity of the centre of mass of the conden-
sate

dV (t) =
dP (t)

mN1
= �⌦2Xdt� 2�Ẋdt+

r

4kBT�

mN1
dW (t), (5.44)

defining the the centre of mass temperature,

T̄CM =
kBT

mN1
, (5.45)

we derive,

dV (t) = �⌦2Xdt� 2�Ẋdt+
p

4T̄CM�dW (t). (5.46)

This Langevin equation is the equation of motion of a classical simple harmonic oscillator,
with damping coe�cient �, and a random driving force. The main achievement here is that
we have successfully gone from an equation with multiplicative noise, the energy-damped
SPGPE (Equation 4.3), to an equation with only additive noise. Additive noise is much
much easier to deal with numerically than multiplicative noise.

This derivation di↵ers from the previous work [5], by numerical factors, and so it was
essential to find these corrected results to allow us to compare the analytic expressions
with numerical simulations of the full SPGPE.

5.1.3 Investigating Terms

In the form of the equation of motion for the centre of mass, Equation 5.46, we have defined
two terms � and T̄CM , in Equations 5.40 and 5.45 respectively.

� has the role of the damping coe�cient for the simple harmonic oscillator. It is linearly
proportional to M, so as the energy damping rate increases, the harmonic motion of
the centre of mass is more strongly damped. This is also inversely proportional to the
interaction strength of the particles in the condensate, so the damping is weaker for a more
strongly damped condensate.

5.2 Two-time Correlation Functions

Correlation functions are a measure of correlated two variables are in space or time, there
will be peaks for high levels of correlation, and the functions go to zero as the two variables
become uncorrelated. This work relies on the use of the two-time correlation function,
which gives a measure of how correlated a variable at one time t, is with the same variable
at a di↵erent time t0. These may be expressed in the form

gA(t, t
0) = A⇤(t)A(t0) (5.47)

where gA(t, t0) is the two-time correlation function for the variable A at the times t and t0.
The · · · denotes an ensemble average over many independent trajectories.If the correlations
of a variable with random fluctuations are only related to the time di↵erence between the
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samples, and not the absolute time, then the process is said to be wide-sense stationary.
If this is the case, the two-time correlation function can be written as a function of only
one variable, ⌧ = t� t0,

gA(⌧) = A⇤(t+ ⌧)A(t). (5.48)

Two-time correlation functions can be used to characterise parameters such as the damping
coe�cient in systems influenced by random noise. T̄CM influences the magnitude of the
random noise acting on the simple harmonic oscillator. This increases with temperature,
because we are measuring the e↵ects of thermal noise. It also decreases with a larger total
mass of the condensate, which is consistent with classical mechanics; the larger a mass is,
the smaller the change in momentum due to an external force.

5.3 Damped Harmonic Oscillator with Random Driving Force

Because the centre of mass motion of the condensate can be described as a harmonic oscil-
lator, we will first apply a classical treatment to investigate its analytical properties.

Equation 5.46 can be written in the form

dV (t) = �⌦2Xdt� 2�Ẋdt+
p

4T̄CM�dW (t) (5.49)

dV

dt
= �⌦2X � 2�Ẋ +

p

4T̄CM�
dW (t)

dt
. (5.50)

Defining the noise term, ⇠(t) =
p

4T̄CM�
dW (t)

dt ,

Ẍ + 2�Ẋ + ⌦2X = ⇠(t). (5.51)

5.3.1 Two-Time Correlation Function of Position

We have a function of a variable X, with damping constant �, and an undamped frequency
of ⌦,

Ẍ + 2�Ẋ + ⌦2X = ⇠(t). (5.52)

⇠ can be expressed as an inverse Fourier transform

⇠(t) =
1p
2⇡

Z 1

�1
d!ei!t�(!) (5.53)

and conversely

�(!) =
1p
2⇡

Z 1

�1
dte�i!t⇠(t). (5.54)

We assume that the two-time correlation function of ⇠(t) is time translation invariant

g⇠(t, t
0) = ⇠⇤(t)⇠(t0) = f(t� t0). (5.55)

27



5.3. DAMPED HARMONIC OSCILLATOR WITH RANDOM DRIVING FORCE

The two-time correlation function of �(t) can be written using the Fourier transform of
⇠(t)

�⇤(!)�(!0) =
1

2⇡

Z 1

�1
dt

Z 1

�1
dt0ei!te�i!0t0⇠⇤(t)⇠(t0) (5.56)

=
1

2⇡

Z 1

�1
dt

Z 1

�1
dt0ei!t�i!0t0f(t� t0). (5.57)

We do a wide-sense stationary variable transformation with T = t+t0

2 , and ⌧ = t� t0, and
find

�⇤(!)�(!0) =
1

2⇡

Z 1

�1
dT

Z 1

�1
d⌧ei!(T+⌧/2)�i!0(T�⌧/2)f(⌧) (5.58)

=
1

2⇡

Z 1

�1
dT

Z 1

�1
d⌧eiT (!�!0)ei⌧ !+!0

2 f(⌧) (5.59)

= �(! � !0)
p
2⇡F (

! + !0

2
), or (5.60)

�⇤(!)�(!0) = �(! � !0)
p
2⇡F (!), (5.61)

where F (!) is the inverse Fourier transform of f(t).

Defining the Fourier transform of X(t) as �(!):

X(t) =
1p
2⇡

Z 1

�1
d!ei!t�(!) (5.62)

and conversely

�(!) =
1p
2⇡

Z 1

�1
dte�i!tX(t). (5.63)

We can substitute Equations 5.53 and 5.62 into Equation 5.52

d2

dt2

Z 1

�1
d!ei!t�(!) + 2�

d

dt

Z 1

�1
d!ei!t�(!) + ⌦2

Z 1

�1
d!ei!t�(!) =

Z 1

�1
d!ei!t�(!)

(5.64)
Z 1

�1
d!ei!t(⌦2 � !2 + 2i�!)�(!) =

Z 1

�1
d!ei!t�(!).

(5.65)

And so:

(⌦2 � !2 + 2i�!)�(!) = �(!). (5.66)

Thus,

�(!) =
�(!)

⌦2 � !2 + 2i�!
. (5.67)
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So we can express the two-time correlation function of �(!) using Equation 5.61:

�⇤(!)�(!0) =

p
2⇡F (!)�(! � !0)

(⌦2 � !2)2 + 4!2�2
. (5.68)

X(t) is a stationary wide sense variable so gX(⌧) = X⇤(t+ ⌧)X(t) depends only on ⌧ .
Taking the Fourier transform and using Equations 5.62 and 5.68 we find:

1p
2⇡

Z 1

�1
d⌧X⇤(t+ ⌧)X(t)e�i⌧ =

F ()

(⌦2 � 2)2 + 42�2
. (5.69)

This is the power spectral density of X(t).

F
h

X⇤(t+ ⌧)X(t)
i

() =
F ()

(⌦2 � 2)2 + 42�2
. (5.70)

So we can take the inverse Fourier transform,

gX(⌧) = X⇤(t+ ⌧)X(t) = F�1



F ()

(⌦2 � 2)2 + 42�2

�

(⌧), (5.71)

which we can evaluate using the convolution theorem:

F�1(F · G) = f ⇤ g. (5.72)

Where

G() =
1

(⌦2 � 2)2 + 42�2
, (5.73)

Taking the result from [19],

g(⌧) =
1p
2⇡

Z 1

�1
dei⌧ 1

(⌦2 � 2)2 + 42�2
(5.74)

=
1p
2⇡

⇡

2�⌦0⌦
e��|⌧ | sin

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆

. (5.75)

Where ⌦0 =
p
⌦2 � �2, we are assuming ⌦ > �.

Because ⇠(t) is delta-correlated, ⇠⇤(t)⇠(t+ ⌧) = f(⌧) = 4T̄CM��(⌧).So,

gX(⌧) = F�1(F · G) (5.76)

= f(⌧) ⇤ g(⌧) (5.77)

= 4T̄CM��(⌧) ⇤


1p
2⇡

⇡

2�⌦0⌦
e��|⌧ | sin

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆�

(5.78)

(5.79)

Giving us the analytical form of the two-time correlation function of position

gX(⌧) =
T̄CM

⌦0⌦
e��|⌧ | sin

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆

. (5.80)
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5.3.2 Two-Time Correlation Function of Velocity

We can rewrite Equation 5.52 in terms of the velocity V (t)

V̇ (t) + 2�V (t) + ⌦2
Z t

�1
V (t0)dt0 = ⇠(t). (5.81)

We define the Fourier transform of V (t) as ✓(!):

✓(!) =
1p
2⇡

Z 1

�1
dte�i!tV (t) (5.82)

and conversely

V (t) =
1p
2⇡

Z 1

�1
d!ei!t✓(!). (5.83)

Using Equation 5.83 to rewrite Equation 5.81,

d2

dt2

Z 1

�1
d!ei!t✓(!) + 2�

Z 1

�1
d!ei!t✓(!) + ⌦2

Z t

�1
dt0

Z 1

�1
d!ei!t0✓(!) =

Z 1

�1
d!ei!t�(!)

Z 1

1
d!ei!t

✓

i!✓(!) + 2�✓(!) +
⌦2

i!
✓(!)

◆

=

Z 1

�1
d!ei!t�(!).

So,

�(!) =

✓

i! + 2�+
⌦2

i!

◆

✓(!), (5.84)

and similarly, to before,

✓(!) =
�(!)

⇣

i! + 2�+ ⌦2

i!

⌘ . (5.85)

We can express this in terms of �(!) using Equation 5.67

✓(!) = i!�(!), (5.86)

and so we can calculate the two-time correlation function of ✓(!)

✓⇤(!)✓(!0) =
!2
p
2⇡F (!)�(! � !0)

(⌦2 � !2)2 + 4!2�2
. (5.87)

Using the result from Equation 5.70,

F
h

V ⇤(t+ ⌧)V (t)
i

() =
2F ()

(⌦2 � 2)2 + 42�2
. (5.88)

So we can take the inverse Fourier transform,

gV (⌧) = V ⇤(t+ ⌧)V (t) = F�1



2F ()

(⌦2 � 2)2 + 42�2

�

(⌧), (5.89)

30



CHAPTER 5. ANALYTICAL RESULTS

again we use the convolution theorem

gV (⌧) = V ⇤(t+ ⌧)V (t) = F�1 [H · G] = h ⇤ g. (5.90)

Here G() and g(t) are the same as Equations 5.73 and 5.75 respectively, and H = 2F ().

So h(t) = � d2

dt2 f(t), and again if ⇠(t) is delta correlated, h(t) = �4T̄CM��00(t). So,

gV (⌧) = �4T̄CM��
00(t) ⇤



1p
2⇡

⇡

2�⌦0⌦
e��|⌧ | sin

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆�

(5.91)

= � d2

d⌧2
T̄CM

⌦0⌦
e��|⌧ | sin

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆

. (5.92)

Assuming that ⌦ > �,this equals

gV (⌧) = �
T̄CM

⌦⌦0 e
��|⌧ |



�

2�2 � ⌦2
�

sin

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆

�2⌦0� cos

✓

⌦0|⌧ | + sin�1

✓

⌦0

⌦

◆◆�

. (5.93)

The two-time correlation function of velocity is equal to the negative second time derivative
of the two-time correlation function of position,

gV (⌧) = �
d2

d⌧2
gX(⌧). (5.94)

For ⌦ = 1, both gX(⌧) and gV (⌧) have the same decay envelope, defined by

gdecay(⌧) = T̄CM e��|⌧ | . (5.95)

5.4 Equipartition Theorem

The value of a two-time correlation function of a variable at ⌧ = 0 is the same as the
ensemble average for the variable squared:

gA(⌧ = 0) = A⇤(t+ ⌧)A(t)|⌧=0 = |A(t)|2. (5.96)

We have analytical forms for the two-time correlation functions on position and velocity
(Equations 5.80 and 5.93), which allow us to find the average potential and kinetic energy
of the harmonic oscillator system, which should be the same as the potential and kinetic
energy of the centre of mass of the condensate.

Substituting in ⌧ = 0, we find

gX(0) = X⇤(t+ 0)X(t) = X(t)2 =
T̄CM

⌦2
(5.97)

gV (0) = V ⇤(t+ 0)V (t) = V (t)2 = T̄CM . (5.98)
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And so the average potential energy, Ep, and kinetic energy, Ek for a condensate of mass
M = N1m are

Ep =
1

2
M⌦2X2 =

1

2
M⌦2 T̄CM

⌦2
=

1

2
MT̄CM , (5.99)

and,

Ek =
1

2
MV 2 =

1

2
MT̄CM . (5.100)

Using the definition of the centre of mass temperature (Equation 5.45), T̄CM = kBT
mN1

,

Ep = Ek =
1

2
kBT. (5.101)

Thus each degree of freedom of the centre of mass of the condensate (kinetic and potential)
contribute 1

2kBT to the total energy, satisfying the equipartition theorem.

The average total energy of the centre of mass of the condensate is

Etotal = kBT. (5.102)

5.5 Simple Harmonic Oscillator Simulations

To test our analytic results a simulations of a damped simple harmonic oscillator with a
random driving force were performed.

5.5.1 Numerical Simple Harmonic Oscillator Simulation Method

The simple harmonic oscillator with random driving force was simulated using an Euler
method.

This calculates the value of position and velocity at discrete time intervals Dt by further
dividing this into smaller time intervals dt.

A vector Y of position and velocity is defined,

Y =



X
V

�

(5.103)

Y is calculated at time t+ dt, from the value of Y at time t,

Y(t+ dt) = Y(t) + h(t,Y(t))dt (5.104)

where,

h(t,Y(t)) =



Y2(t)
⌅(t)� 2�Y2(t)� ⌦2Y1(t)

�

(5.105)

and the random increment ⌅(t) is defined as

⌅(t) =

r

4T̄CM�

dt
⇠̄(t) (5.106)

⇠̄(t) is a delta correlated random variable with a Gaussian probability distribution centred
at 0 with a variance of 1.
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5.5.2 Two-Time Correlation Function Calculations

The SPGPE simulations or harmonic oscillator simulations are used to generate values
for the position and velocity at di↵erent times. These simulations are performed multiple
times to give a large ensemble. The values are stored in matrices, where each column is
for one ensemble and each row is at a specific time,

2

6

4

X(t1)1 X(t1)2 . . .
X(t2)1 X(t2)2 . . .

...
...

3

7

5

(5.107)

Each column, X(t)i, is multiplied by its Hermitian conjugate to give a square matrix
X(t)iX⇤(t0)i, and then an ensemble average is performed

X(t)X⇤(t0) =
1

N

N
X

i

X(t)iX
⇤(t0)i. (5.108)

This results in the two-time correlation function evaluated at discrete values of t and t0.
This is symmetrical around t = t0, and so we can find the two-time correlation function as
just a function of ⌧ , X⇤(t+ ⌧)X(t). This is done by performing a skew so that the t = t0

line is at ⌧ = 0, and then performing an average along the vertical direction (Figure 5.2).
This means that more elements are averaged over for ⌧ closer to 0, and the number of
elements decreases for a larger magnitude of ⌧ .

Skew Average

Figure 5.2: Visual representation of how the two-time correlation function is averaged. The two-
time correlation function, as a function of t and t0 is skewed, and then an average is performed over
the non-zero element in each column. This gives the two-time correlation function as a function of
⌧ .

5.6 Numerical SHO Results

To test the validity of the analytic forms for the two-time correlation functions of position
and velocity, these were compared with two-time correlation functions found using the sim-
ple harmonic oscillator simulations detailed in Sections 5.5.1 and 5.5.2. These simulations
provide a simple way to test the analytic results, and are independent of the SPGPE.
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Using simulation parameters of the undamped frequency ⌦, damping coe�cient � and the
centre of mass temperature T̄CM , simulations for the simple harmonic oscillator with a
random driving force (Equation 5.52) were performed. These simulations were carried out
for the underdamped case, � < ⌦ as this was the case for which the analytic forms were
found. The position and velocity were calculated as a function of t, for many trajectories,
one realisation of which is shown in Figure 5.3
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X
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_ X
(t

)

Figure 5.3: The position and velocity of a simple harmonic oscillator subject to a random driving
force, with ⌦ = 1, � = 0.1 and T̄

CM

= 0.01. In the undriven case, the choice of units for position
and time may be scaled, but in the driven case, the units are set with respect to the driving force.

Two-time correlation functions were computed for these simulations, showing close to an-
alytic agreement for large enough ensembles (Figure 5.4).
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Figure 5.4: The analytic (blue lines) and simulated (red points) two-time correlation functions
for position and velocity for the simple harmonic oscillator with a random driving force. The
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= 0.01, and an ensemble of 1000 trajectories was averaged
over.
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Chapter 6

SPGPE Simulations

In this section we discuss the condensate simulations of the full SPGPE, the choice of
dimensionless units and parameters. The analytic and simulation results are compared
using two-time correlation functions for the condensate centre of mass.

6.1 Numerical Preliminaries for Condensate Simulations

6.1.1 Dimensionless Units

In computational physics it is common to define a set of dimensionless units for numerical
ease and notational simplicity. When dealing with a harmonically trapped system all the
natural units are defined with respect to the trapping frequency. There are several distinct
trapping frequencies in this regime, but because we are concerned with the behaviour of
the condensate in the longitudinal direction we choose ⌦ = !x,1 from which to define our
units. Our unit of time is simply the inverse of the trap frequency,

t0 = 1/⌦, (6.1)

the length unit is the harmonic oscillator length of the trap

l0 = ax,1 =

r

~
m1⌦

. (6.2)

By defining these units, the other units for the simulations are also set, the mass unit is
simply the mass of a single component 1 particle,

m0 = m1, (6.3)

the energy unit is the characteristic energy of the trap

E0 = ~⌦, (6.4)
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which allows us to define the temperature unit,

T0 =
~⌦
kB

. (6.5)

These units are then used to define our simulation constants in dimensionless forms, which
are denoted by a tilde. The energy damping rate, M, becomes

M̃ =
8⇡ã12

e�µ̃2/T̃ �1
, (6.6)

where ã12 is the dimensionless cross scattering length between the cloud and the condensate,
ã12 = a1,2/ax,1; µ̃2 is the dimensionless form of the chemical potential of component 2,
µ̃2 = µ2/~⌦; and T̃ is the Temperature in dimensionless units, T̃ = T kB/~⌦.

The nonlinear interaction coe�cient has the dimensionless form

g̃ = 2ã11!̃?,1, (6.7)

where ã11 is the dimensionless scattering length between particles in component 1, and !̃?,1

is the ratio of the transverse trapping frequency of the condensate to the chosen reference
frequency ⌦.

Hence we expect that the damping coe�cient of the simulations will be given by,

�̃ =
3

16⇡

M̃I(�)
q

8⇡ã2?,1g̃
. (6.8)

I(�) (Equation 5.38) is una↵ected by the choice of units, because it is dimensionless and
is a function of �, which is also dimensionless (Equation 5.34).

6.1.2 Simulation Parameters

For choosing our simulation parameters we need to be able to ensure that our system
requirements are satisfied,

Tc,2 . T < Tc,1 (6.9)

and
~2

ma211
⌧ µ1 < ~!?,1. (6.10)

And also that the system parameters are experimentally realisable. For the thermal cloud,
the trap frequencies do not need to be especially tight, and so the main restriction is on
how shallow they can be. Experimentally, ultracold atoms have successfully been confined
in traps with frequencies as low as 6.1 Hz [20]. For component 1, the transverse trapping
frequency must be very high to ensure it is pseudo 1D, experimentally traps as tight as 2⇡⇥
790 Hz [21] and 2⇡⇥ 850 Hz [22, 23]. For the temperature regime, the first experimentally
achieved BEC in an atomic vapour was made at 170 nK, and was subsequently cooled to
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20 nK [1]. For BEC confined to one dimension the particle number is often in the order of
104 [21].

For running numerical simulations many, trajectories are performed with identical initial
conditions, but a di↵erent realisation of the noise. The initial wavefunction for the SPGPE
simulations is a Thomas-Fermi wavefunction of the form

 ̃init(x) =  ̃TF (x) = Re

"

s

1

g̃

✓

µ̃1 �
1

2
x̃2

◆

#

. (6.11)

This has to be allowed to thermalise, and so the simulations must be run for at least 2 to
3 damping times to allow for the transient initial behaviour to die out, where the damping
time is defined by 1/�̃. This means that to run the simulations, �̃ has to be large enough so
that the simulations can be run in a reasonable amount of time.�̃ can be tuned by changing
the parameters to allow the simulations to be performed in a reasonable time. There are
strict restrictions on the geometry of component 1, so ideally these parameters wouldn’t be
used to tune �̃. g̃ is determined by the choice of atoms in component 1, and the geometry
of component 1, and so also isn’t useful for tuning �̃. This leaves M̃ for tuning �̃, which
is ideal because it can be varied by changing the geometry of component 2 which has a lot
of freedom. M̃ depends directly on the chemical potential of component 2, which in turn
depends on the geometry and number of particles of component 2. Because component 2
is a thermal cloud it is well approximated as an ideal gas with no interactions, and µ̃2 can
be found by numerically solving

N2 =
(T̃ ⌦)3

!x,2 !2
?,2

g3

✓

exp

✓

µ̃2

T̃

◆◆

, (6.12)

where gn(z) is the normal definition of the Bose function, gn(z) =
P1

j=1(z
j/jn) [17].

Because gn(z) is increasing over the range in which it is defined, by increasing !?,2 while
holding N2 constant, µ̃2 may be increased up to a maximum value of µ̃2 = 0, which
corresponds to component 2 being at its critical temperature,

T̃c,2 = ˜̄!2

✓

N2

⇣(3)

◆3

, (6.13)

where ˜̄!2 is the dimensionless geometric mean trap frequency for component 2.

By increasing !?,2 to increase µ̃2 to close to zero, this will make the denominator of
Equation 6.6 much smaller, thus increasing M̃.In these simulations �̃ was tuned to around
0.1, which allows for the system to quickly thermalise while still being underdamped, which
in this case means �̃ < 1.

Component 1 is assumed to remain Thomas-Fermi, and thus the dimensionless chemical
potential is given by

µ̃1 =
1

2

✓

3

2
N1g̃1

◆2/3

. (6.14)
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For the simulations, the trap geometries are set, as well as the system temperature and
the number of particles in each component. The atomic species in each trap must also
be chosen, which will set the scattering lengths and masses. By setting these parameters,
other variables such as the chemical potential of each component is also set.

6.1.3 Numerical Evaluation of Position and Momentum Centre of Mass

Because the condensate wavefunction was evaluated in the harmonic oscillator basis, it is
easiest to evaluate the position and momentum expectation values in this basis also.

The numeric position and momentum operators can be constructed from the standard
harmonic oscillator creation and annihilation operators,

x̂ =
1p
2
(â+ â†) (6.15)

p̂ =� i
1p
2
(â� â†), (6.16)

where â and â† are square matrices of dimension Ecut,

â =

0

B

B

B

B

@

0
p
1 0 . . .

0 0
p
2 . . .

0 0 0
. . .

...
...

...
. . .

1

C

C

C

C

A

, â† =

0

B

B

B

@

0 0 0 . . .p
1 0 0 . . .

0
p
2 0 . . .

...
...

. . .
. . .

1

C

C

C

A

(6.17)

The wavefunction is calculated as a column vector,  (x, t) =  , and so the position and
momentum expectation values and normalisation can be found with simple discrete matrix
multiplication,

hx̂i =  † · x̂ · (6.18)

hp̂i =  † · p̂ · (6.19)

N1 =  † · (6.20)

where  ⇤ is the matrix Hermitian conjugate of  .

6.2 SPGPE Simulations

The simulations were performed for two di↵erent systems; a condensate of 87Rbwith a
thermal cloud of 87Rb , and a condensate of 23Nawith a thermal cloud of 87Rb . For the
first case where both the thermal cloud and condensate are 87Rb , this system can be
treated as number conserving if the two components are in di↵erent spin states and we
ignore the e↵ect of spin changing interactions. For the case of the 23Na condensate with
the 87Rb thermal cloud, there will be an additional factor in M that is currently unknown,
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due to the mass di↵erence between scattering particles. This unknown factor will not vary
in position or space, and so because � is linearly proportional to M this will just mean
that there is additional factor in the form of �. This factor is thought to be of order 2,
and so will not change the results dramatically, although it is currently undetermined.For
both cases !?,2 was used to tune the analytic �̃ to be around 0.1. The simulations were
performed over a range of temperatures using the constant geometry for component 1, and
keeping !x,2 held constant.
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Figure 6.1: Relative error in T̄
CM

with di↵erent ensemble sizes

6.2.1 Ensembles and Statistical Convergence

Using the SPGPE, the interaction e↵ects between the condensate and the thermal cloud
are treated stochastically. For this reason, steady state ensemble phenomena, such as the
two-time correlation function, must be found by performing an ensemble average over many
independent trajectories. Many trajectories are performed simultaneously using parallel
computing; because each of these trajectories are independent, the task is embarrassingly
parallel and is simple to implement.

Furthermore, because the centre of mass properties at one time become e↵ectively un-
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Figure 6.2: The number of particles in a simulated condensate, for di↵erent Euler timesteps.
Because the number of particles is constant for our model, this method is unstable for timesteps
greater than dt = 0.25⇥10�3 t0. The method is convergent for dt = 0.25⇥10�3 t0, because halving
this timestep to dt = 0.125⇥ 10�3 t0 still gives the same behaviour.
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correlated after around 3 damping times, one long trajectory may be split into smaller
trajectories that can be treated as independent. This means that for each of the smaller
trajectories the system is already in a thermalised state, and there is no need to wait for the
transient Thomas-Fermi behaviour to decay. For a larger ensemble with more trajectories,
the agreement between the analytic and simulated data becomes much better. This can
be seen in Figure 6.1, where the relative error in T̄CM approaches zero as more trajectories
are averaged over.

Numerical Convergence

It is important to test there is numerical convergence when using numerical di↵erential
equation solvers, such as are used here for solving the SPGPE. If the Euler timestep is too
low, then the results do not converge, as is shown in Figure 6.2. Convergence is seen when
the simulations have the same behaviour when the timestep is halved.

The position and velocity, and hence the two-time correlation functions were found using
methods described in Sections 6.1.3 and 5.5.2 (Figure 6.4). The simulated results were
compared with the analytic forms of the position and momentum two-time correlation

functions (Equations 5.80 and 5.93), using analytic forms for �̃ and ˜̄TCM , Equations 5.40
and 5.45. Because we are working in units defined by the the longitudinal frequency for
component 1, ⌦ in Equations 5.80 and 5.93 is set to unity.

Computation Requirements

To simulate the condensate using the SPGPE (Equation 4.3), a Semi-Implicit Euler method
was used[24]. These simulations were performed in parallel on machines using 6 core Intel
core-i7 3930K 3.2GHz processors and 64Gb of physical memory. The typical length of a
simulation ranged from 8 hours to 2 days. The total elapsed time for all simulations for
this project was around 70 days – i.e., running all of the simulations on a machine with a
single core would take around 420 days.

6.2.2 87Rb Condensate Simulations

For the full SPGPE simulations using a condensate and cloud of 87Rb , the trapping fre-
quencies and component populations were set to ensure a pseudo 1D condensate that was
numerically suitable. The constant trapping frequencies were ⌦ = 62.8 Hz, !?,1 = 5340
Hz, !x,2 = 56.5 Hz. The component populations were N1 = 5710 and N2 = 106. The
87Rb -87Rb s-wave scattering length is as = a11 = a12 = 98a0, and so the dimensionless
non-linear interaction coe�cient for these simulations is g̃ = 0.259 and the dimensionless
chemical potential of component 1, which is assumed to be Thomas-Fermi, is µ̃1 = 84.4.
For the di↵erent temperature simulations !?,2 was varied which e↵ected the other sim-
ulation parameters, as shown in Table 6.1. These simulations were performed using a
semi implicit Euler method, calculating the state of the wavefunction every 0.0785 t0 from
t = 0 t0 to t = 1000 t0. The analytic damping time for all the simulations was around
1/�̃ = 10, and so these were split into trajectories running for 50 t0 each, discounting the
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T̃ T (nk) !?,2 (Hz) µ̃2 M̃ �̃ ˜̄TCM

20 9.60 6.4861 -0.0392 0.0296 0.102 0.004

30 14.4 11.9 -0.0554 0.0314 0.108 0.006

40 19.2 18.3 -0.0741 0.0314 0.108 0.008

50 24.0 25.6 -0.0894 0.0325 0.111 0.01

60 28.8 33.7 -0.101 0.0345 0.111 0.012

70 33.5 42.5 -0.128 0.0318 0.109 0.014

77.74 37.3 49.7 -0.137 0.0330 0.113 0.0155

90 43.2 61.9 -0.167 0.0314 0.108 0.018

150 72.0 133 -0.273 0.0319 0.109 0.03

Table 6.1: Consistent parameters for SPGPE simulations of a pseudo-1D condensate of 87Rb in
a 3D thermal cloud of 87Rb . These parameters are chosen such that the system temperature is
greater than the critical temperature for the thermal cloud, and lower than the critical temperature
for the condensate.

first trajectory to allow for the system to thermalise. 6 simulations were run in parallel
resulting in a total of 120 trajectories for each set of parameters.

For low temperatures, there is excellent agreement between the analytic and simulated
two-time correlation functions, for both position and velocity. Especially for small ⌧̃ , the
agreement is very good; the tails deviate more from the analytic result due to averaging
over a smaller number of samples, as described in Section 5.5.2. For both the T̃ = 20 and
T̃ = 60 results there is very little disagreement between the analytic and numerical results.
For T̃ = 77.74, which is the chemical potential of the condensate, the decay rate of the
simulated results begins to di↵er more from the analytic results, and this trend is shown at
higher temperature at T̃ = 150, with even more deviation. Deviation at high temperature
is expected because the analytic forms of the decay time are based on the assumption that
the wavefunction had the form of the Thomas-Fermi state, with an o↵set from the centre
of the trap. Because the Thomas-Fermi is a zero temperature solution to the GPE for
a system with a given chemical potential, we would expect the analytic results to only
be valid for temperatures which are small compared to the chemical potential, T̃ < µ̃1.
Comparing the error in �̃ against di↵erent temperature, we can see that the relative error
between the damping coe�cient from the simulations and analytic results becomes greater
for T̃ > µ̃1 (Figure 6.3). Here the error is relative error, defined as

Relative Error in �̃ =
�̃fitted � �̃analytic

�̃analytic

, (6.21)

where �̃fitted was found by numerically fitting an exponential decay curve to the peaks of
gX(⌧) from the simulated data.

Although at higher temperatures the damping coe�cient becomes less well described by the
analytic form, the frequency term ⌦ appears to remain consistent. This is because although
for higher temperatures the wavefunction is no longer well described by a Thomas Fermi
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Figure 6.3: The relative error in the dimensionless damping coe�cient for di↵erent system tem-
peratures, for the 87Rb simulations.

state, the oscillation �!2Xdt term in Equation 5.46, depends only on the centre of mass
position of the wavefunction and not on actual form of the wavefunction.

Penrose-Onsager Criterion

To investigate the temperature regime more deeply, it is useful to see how closely the
condensate resembles a Thomas-Fermi state. The condensate fraction and corresponding
wavefunction can be found using the Penrose-Onsager criterion.

For finite temperature BEC, there will be a fraction that is in the ground state, which is
referred to as the condensate fraction, and there will be other excited modes which are
uncondensed. The occupation and spatial distribution of the ‘orbitals’ can be found using
the Penrose-Onsager criterion. This is done by finding a 1-body density matrix for the state
by performing an ensemble average over many outer products of independent states,

⇢̂(x, x0) = h (x) (x0)i (6.22)

The eigenstates of ⇢̂ will give the spatial distributions of each of the orbitals, and the
corresponding eigenvalues give the occupation:

Z

dx0 ⇢̂(x, x0)�n(x
0) = Nn�n(x), (6.23)

where �n(x) is the spatial distribution of the orbital with occupation Nn. The eigenstate
corresponding to the largest eigenvalue will be the ground state of the BEC, and the
eigenstate with the second largest eigenvalue will be the first excited state.

As the temperature increases it can be seen in Figure 6.4 that the condensate fraction wave-
function begins to lose Thomas-Fermi character and begins to approach a Gaussian form.
As well as becoming less like the zero temperature Thomas Fermi solution, the population
of the condensate fraction also decreases as temperature increases(Figure 6.5).

Although this decline in the condensate fraction is expected, it is very di↵erent from what
is predicted by [17], this is because our thermodynamic regime is a canonical ensemble
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Figure 6.4: Plots of two-time correlation functions versus time, for a condensate of 87Rbover a
range of temperatures T̃ = 20, 60, 77.74, 90; also shown are condensate densities (right column).
The analytic forms for g

X

(⌧) (5.80) and g
V

(⌧) (5.93) are plotted in the first and second column
(orange) together with the results from the SPGPE simulations (blue), and the analytic decay
envelope, (5.95) (yellow). In the third column we plot the particle densities for the zero-temperature
Thomas-Fermi solution (2.9) (red), the condensate orbital obtained using the Penrose-Onsager
criterion (6.22, 6.23), and a particular SPGPE trajectory (blue). ⌧ is in units of 1/⌦, x is in units
of a

x,1.

rather than a grand canonical ensemble, and also because for a tightly confined 1D con-
densate the interactions between particles will cause deviations away from the ideal gas
prediction.
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Figure 6.5: The fraction of component 1 in the ground (condensate) state and the first excited
state as a function of temperature, for the 87Rb simulations, compared with the condensate fraction
from Equation 4.15[17].

It is interesting to note that although the damping coe�cient is very di↵erent at high tem-
peratures, the two-time correlation functions for the centre of mass are still well described
by the analytic forms, but with a di↵erent choice for the damping coe�cient. This implies
that the centre of mass of the system can still be thought of as a damped harmonic oscil-
lator subject to a random driving force, which is what would be expected from the Kohn
Theorem.

Equipartition Theorem

The analytic results predicted that gX(0) = T̄CM
⌦2 and gV (0) = T̄CM , which in turn can be

used to calculate the potential and kinetic energy and show that the equipartition theorem

is satisfied, Section 5.4. Values of ˜̄TCM using Equation 5.45, gX(0) and gV (0) were plotted
against T̃ in Figure 6.6a. Although there is slight deviation for higher temperature due to
higher temperature fluctuations requiring larger ensembles, there is still good agreement

for both the values for ˜̄TCM found using the position and velocity two-time correlation
functions.

Even better agreement is observed calculating the energy of the centre of mass explic-
itly,

ẼCOM =gPE + gXE (6.24)

=
1

2
(gX(0) + gV (0)) . (6.25)

The energy of the centre of mass shows very good agreement with the analytic predictions,
even at high temperature when the wavefunction has very little Thomas Fermi character
(Figure 6.6b).

The equipartition continues to hold even in the high temperature regime because the
condensate is in a harmonic trap, and the centre of mass has two degrees of freedom,
regardless of the temperature.
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Figure 6.6: (a) ˜̄T
CM

against T̃ . The blue line is obtained from Equation 5.45, the red points from
g
X

(0) and the yellow points from g
V

(0). (b)The energy of the centre of mass in dimensionless units,
Ẽ

CM

, plotted against temperature. The analytic result is given by the blue line and the red points
are values obtained from the two-time correlation functions.

The equipartition theorem only holds in equilibrium, and so the systems must be allowed
to thermalise before using the values of the position and velocity of the centre of mass.
Using the values of the two-time correlation functions at ⌧ = 0 is su�cient because the
two-time correlation functions were calculated using data from the thermalised system.
The e↵ect of thermalisation on the energy of the centre of mass for an initially Thomas
Fermi State is demonstrated in Figure 6.7a. The system starts out in a Thomas-Fermi
State where the centre of mass has no energy, and on average gains energy due to thermal
noise during the first damping time as the system thermalises. The damping rate has no
e↵ect on the energy of centre of mass of the thermalised system, but does a↵ect the time
for thermalisation.

It is also interesting to investigate the total energy of the condensate, as it evolves in time
from an initially Thomas-Fermi state. The total energy of the condensate is found by
evaluating the kinetic and potential energy of the condensate in the harmonic oscillator
basis, and using a Gauss-Hermite quadrature method to evaluate the interaction energy
in the position basis. We can see in Figure 6.7b that the total energy seems to reach
equilibrium much faster than when considering just the centre of mass of the system.

6.2.3 23Na Condensate Simulations

For the simulations of a condensate of 23Na in a thermal cloud of 87Rb , a similar ap-
proach was taken to the simulations with a 87Rb condensate. For simulations at di↵erent
temperatures, the transverse trapping frequency of the thermal cloud was varied, while
the other trapping frequencies for each component were held constant. This allowed the
damping coe�cient to be tuned to give numerically expedient simulations. The constant
trapping frequencies were ⌦ = 94.2 Hz, !?,1 = 4400 Hz, !x,2 = 84.8 Hz. The component
populations were N1 = 105 and N2 = 106. The 23Na -23Na s-wave scattering length is

46



CHAPTER 6. SPGPE SIMULATIONS

0 20 40 60 80
Time (t0)

0

5

10

15

20

25
C
en

tr
e

of
M

as
s
E
n
er

g
y

(E
0
)

Etot

KE

PE

(a)

0 20 40 60 80
t=t0

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

hĤ
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Figure 6.7: (a) The kinetic, potential, and total energy for a condensate centre of mass of 87Rbat
T̃ = 20 with parameters described in Section 6.2.2 and Table 6.1, with an ensemble of 300 elements.
The black dashed line shows one damping time of the system. The system was initially in a Thomas-
Fermi State. (b) The total energy for a condensate of 87Rbat T̃ = 20 with parameters described
in Section 6.2.2 and Table 6.1, using an ensemble of 240 elements. The black dashed line shows
one damping time of the centre of mass of the system. The system was initially in a Thomas-Fermi
State.

T̃ T (nk) !?,2 (Hz) µ̃2 M̃ �̃ ˜̄TCM

20 14.4 9.74 -0.0187 0.0102 0.114 0.002

30 21.6 17.9 -0.0309 0.00925 0.104 0.003

40 28.8 27.5 -0.0321 0.0119 0.133 0.004

45 32.4 32.9 -0.0358 0.0120 0.134 0.0045

50 36.0 38.5 -0.0522 0.00912 0.102 0.005

75 54.0 70.7 -0.0720 0.00992 0.111 0.0075

150 108 200 -0.111 0.0129 0.144 0.015

500 360 1220 -0.527 0.00904 0.101 0.05

Table 6.2: Variable parameters for SPGPE simulations of a psuedo-1D condensate of 23Na in a
thermal cloud of 87Rb .

as = a11 = 63a0 and so the dimensionless non-linear interaction coe�cient for these sim-
ulations is g̃ = 0.0575 and the dimensionless chemical potential of component 1 which is
assumed to be Thomas-Fermi is µ̃1 = 45.3. The scattering length for interactions between
the 23Na condensate and 87Rb thermal cloud is a12 = 104a0. For the di↵erent temperature
simulations !?,2 was varied which e↵ected the other simulation parameters, as show in
Table 6.2.

For these simulations, although the proper form of M is not known, we expect that the
form given by Equation 4.7 will give a reasonably accurate approximation. Even if the
value of M di↵ers from the physical result, we still expect our simulations to be consistent
with analytic forms, because the simulations are using M as a parameter.
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Figure 6.8: Plots of two-time correlation functions versus time, for a condensate of 23Naover
a range of temperatures T̃ = 40, 75, 150, 500; also shown are condensate densities (right column).
The analytic forms for g

X

(⌧) (5.80) and g
V

(⌧) (5.93) are plotted in the first and second column
(orange) together with the results from the SPGPE simulations (blue), and the analytic decay
envelope, (5.95) (yellow). In the third column we plot the particle densities for the zero-temperature
Thomas-Fermi solution (2.9) (red), the condensate orbital obtained using the Penrose-Onsager
criterion (6.22, 6.23), and a particular SPGPE trajectory (blue). ⌧ is in units of 1/⌦, x is in units
of a

x,1.

As with the 87Rb simulations, the 23Na simulations were performed using a semi-implicit
Euler method, calculating the state of the wavefunction every 0.0314 t0 from t = 0t0 to
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CHAPTER 6. SPGPE SIMULATIONS

t = 3000 t0. The damping times were tuned to be approximately 1/�̃ = 10, and as with
the 87Rb simulations the long trajectories were divided into smaller trajectories that ran
for 50 t0, as well as discounting the first trajectory in each run. By running 6 simulations
in parallel, 366 trajectories were found for each set of parameters. Because of the di↵erent
a11 for the 23Naatoms the chemical potential was able to be chosen much lower, allowing
a lower energy cuto↵. Because fewer energy modes were considered, this meant that more
trajectories were able to be found numerically for a similar time of simulation compared
to the 87Rb simulations.

The values of position and velocity at all of the timesteps for the di↵erent trajectories were
used to construct two-time correlation functions for position and velocity, some of these
are shown for di↵erent temperatures in Figure 6.8.

Interestingly the analytic forms of the two-time correlation function hold even as the tem-
perature becomes greater than the chemical potential. At these temperatures the con-
densate fraction density given by the Penrose-Onsager criterion is still a close match for
the Thomas-Fermi state. This may be because the component 1 of the 23Na simulations
has approximately double the number of particles, allowing it to remain Thomas-Fermi at
higher temperatures.

Although there is good agreement between the analytic and simulated two-time correlation
functions, the relative error in the damping coe�cient does still increase with temperature
as the condensate fraction loses Thomas-Fermi character and becomes better described as
a Gaussian, Figure 6.9.
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Figure 6.9: The relative error in the dimensionless damping coe�cient for di↵erent system tem-
peratures, for the 23Na simulations. Although the relative error is small, it does on average increase
with temperature, especially for T̃ > µ̃1.

A large point of di↵erence between the simulations using a component 1 of 87Rband a
component 1 of 23Na is the di↵erence in the interaction strength, characterised by g̃. g̃
is about larger by a factor of around 4.5 for the 87Rb simulations, compared with the
23Na simulations. There is also a large di↵erence in µ̃1, which is almost twice as large in
the 87Rb simulations. The lower interaction strength and chemical potential may e↵ect the
interactions between the non-condensate and condensate regions of component 1, allowing
it to remain Thomas-Fermi for higher temperatures.
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Chapter 7

Conclusion

In this project we have investigated the centre of mass motion of an elongated harmonically
trapped BEC in a cloud of distinct atoms. C-field techniques were applied, allowing us
to treat the low energy modes containing the condensate as a coherent region (C region),
and the thermal cloud as an incoherent region (I region), acting as a thermal reservoir.
Because the two regions are composed of quantum mechanically distinguishable particles
from each other, particle exchange is forbidden, and we can ignore the number damping
term in the SPGPE, giving us the energy-damped SPGPE (Equation 4.3).

The physical validity regime was investigated, to ensure we could find physically realistic
parameters where the 1D model is valid. The system had to be in the correct temperature
regime with component 1 having a significant condensate fraction, and component 2 entirely
thermalised. There were strict requirements for the trapping geometry of component 1,
ensuring that there were no transverse oscillations, which allows us to treat it as pseudo 1D.
However the confining potential cannot be so tight that the scattering interactions within
the condensate are no longer three dimensional. The trap geometry for the thermal cloud
is not as constrained, and so this gives us freedom to vary other parameters by changing
the component 2 trapping frequencies. The number of particles in each component is
conserved, which sets the chemical potentials. All of the parameters are chosen to be in a
range that is physically realisable

Following from the work of [6] and [5], under the assumption that the wavefunction re-
mained in a Thomas-Fermi state, an analytic form was obtained for the equation of motion
for the centre of mass of the condensate. This equation of motion had the form of a damped
simple harmonic oscillator subject to a random driving force. Analytic expressions for the
damping and noise were found in terms of the system parameters.

Following and extending on the derivation found in [19], the two-time correlation functions
for both position and velocity for a simple harmonic oscillator with a random driving
force. These analytic two-time correlation functions were found to be consistent with
the equipartition theorem. These analytic two-time correlation results were validated by
numerically simulating a damped harmonic oscillator driven by a random force, giving
almost exact agreement.
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CHAPTER 7. CONCLUSION

The central aim of this work has been to compare the analytic results with simulations
using the full SPGPE.

Two di↵erent physical regimes were simulated over a range of temperatures; one with a
condensate of 87Rband a thermal cloud of 87Rb , and one with a condensate of 23Naand
a thermal cloud of 87Rb . For the 87Rb -87Rb simulations we assume that the two regions
are in di↵erent internal state. It is important to note that for the 23Na -87Rb simulations
there is likely a missing factor in the energy damping rate due to the mass di↵erence, which
would be interesting to explore in future work. For these simulations, many trajectories
were performed, and the position and velocity of the centre of mass of theC field region was
found. Using the values of position and velocity for the centre of mass of the condensate,
two-time correlation functions were numerically computed. For low temperature, these
showed excellent agreement with the analytic forms of the two-time correlation functions
using analytically derived equations for the damping coe�cient and the e↵ective centre of
mass temperature.

For higher temperatures, as the condensate becomes less well described by the Thomas-
Fermi state, the two-time correlation functions become less well described by the analytic
forms, as is expected. This departure from Thomas-Fermi behaviour was investigated using
the Penrose-Onsager criterion.

Surprisingly, the 23Na -87Rb simulations give good agreement with the analytic two-time
correlation functions, for temperatures much higher than the chemical potential. This may
be caused by the lower interaction strength of 23Na , meaning that the non-condensate
fraction does not interact as strongly with the condensate.

This project is a rare case where the full SPGPE can be solved almost exactly, and this is
backed up by the excellent agreement between our analytic and numerical results. Because
care has been taken to ensure that the parameters chosen were experimental realistic, the
results of this work may be experimentally testable.
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Appendix A

Integral from Section 5.1.2

Here we compute the integral

K =

Z

dk S1(k) k
2

✓

Z

dx nTF (x, t) e
ikx

◆ ✓

Z

dx0 nTF (x
0, t) e�ikx0

◆�

(A.1)

The integral over x can be interpreted as the Fourier transform of the Thomas-Fermi
density.
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Using integration by parts on the second term, we obtain
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52



APPENDIX A. INTEGRAL FROM SECTION 5.1.2

The integral over x0 will be equal to the complex conjugate of Equation A.7, hence the
integral becomes

K =
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dk S1(k) k
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Thus using the definition of S1(k)

S1(k) =
1

q

8⇡a2?

erfcx

✓

|k|a?p
2

◆

(A.11)

and defining the dimensionless variable z = kR, this integral can be written in the
form
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where
� = a?/R. (A.13)
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