
Applications of the PGPE Formalism

to a

Trapped Bose Gas

ALICE BEZETT

A thesis submitted for the degree of

Doctor of Philosophy at the University of Otago,

Dunedin, New Zealand.

December 2008



Abstract

In this thesis we develop formalism based on the Projected Gross-Pitaevskii equation

(PGPE) to describe experimentally realistic systems of finite temperature Bose-Einstein

condensation. The PGPE formalism we use has been developed for the harmonically

trapped system, and includes nonperturbatively all the interactions within the low en-

ergy, highly occupied modes, and is valid in the critical regime. In this thesis we extend

the PGPE to study two challenging problems: (i) Modeling the finite temperature col-

lective mode experiment of JILA (ii) The correlation properties of a trapped Bose gas

and the emergence of critical physics at the condensation transition. Our work is exten-

sively computational in nature, and a large number of results in experimentally realistic

regimes are presented.

We make a quantitative comparison of the PGPE formalism to experimental results by

modeling the JILA experiment that studied the quadrupolar collective excitations of a

finite temperature Bose gas [PRL 78, 764 (1997)]. We undertake a comprehensive study

of the experimental regime by analysing the condensate and noncondensate excitation

frequencies and damping rates as a function of temperature. These simulations allow us

to compare the PGPE directly with the experimental results, and also with a large body

of theoretical work that has been applied to this problem. We analyse the dependence

of our cutoff in energy space to the equilibrium and dynamic properties of our system;

this is the first such study of this dependence for the PGPE formalism, and yields new

validity conditions for the study of dynamical regimes.

We study the coherence and correlations within a trapped Bose gas by developing for-

malism for calculating the first and second order correlation functions. We investigate

the role of the condensate and thermal components of the system in the temperature

range (0.5 − 1.0)Tc. We then extend this work to study the onset of coherence in the

system at the critical temperature. We study the variation of the correlation length

across the phase transition, and so are able to make a prediction for a critical exponent

of the transition. We observe finite size effects and identify relevant length scales for

the onset of finite size effects. We identify experimentally measurable quantities that

can be compared with our theoretical work.

2



Acknowledgements

I would like to thank my supervisor, Dr Blair Blakie, for his unfailing guidance and

support throughout my PhD studies. Blair was always brimming with ideas of how to

further our work, and full of enthusiasm for the underlying physics. I think a little of

this rubbed off - for which I am truly grateful.

To Prof. Rob Ballagh, for all his encouragement, and for being able to always see the

bigger picture.

I would like to thank all the Jack Dodd members, past and present, for all the helpful

discussions, and for broadening my physics outlook. On a more personal note, I’d like

to thank all the members of 524 over the years, who were always full of support when

the going was tough, and could be counted on to humour me when all I really wanted

was a distraction.

In the wider physics community I’d like to thank Dr Craig Rodger for his friendship and

perspective, and Dr Inga Smith for all her helpful advice, and for providing a new area

of interest. I’d also like to thank the IT staff at the physics department, who always

managed to fix the things I broke, and the technicians who taught me how to turn

equipment on if I ever found myself in a lab, and just generally made the common room

a fun place. Thanks also to Sandy, for all her support.

Thanks to my friends and family, who were always there when I needed them most, and

especially my parents, for all the love and support. To George, who has always been

there for me, patient and thoughtful, thankyou sweetheart, for just being you.

This work was supported by financial assistance from the Tertiary Education Commis-

sion, and the Jack Dodd Center. I would also like to thank the University of Otago,

and my supervisors, for additional travel funding.

3



Contents

1 Introduction 8

1.1 Finite Temperature Investigations . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Excitation spectra of an Ultra Cold Bose Gas . . . . . . . . . . . 9

1.1.2 Correlations of Bose gas . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 C-field Theory - the PGPE . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Peer-reviewed Publications . . . . . . . . . . . . . . . . . . . . . . 29

2 Formalism 30

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The Projected Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . 31

2.3.1 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 C-field Equation of Motion (PGPE) . . . . . . . . . . . . . . . . . 34

2.3.3 Ergodicity and Time Averaging . . . . . . . . . . . . . . . . . . . 34

2.3.4 Common Observables . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.6 Ground state and Thomas-Fermi Approximation . . . . . . . . . . 38

2.4 Incoherent Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Truncated Wigner formalism . . . . . . . . . . . . . . . . . . . . . . . . . 41

4



CONTENTS

3 Numerics 45

3.1 Computational Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Thomas-Fermi approximation in Computational Units . . . . . . 47

3.3.2 Initial State Preparation . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Evolution of the PGPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Formal algorithm in Position Space Representation . . . . . . . . 48

3.4.2 Basis Set Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Time-dependent Perturbation . . . . . . . . . . . . . . . . . . . . 56

3.6 Discussion on Computational Resources . . . . . . . . . . . . . . . . . . . 56

I Excitations 58

4 Quadrupolar Excitations of the Bose gas 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Equilibrium States . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Formalism for Dynamical Modeling of Collective Mode Excitation 62

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Equilibrium States . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Density Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Fourier Analysis of Field Moment Dynamics . . . . . . . . . . . . 70

4.3.4 Frequencies and Decay Rates of Collective Modes . . . . . . . . . 75

4.3.5 Cutoff Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5



CONTENTS

4.3.6 Dipole Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.7 Relative Phase of Condensate-Noncondensate Oscillations . . . . 86

II Correlations 89

5 Two point Correlations of the Bose Gas 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 System and Correlation Functions . . . . . . . . . . . . . . . . . . 90

5.2.2 Finite Temperature Formalism . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Classical Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.4 Incoherent Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Position Space Correlations . . . . . . . . . . . . . . . . . . . . . 97

5.3.2 Results of Correlation Functions in Momentum Space . . . . . . . 102

5.3.3 Coherence length . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Critical Region of the Trapped Bose Gas 109

6.1 Critical Region Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Sampling Equilibrium States across the Transition Region . . . . 110

6.2.2 Spatial Correlations and the Correlation Length . . . . . . . . . . 111

6.2.3 Condensate Number Fluctuations and the Generalised Binder Cu-

mulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusions 121

A Fourier Methods 124

A.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6



CONTENTS

B TDPT comparison with PGPE 126

C Optical Lattice papers 128

7



Chapter 1

Introduction

Bose-Einstein condensate (BEC) is the state of matter characterised by the macroscopic

occupation of the ground state of a system of bosons, particles with integer spin (in

units ~). This phenomenon is due purely to quantum statistical effects, rather than

interactions, which drive the phase transitions of the states seen in everyday experience.

The idea of BEC first emerged theoretically from the work of Bose and Einstein in

1924, but was not experimentally realised until 1995 in the group at JILA [1]. We show

their absorptive images of the expanded cloud in Fig. 1.1. This image shows the Bose

cloud at three different temperatures, spanning the phase transition. There has been an

extraordinary amount of interest in BEC, both theoretically and experimentally, as this

fluid allows quantum effects to be seen on the macroscopic scale. The physical situation

of a pure condensate (see Fig. 1.1(c)) is well understood and a simple, and widely used

theory has emerged that provides a comprehensive description of this regime - the Gross-

Pitaevskii equation (GPE). For the cases of mixed condensate and noncondensate (see

Fig. 1.1(b)) several theories have been developed, but tend to be much more complicated

than the GPE to use, and are often limited to near equilibrium systems. Furthermore,

none of those theories are valid for the critical regime (lying at a temperature between

Fig. 1.1(a) and (b)), except for a few quantum Monte Carlo predictions. The transitional

cases in Fig. 1.1(a) and (b) are significantly more complex due to interactions between

condensed and noncondensed components of the cloud. It is the subject of this thesis

to develop formalism applicable to recent experimental developments in these regimes.

1.1 Finite Temperature Investigations

The formalism we will develop in this thesis is applicable to the degenerate, harmonically

trapped interacting Bose gas at finite temperature. While original experiments probing
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CHAPTER 1. Introduction

Figure 1.1: Absorption images of the BEC of the experiment of [1]. A dilute gas of 87Rb
atoms at (a) 400nK, (b) 200nK, and (c) 50nK, showing the progression of the gas from
an uncondensed phase (a) to an almost pure condensate (c). (a) shows an ultra-cold
Bose gas which is just above the phase transition where it is not condensed, (b) shows
the partially condensed system, and (c) corresponds to a temperature well below the
critical temperature, where there is a pure BEC. Reproduced from [1] Copyright 1995
American Association for the Advancement of Science.

this novel quantum fluid were done in the zero-temperature limit, efforts quickly turned

to investigating the finite temperature gas, where the BEC interacts strongly with an

uncondensed component, which we will refer to from here on as the thermal cloud or

noncondensate. In the following, we will give a broad overview of two very important

areas of research, that will be the foci of this thesis:

1. The low energy collective excitations of the partially condensed Bose gas.

2. The investigation of correlations within the finite temperature trapped Bose gas,

and the critical behaviour of these correlations near Tc.

Below follows a review of the experimental developments in these fields, and of the

theoretical results that are applicable to these experiments.

1.1.1 Excitation spectra of an Ultra Cold Bose Gas

The response of a manybody system to an external perturbation, particularly its collec-

tive mode response, forms an important method of analysis in condensed matter physics.

The BEC is usually confined within a magnetic field. Perturbations of this confining

9



CHAPTER 1. Introduction

Figure 1.2: Schematic view of the symmetries of the collective modes studied in the
experiment of Jin et al. [3].

potential can excite the collective modes of the system, and this was the method used

in several collective mode experiments [2–6]. The first of these, by Jin et al. [2] and

Mewes et al. [4] investigated various excitation modes in the low temperature limit,

where the system was mainly condensate. The results of these investigations could be

well described by simple meanfield theory (see [7–9] and results within [4]). We are

interested mainly in the extension of this work to study the excitations as a function of

temperature, as done by Jin et al. in Ref. [3].

In that work, a sinusoidal perturbation was applied to the harmonic trapping potential,

in order to excite the m = 0 and m = 2 excitation modes, where m is the projection

of the angular momentum on the z-axis. In Fig. 1.2(a) and (b) we show a schematic

representation of the two quadrupolar modes excited in the JILA experiment, for their

“pancake” shaped cloud. We see that the m = 0 mode corresponds to a “breathing”

mode symmetrical in the x and y directions, with out of phase motion in the z direction,

while the m = 2 mode corresponds to an out of phase motion in the x and y directions,

with approximately zero motion in the z direction.

After the sinusoidal perturbation of the appropriate symmetry was applied, the system

was allowed to evolve in trap for a variable time, and was then released and imaged using

absorptive imaging. Fits to the fluctuating size of the image revealed the frequencies of

oscillation and damping rates of the excitations of the thermal and condensate fractions

of the system, and we reproduce these results in Fig. 1.3.

In Fig. 1.3(a) we see the temperature dependence of the m = 0 and m = 2 collective

modes. The frequency of the m = 2 excitation decreases with increasing temperature,

while the m = 0 mode frequency increases sharply to the noninteracting limit. The

damping rate, in Fig. 1.3(b), increases with increasing temperature for both modes.

Results for the thermal cloud are indicated on both graphs, and show the expected

10



CHAPTER 1. Introduction

Figure 1.3: Temperature-dependent excitation spectrum: (a) Frequencies (normalised
by the radial trap frequency) for m = 0 (triangles) and m = 2 (circles) collective
excitation symmetries are shown as a function of normalised temperature T ′. Oscilla-
tions of both the condensate (solid symbols) and noncondensate (open symbols) clouds
are observed. Short lines extending from the left side of the plot mark the mean-field
theoretical predictions in the T = 0 limit (for 6000 atoms). (b) Damping rates for the
condensate and thermal components as a function of temperature. Reproduced from [3].
Copyright 1997 The American Physical Society
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CHAPTER 1. Introduction

behaviour for a noninteracting gas.

A large body of theoretical work has been conducted on the subject of the JILA experi-

ments [10–24] and is nicely summarised in a recent review by Proukakis and Jackson [25].

The temperature dependence of the m = 2 mode was accounted for by gapless Hartree-

Fock Bogoliubov (HFB) theory calculations in 1998 [11], which included anomalous

average and manybody effects in the system description (also see Refs. [26–29]). How-

ever, gapless HFB failed to account for the rather sudden upward shift in the m = 0

mode frequency observed in experiments at T ≈ 0.65Tc.

The experiment of Ref. [5] comprehensively investigated the role of the thermal cloud

in collective mode oscillations, and their findings that the thermal cloud was dynamical

and interacted strongly with the condensate were in direct contrast with the theory

used at the time, which assumed a static thermal cloud. This suggested that more

comprehensive theory, inclusive of the dynamics of the thermal cloud would be needed

to fully account for experimental findings.

An explanation for the behaviour of the m = 0 mode was first provided by Stoof

and coworkers [18, 30] (also see [31]), who suggested that it arose from the coupling

of in-phase and out-of-phase oscillations of the condensate and thermal cloud. This

hypothesis suggested that an adequate theoretical description would require a dynamic

treatment of both the condensate and noncondensate parts of the system. The first such

formalism was the Zaremba-Nikuni-Griffin (ZNG) finite temperature theory [32–34] in

which the system description takes the form of a Gross-Pitaevksii equation for the

condensate, coupled to a Boltzmann equation for the noncondensate. Jackson and

Zaremba [20] applied the ZNG theory to model the JILA experiment and found relatively

good agreement with the experimental results. The following year, Morgan et al. [14]

reported the results of a second order theory that were also in good agreement with the

experimental results. That theory, the culmination of seven years of work by Burnett,

Hutchinson, Morgan, Proukakis and coworkers [10–17,22,35], consistently included the

dynamical interactions between the condensate and noncondensate atoms. To date, the

only fully quantitative theoretical descriptions of these results have been provided by the

ZNG formalism calculations of Jackson et al. [20] in 2002 and the second order theory

of Morgan et al. [14] in 2003.

In Fig. 1.4 we show a summary of the results of these competing theories, as compiled in

Ref. [25]. The wealth of theoretical data on this experiment makes it a highly desirable

system to model. In fact, the description of these experiments has become the de facto

standard for testing finite temperature quantum field theories of BEC. It is for this

reason that we find it a valuable test of our finite temperature formalism.

12



CHAPTER 1. Introduction

Figure 1.4: Comparison of the predictions for the temperature dependence of the excita-
tion frequency of the m = 0 mode measured at JILA [3] (shown by black squares) based
on different theoretical models, plotted for the region of the anomalous behaviour of
the excitation frequency. Blue (filled) points joined by dotted lines: number-conserving
formalism with (upper circles) or without (diamonds) direct excitation of the thermal
cloud from the probe [14]. Green: static thermal cloud theories with (*, generalised
HFB with gt = g(r) [11]) or without (+, HFBPopov [16]) inclusion of the anomalous
average. Red (filled): predictions of ZNG approach for different excitation probe fre-
quencies aimed at exciting primarily the condensate (lower circles, ω = 1.75ωz ) or the
thermal cloud (inverted triangles, ω = 2ωz ) [20]. Brown: in-phase (left triangles, top)
and out of phase (right triangles, bottom) modes of excitation between condensate and
thermal cloud [18, 30]. Reproduced from [25] Copyright 2008 Institute of Physics and
IOP Publishing Limited.
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CHAPTER 1. Introduction

1.1.2 Correlations of Bose gas

In this section we will break our discussion of the correlations present in a Bose gas into

two sections:

1. The development of experimental techniques for measuring correlations in ultra-

cold atom experiments, and relevant theory.

2. The application of these developments to characterising the critical phenomena in

the BEC phase transition.

Correlations in the Bose gas

Photon correlations were observed first in the landmark experiment of Hanbury-Brown

and Twiss [36]. In that experiment, the second order correlation function (intensity cor-

relations) of light was measured, revealing that photons from a thermal light source are

bunched. Since then, there has been significant interest in making these measurements

with an atomic source due to interaction effects and that both Bose and Fermi particles

can be investigated.

The first experiments with atoms by Yasuda et al. [37] used a neutral (bosonic) atomic

beam and confirmed atom bunching. Using ultra-cold Bose gases local high order cor-

relations have been inferred from 3-body decay rates [38, 39], and first order coherence

has been studied using matter wave interference [40,41] and Bragg spectroscopy [42,43].

More recently there has been spectacular experimental progress in the spatially resolved

measurement of second order correlations in both bosonic and fermionic ultra-cold gases

[44–49]. These experiments can be divided into two broad groups, based on the manner

in which the measurements are made. One approach involves directly counting the

atoms [44–46], while the other uses absorption imaging to measure density fluctuations

[47–49].

The collaboration of the Orsay and Vrije University groups has produced a compara-

tive study of the correlations in Bose and Fermi gases, using two different isotopes of

metastable Helium. A schematic showing their method [44] is reproduced in Fig. 1.5.

Briefly, an ultracold gas of metastable Helium is prepared in a harmonic trap, then is

released and falls under gravity to the microchannel plate, which enables single atom

detection. Every event is recorded, and this data is then analysed to study density cor-

relations in the sample. In Fig. 1.6 we reproduce their results comparing second order

correlations of the bosonic and fermionic samples.

We can clearly see that for the bosonic source, there is an enhancement in the correlation

14



CHAPTER 1. Introduction

Figure 1.5: Schematic of the apparatus used in the experiments of [44, 46]. During its
free fall toward the detector, a thermal cloud acquires a spherical shape. Single particle
detection of the neutral atoms is possible because of each atoms 20eV internal energy
that is released at contact with the MCP. Position sensitivity is obtained through a
delay-line anode at the rear side of the MCP. Reproduced from [44]. Copyright 2005
American Association for the Advancement of Science.

Figure 1.6: Normalised correlation functions for 4He∗ (bosons) in the upper plot, and
3He∗ (fermions) in the lower plot. Both functions are measured at the same cloud
temperature (0.5 mK), and with identical trap parameters. The bosons show a bunching
effect, and the fermions show antibunching. The correlation length for 3He∗ is expected
to be 33% larger than that for 4He∗ owing to the smaller mass. Reproduced from [46].
Copyright 2007 Nature Publishing Group.
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function over short distances (over the uncorrelated value of 1). This confirms bunching

in the atomic source, i.e. the tendency of the bosons to cluster. For the fermionic case,

we see a suppressed correlation function at small distances, revealing atomic antibunch-

ing. The distance scales over which this effect is seen is indicative of the correlation

length of the system. This bunching (or antibunching) is caused by the constructive (or

destructive) interference of the wavefunction describing the particles, and is ultimately

linked to the fundamental properties of the two types of particle. While the bunching

effect can be explained in both the quantum and classical pictures, the antibunching

can only be explained in the quantum mechanical picture, and so the demonstration of

this effect is very important.

Another very important result, which will be of particular interest in this thesis, is the

comparison of correlation measurements for a pure BEC, and for a thermal cloud with

no BEC present. This effect was first measured in the original Orsay experiment, [44],

and also in the atom laser measurements of Ref. [45]. The ETH Zurich group has an

alternative method for single particle detection, as shown in Fig. 1.7. Atoms from two

regions in the cloud are output coupled, and fall under gravity to the cavity below. A

single atom in the cavity reduces the transmission of photons through the cavity, and so

single events can be measured. The time between atom transmissions reveals bunching

in the atomic cloud, and the contrast of matter wave interference in the cavity reveals

the first order coherence between the output coupled points in the BEC. This method of

measurement has been applied to the critical behaviour in the Bose system [50], which

we discuss further below.

The atom laser measurements showed that while bunching was present for an ultra-cold

thermal gas, for the Bose condensed atom laser, no bunching occurred. This showed

that the condensate was in fact able to be described as a fully coherent source, and

able to be represented with a single, macroscopic wavefunction. The difference between

condensate and thermal behaviour in interacting systems of finite temperature, and the

emergence of this long-range order, will be aspects of focus in this work.

Correlations can also be measured from analysing the shot noise in absorption images.

In Fig. 1.8 we show the experimental setup of Fölling et al. [47]. In this experiment,

laser light is shone through the Bose cloud, and is absorbed by the atoms. While the

average of many of these images gives the average density, it can be shown that a single

image reveals atom shot noise, i.e. departures from the average density result, and this

noise can be related to the correlations in the sample, e.g. see [47]. In Fig. 1.9 we

present the results of [47], which study the correlations in a cloud of bosons released

from an optical lattice. A single absorption image of the expanded cloud is shown in

Fig. 1.9(a). In Fig. 1.9(c), the results of their analysis is shown: by analysing several

16



CHAPTER 1. Introduction

Figure 1.7: Schematic of the experimental setup. From two well defined regions in
a Bose-Einstein condensate , atoms are uncoupled to an untrapped state. The real
parts of the resulting atom laser wave functions are sketched on the right-hand side.
The absorption image shows an interference pattern corresponding to f = 1 kHz and
an atom flux 106 times larger than in the actual single atom interference experiment.
Monitoring the transmission of a probe laser through a high-finesse optical cavity with
a photon counter, single atom transits are detected. Reproduced from [51]. Copyright
2006 The American Physical Society.
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CHAPTER 1. Introduction

Figure 1.8: Illustration of the atom detection scheme. The cloud of atoms is imaged
to a detector plane and sampled by the pixels of a CCD camera. Two pixels P1 and
P2 are highlighted, each of which registers the atoms in a column along its line of
sight. Depending on their spatial separation d, their signals show correlated quantum
fluctuations. Reproduced from [47]. Copyright 2005 Nature Publishing Group.

images, they find density correlations revealing the lattice ordering of the system shown

in the noise fluctuations of the images like that shown in Fig. 1.9(a).

There is a body of theoretical work that has been done with regard to correlations

in Bose gases. This has included the extension of optical definitions of coherence to

atomic samples [52, 53], and examining how correlation measurements made after the

sample has expanded from its confinement potential relate to those of the original in

situ system [54, 55]. Theoretical predictions for correlations functions of the trapped

Bose gas has included studies of the ideal case [52, 55, 56] and interacting gases within

mean-field descriptions [52].

There are several papers of relevance to the work done in this thesis on correlations. To

date, the most comprehensive calculations of second order correlations in the interacting

system used the Hartree-Fock Bogoliubov formalism [57], and we reproduce the main

results of their paper in Fig. 1.10. These results show the local correlations within a Bose

system for a variety of temperatures. We can see that for low fractions of the critical

temperature, the second order correlation takes the value 1, as expected for a largely

coherent system. As the temperature is increased, the spatial region over which the

correlation function increases from the condensate value of 1 to the thermal cloud value

of 2 decreases. This shows the decreasing coherence in the system as the condensate

reduces in size, and the noncondensate dominates.

Calculations of similar nature were carried out by Holzmann et al. [58], using Path
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Figure 1.9: Single shot absorption image including quantum fluctuations and the associ-
ated spatial correlation function. (a), Two-dimensional column density distribution of a
Mott insulating atomic cloud, released from a three-dimensional optical lattice potential.
The white bars indicate the reciprocal lattice scale l. (b), Horizontal section (black line)
through the center of the image in (a), and Gaussian fit (red line) to the average over
43 independent images, each one similar to (a). (c), Spatial noise correlation function
obtained by analysing the same set of images, which shows a regular pattern revealing
the lattice order of the particles in the trap. (d), Horizontal profile through the center
of the pattern, containing the peaks separated by integer multiples of l. Reproduced
from [47]. Copyright 2005 Nature Publishing Group.
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Figure 1.10: A false-colour plot of g2(r) vs. reduced temperature, T/T0, and radial trap
coordinate r, for atoms in a spherical trap. Blue corresponds to g2 = 1 viz. coherence
characteristic of a laser source; red to g2 = 2 viz. coherence characteristic of a thermal
source Here, T0 is the condensation temperature. Reproduced from [57]. Copyright 1997
OSA.

Integral Quantum Monte-Carlo methods. These results showed the two point second

order correlation function at a variety of temperatures, taking into account the hardcore

repulsion of the interacting bosons. Steel et al. [59] measured the first order temporal

correlation function for a harmonically trapped BEC, comparing two different phase

space techniques, the positive P and Wigner representations (the Wigner formalism is

equivalent to the zero temperature extension of our PGPE formalism). A non-local (two

point) extension of the formalism of [57] was used to calculate the first order correlation

function of the quasi-2D Bose gas [60]. Since our primary interest here is in the 3D Bose

gas so we do not consider the rather extensive literature on quasi-1D and 2D gases (e.g.

see [61]).

Generally speaking, it is a considerable challenge to calculate correlation functions in a

manner that consistently includes the effect of interactions and harmonic confinement.

Near the critical point, where a mean-field analysis is no longer valid, there are currently

no reliable calculations that have been applied to realistic experimental systems. In this

thesis we will develop methods to calculate correlation functions for experimentally

realisable conditions, and will also consider the extension of these methods to the phase

transition region.
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Critical phenomena

The onset of the condensed phase in a Bose gas is a second order transition, and is

driven solely by quantum statistical effects. The concept of universality states that

the properties of a system in the critical region are independent of the microscopic

details of the system, and depend only on a few general system features such as its

dimensionality and the symmetry of the order parameter that emerges at the transition.

In this context, the critical behaviour of a weakly interacting 3D Bose gas should be

identical to that of 4He at the superfluid transition, or to other systems of the same

universality class (usually referred to as the 3D XY universality class). Accordingly, high

precision experimental measurements of critical 4He (e.g. see [62]) are usually compared

against theoretical calculations using idealised XY or φ4 models [63–65], rather than a

microscopic description of the system.

The availability of experimental techniques for measuring correlations [66–71] is an im-

portant feature of the ultra-cold atom systems that has received extensive theoretical

attention, particularly in relation to (zero temperature) quantum phase transitions (e.g.

see [72–80]). Another area of interest is the effect of critical fluctuations on correla-

tions in the system at the finite temperature transition, particularly as other quantities

usually examined in condensed matter (e.g. susceptibilities and heat capacity) are not

easy to measure in atomic gases. While the critical fluctuations of weakly interacting

1D and 2D Bose gases are dominant over a wide temperature range (e.g. see [41, 81]),

it was previously thought that the width of the critical region about condensation tem-

perature, Tc, would be far too narrow to permit experimental investigation in the 3D

system. However, in extraordinary recent experiments Donner et al. [50] have made

such measurements of a trapped 3D Bose gas, and were able to determine the critical

exponent for the divergence of the correlation length to be ν = 0.67 ± 0.13. The main

results of their work are shown in Fig. 1.11.

In the experiment of Donner et al. [50], atoms were output coupled from two points

symmetric about the center of a Bose cloud using an RF probe, and the resulting atoms

falling under gravity were detected with high precision using a cavity, as shown in Fig.

1.7. This measurement allowed them to calculate the second order correlations between

particles, and thus infer the correlation length. It is known that the correlation length

present in a system is proportional to the temperature as ξ ∝ |T −Tc|−ν , where ν is the

critical exponent of the transition. In Fig. 1.11 we show their results for the divergence

of the correlation length as the critical temperature is approached from above, from

which they measure ν. In its own right this result is an impressive demonstration

that universality applies to a mesoscopic system with of order 105 atoms. Additionally,

this direct measurement of two-point correlations is of interest because it has not been
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Figure 1.11: Divergence of the correlation length as a function of temperature. The red
line is a fit of |T − Tc|−ν to the data, with ν and Tc as free parameters. Inset: Double
logarithmic plot of the same data. Reproduced from [50]. Copyright 2007 American
Association for the Advancement of Science.

possible to do this in helium, although a value for the correlation length critical exponent

of helium (ν = 0.67056 ± 0.0006) is inferred from the heat capacity exponent using

Josephson scaling relation, α = 2− 3ν.

This measurement of the correlation length in the trapped Bose gas would be a natural

extension to the formalism we will develop to calculate correlation functions in the

Bose system and poses the formidable challenge for the PGPE to reveal critical physics.

We also note that we are able (through the finite size of our system) to probe finite

size effects. Finite-size effects have a profound influence on the critical properties of a

system, and have been extensively studied to understand the cross-over of helium critical

behaviour during dimensional reduction [82]. Such systems, confined to a finite region

of size L, are well described by finite-size scaling theory [83,84]. This theory shows that

there is a universal scaling function that relates physical quantities of the finite to infinite

systems depending on the quantity, the ratio of the correlation length to the system size,

and the nature of the boundary conditions. In this context the scenario occurring in

the harmonic trap is rather interesting (see Fig. 1.12), and was first considered by

Damle et al. in 1996 [85]. The effect of the trapping potential is to slowly vary the local

value of the chemical potential. If the gas is critical at the trap center, then moving out

radially, the system gradually becomes normal. Thus the finite-size boundary conditions
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Figure 1.12: Schematic view of the critical regime of a trapped Bose gas. The local
chemical potential varies across the system due to the harmonic trap potential. When
the system is critical at the center, the criticality extends over the finite spatial range
L with a normal cloud boundary condition.

are rather difficult to describe, as they require an understanding of the (non-universal)

normal system. The experiment by Donner et al. [50] did not observe finite-size effects:

their two-point measurements were made over a region much smaller than the spatial

extent of the critical region, and yielded a value of the critical exponent in line with

the uniform system. The finite temperature formalism we will develop to describe this

system is applicable to both the normal system, and the critical system. Thus it is able

to be easily applied to the system which is a mixture of those two states. This will allow

us to make steps toward formalism which can be accurately used in the phase transition

regime of the trapped interacting Bose gas.

1.2 C-field Theory - the PGPE

The experimental developments outlined in Sec. 1.1 show that there has been a great

deal of interest in non-equilibrium dynamics and finite temperature properties of Bose

systems. These experiments are all conducted where there is a large fraction of the

system that is not condensed, and interactions between the condensate and thermal

cloud play an important role in determining the properties of the system. In general,

it is difficult to make a theoretical description of the finite temperature Bose system

which includes the effect of interactions, and the harmonic trapping potential. There

has been a class of theoretical methods developed to deal with this regime, which are

referred to as the classical field (or c-field) methods, and include the truncated Wigner,

the Projected Gross-Pitaevskii equation (PGPE), and the Stochastic Gross-Pitaevskii

equation (SGPE) [86]. In this thesis, our focus is on the PGPE, and the development of

this formalism to describe current systems of interest. The PGPE is non-perturbative,

and includes the dynamics of the low-energy modes of the system exactly. We outline
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Figure 1.13: Schematic view of the c-field and the incoherent regions for a Bose gas in
a harmonic trap potential, and the approximations we employ in our treatment of the
collective mode dynamics.

the historical developments of this theory below.

It was first argued that the Gross-Pitaevskii equation (GPE) could be used to describe a

finite temperature Bose gas by Svistunov [87] and Kagan et al. [88–90]. They argued that

at finite temperature, highly occupied modes can be described classically by neglecting

the quantum fluctuations, analogous to the highly occupied modes of a laser being well

described using classical equations. Early calculations were performed by Damle et

al. [91], who studied the approach to equilibrium of a Bose gas to a superfluid state, and

by Marshall et al. [92], who investigated evaporative cooling in the Bose cloud. Both of

these works used the GPE to investigate finite temperature clouds.

The projection operator was first introduced by Davis et al. [93]. The purpose of this

projector was to consistently split the system modes into two separate parts: the c-

field region, which contains all of the low-energy modes with high occupation, and the

incoherent region, which contains the high energy modes which are sparsely occupied.

The energy cutoff ǫcut between the two regions is chosen so that all of the c-field region

modes contain at least one particle. Occupations of this order justify the classical

description of these modes. The modes of the incoherent region cannot be treated

classically due to the low mode occupation, and so we assume that the incoherent region

is in thermal and diffusive equilibrium with the c-field region, and that the incoherent

region can be well described using a meanfield description. In Fig. 1.13 we show a

schematic view of the c-field and incoherent regions, and the position of our cutoff, ǫcut.

In Fig. 1.14 we reproduce the results of Davis et al. [94], who compared PGPE predic-
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Figure 1.14: Comparison of theoretical calculations with experiment. The main figure
plots Tc vs Nc , whereas the inset plots the shift of Tc against the scattering length over
the de Broglie wavelength, a/λ0 . Experimental results: data (open circles), one σ fit
(gray area). Theoretical results for Tc : PGPE (pluses), against analytic and mean-field
theories. Solid lines through the data points are polynomial fits. Reproduced from [94].
Copyright 2006 The American Physical Society.

tions for the change in critical temperature with that of experiment [95], and with other

theoretical treatments. The results show excellent agreements with experiment. We

note that improved accuracy would be required in experiment to distinguish between

the theories. In Fig. 1.15 we show recent results of the PGPE predictions of the irrota-

tional and superfluid oscillation frequencies for the scissors mode of a 2D Bose gas which

has yet to be investigated experimentally. In related work those authors also used the

PGPE to explain the emergence of phase defects in the 2D system [96] as observed by

the ENS group [97]. The PGPE has been shown to be applicable to the critical region

also, e.g. see [96,98–100]. We note also that other c-field methods have had a great deal

of success in comparison with finite temperature experiments. In Fig. 1.16 we show

results of the SGPE simulations for the formation of the BEC [101], after a tempera-

ture quench. We can see spontaneous formation of vortices in the BEC, the statics of

which were in good agreement with experiment [101]. The truncated Wigner formalism

(applicable to the T = 0 case where quantum noise dominates) has been used by Norrie

et al. [102] to study the collisional halo of two colliding BECs. The main results are

reproduced in Fig. 1.17. The modeling of this scenario was a significant achievement,

as this was the first analysis of the condensate collision that treated the full dynamics

of the field, and so could be applied to systems in which a substantial fraction of the
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Figure 1.15: Scissors mode frequencies as a function of temperature. The horizontal
dashed lines are the analytical predictions of the irrotational and superfluid component
oscillation frequencies and the solid vertical line is our estimate of the superfluid tran-
sition temperature. Reproduced from [100]. Copyright 2008 The American Physical
Society.
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Figure 1.16: BEC growth dynamics. Four snapshots during the simulated growth of a
BEC showing isodensity surfaces (in light red) in a three- dimensional rendering. Vortex
cores of opposite charges about the z axis are indicated as magenta and cyan lines. The
corresponding times are 0.13s (a), 0.45s (b), 0.67s (c), 1.57s (d). Reproduced from [101].
Copyright 2008 Nature Publishing Group.

initial condensate particles were scattered into the halo.

The new experimental developments outlined in this chapter pose a challenge for theory

and motivate the continued development of theories of Bose systems. In this thesis we

will address this need, by developing and applying the PGPE formalism to explore these

areas of interest.

1.3 This work

1.3.1 Thesis overview

In this thesis we describe and develop the PGPE for use in comparison with finite

temperature experiments. The layout of the thesis is as follows. In Chapter 2 we outline

the formalism of the PGPE, and discuss methods for measuring system parameters. We

go on to discuss the numerical implementation of the PGPE in Chapter 3. In Chapter

4 we present results for a comprehensive study of the finite temperature excitations of a

Bose gas, modelling the experiment of Jin et al. [3]. In Chapter 5 we develop formalism

to calculate correlations in the Bose gas at finite temperature, and present results for
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Figure 1.17: (a) (f) Velocity mode populations on the planes vz = 0 (left) and vx = 0
(right) for the condensate collision described in the text at t = 0 (top), t = 0.5 ms
(middle), and t = 2.0 ms (bottom). The spherical momentum cutoff is clearly visible in
the upper plots due to the presence of quantum fluctuations. (g)(h) Mode populations
at t = 2.0 ms for an identical collision excluding vacuum noise. Reproduced from [102].
Copyright 2005 The American Physical Society.
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an experimentally feasible system. We also extend this formalism to the critical region,

and present results on the critical phenomena of a BEC, following the methodology of

Donner et al. [50] in Chapter 6. We conclude in Chapter 7.

1.3.2 Peer-reviewed Publications

We note that the main results of this thesis have been submitted for publication. The

excitation study of Chapter 4 has been submitted for publication to Physical Review

A in November 2008, and since the submission of ths thesis has been published, see

Ref. [103]. The two point correlation study of Chapter 5 has been published [99], and

the phase transition study of Chapter 6 has been submitted for publication to Physical

Review A in December 2008, and later published [104].

Additional collaborative work during this PhD has been devoted to optical lattices, and

is not included in the main part of this thesis. So that this thesis might serve as a

complete record of the work undertaken papers resulting from this are reproduced in

Appendix C.
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Chapter 2

Formalism

2.1 Introduction

Here we give details of the PGPE formalism which we will use to describe the finite

temperature systems of interest in this thesis. The PGPE for a harmonically trapped

system was first developed in [105]; a more recent review of this and other classical field

techniques can be found in Ref. [86]

2.2 System Hamiltonian

We wish to describe a dilute gas of cold atoms. When describing a low energy system,

it is appropriate to use an effective field theory, which is restricted to a low energy

subspace (i.e. the L-region indicated in Fig. 2.1) Our system is then described by the

second quantised Hamiltonian

Ĥ =

∫

dr

{

Ψ̂†(r)

(

− ~
2

2m
∇2 + V (r, t)

)

Ψ̂(r) +
1

2
U0Ψ̂

†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}

, (2.1)

where Ψ̂(r, t) is the Bose field operator for the full field. The Bose field operator an-

nihilates a particle from position r at time t and obeys the equal time commutation

relations

[

Ψ̂†(r, t), Ψ̂†(r′, t)
]

=
[

Ψ̂(r, t), Ψ̂(r′, t)
]

= 0, (2.2)
[

Ψ̂(r, t), Ψ̂†(r′, t)
]

= δ(r− r′). (2.3)

30



CHAPTER 2. Formalism

In forming this Hamiltonian we have made the assumption that the interaction term

between particles is well approximated by the contact potential U0 = 4π~
2a/m, where a

is the s-wave scattering length. This pseudopotential was first introduced in [106] as an

approximation to the interaction potential, and is valid in the limit of only low energy

collisions occurring, so will be appropriate for our work here. In principle the value

of a appearing in the coupling constant may need to be renormalised appropriate to

the energy cutoff in the theory. However, for the typical cutoffs we use in applications

this renormalisation is of order the uncertainty in the scattering length itself. We refer

the reader to [107] for a fuller discussion of the limitations of this approximation. Our

potential term V (r, t) is defined as follows:

V (r, t) = V0(r) + δV (r, t), (2.4)

where

V0(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.5)

is the harmonic trapping potential, and δV (r, t) is some small time-dependent pertur-

bation to the system. We include this perturbation here as it is necessary to develop

formalism to study the excitations of the trapped interacting Bose gas, which we explore

later in this work. For future reference, we also define

H0 = − ~
2

2m
∇2 + V0(r), (2.6)

which we refer to as the single particle Hamiltonian. The Heisenberg equation of motion

of Ψ̂(r, t) is

i~
∂Ψ̂(r, t)

∂t
=

(

− ~
2

2m
∇2 + V0(r) + δV (r, t)

)

Ψ̂(r, t) + U0|Ψ̂(r, t)|2Ψ̂(r, t), (2.7)

which gives the full dynamics of the system. This equation is impossible to solve in

the regime of 3D BEC experiments without considerable use of approximation. In the

next section we explain our approach to obtain a practical method for simulating this

equation.

2.3 The Projected Gross-Pitaevskii Equation

Here we outline the PGPE formalism. The key feature of this formalism is the formal

separation of the modes of the system, as performed by the projection operator. The

projection operator was first introduced by Davis [93] for the case of the homogeneous

3D Bose gas. This projector separates the modes of the system into two regions, and at
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Figure 2.1: Schematic view of the classical region, the incoherent region, and the states
eliminated to give the effective field theory for an harmonic trap

finite temperatures we can choose this energy cutoff ǫcut to define these regions as:

Classical Region, C. This region contains the low energy modes of the system, which

are highly occupied, and can be described using a classical description. Note, here we

use the term classical in the sense of “classical matter waves” in which the effect of

adding/removing a quantum from each mode is negligible.

Incoherent region, I. This region contains the high energy modes, which are sparsely

occupied. These must be treated with a separate formalism as the inclusion of these

modes in the classical description will lead to a UV catastrophe.

We outline the application of this projection operator to a harmonically trapped system

below, as detailed in [105].
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2.3.1 Projection Operators

We define the projectors which formalise the cutoff in our system, as follows:

PC{F (x)} ≡
∑

n∈C

φn(x)

∫

d3x′φ∗
n(x′)F (x′), (2.8)

PI{F (x)} ≡
∑

n∈I

φn(x)

∫

d3x′φ∗
n(x′)F (x′), (2.9)

which define the C and I region projections of a function F , respectively. In the above

we have taken φn(x) to be the harmonic oscillator basis that diagonalises the single

particle Hamiltonian, i.e.,

H0φn(x) = ǫnφn(x), (2.10)

and this forms the appropriate basis for implementing an energy cutoff. We now define

n ∈ C as the modes, n, below this energy cutoff and included within the classical region

C, and n ∈ I as the modes above the energy cutoff and included within the incoherent

region I. We can expand the field operator in this basis,

Ψ(x) =
∑

n

ânφn(x), (2.11)

making the implementation of this energy cutoff trivial. The mode operator ân annihi-

lates a particle from mode n, and obeys the equal time commutation relations

[âi, âj] =
[

â†i , â
†
j

]

= 0, (2.12)
[

âi, â
†
j

]

= δij. (2.13)

We can then define the field operators on the classical and incoherent regions in terms

of this energy ǫn as follows:

ψ̂C(x) = PC{Ψ̂(x)}, (2.14)

ψ̂I(x) = PI{Ψ̂(x)}, (2.15)

where we note that

Ψ̂(x) = ψ̂C(x) + ψ̂I(x). (2.16)

We choose the cutoff between the two regions ǫcut as the energy in the single particle

basis where the occupation of the mode is ≈ 1. There has been a significant body of work

on applications of the classical field methods to zero and finite temperature properties

of Bose gases [59, 92–94, 96, 98, 102, 108–119]. These studies show that this splitting

of the field operator can be done in a consistent manner and provides a quantitative
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description of experiment (in particular see Ref. [94]). In this thesis we present results in

Sec. 4.3.5 showing the effect of varying the cutoff on physical predictions of the theory.

2.3.2 C-field Equation of Motion (PGPE)

We can use the decomposition of Eq. (2.16) to find an equation of motion for the

classical field operator. We substitute Eq. (2.16) into the Hamiltonian of Eq. (2.1),

from which we can derive the Heisenberg equation of motion for the operator ψ̂C(x).

It is now appropriate to introduce the first significant approximation: to neglect the

quantum fluctuations in the classical field operator, and replace it by a classical field,

i.e.

ψ̂C(x)→ ψC(x), (2.17)

The condition that the modes in the coherent region are appreciably occupied justifies

this approximation. Formally,

ψC(x) =
∑

n∈C

cnφn(x), (2.18)

where the cn are complex numbers. Taking the average value of the Heisenberg equation

for the field ψC(x) yields [93]

i~
∂ψC(x)

∂t
= (H0 + δV )ψC(x) + U0PC{|ψC(x)|2ψC(x)} (2.19)

+ U0PC{2|ψC(x)|2〈ψ̂I(x)〉+ ψC(x)2〈ψ̂†
I(x)〉}

+ U0PC{ψ∗
C(x)〈ψ̂I(x)ψ̂I(x)〉+ 2ψC(x)〈ψ̂†

I(x)ψ̂I(x)〉}
+ U0PC{〈ψ̂†

I(x)ψ̂I(x)ψ̂I(x)〉}.

To arrive at the PGPE we neglect all couplings between the coherent and incoherent

regions. In this manner, we treat the incoherent region as a thermal bath at equilibrium.

For equilibrium clouds, this should be a good approximation. The PGPE is as follows

i~
∂ψC(r, t)

∂t
=

(

− ~
2

2m
∇2 + V0(r) + δV (r, t)

)

ψC(r, t)

+P
{

U0|ψC(r, t)|2ψC(r, t)
}

, (2.20)

2.3.3 Ergodicity and Time Averaging

We will now consider the PGPE for cases where δV (r, t) = 0, i.e. the system Hamil-

tonian (Eq. (2.1)) is time independent. The energy functional for this system is given
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as

HC[ψC] =

∫

drψ∗
C

(

− ~
2

2m
∇2 + Vtrap(r) +

U0

2
|ψC|2

)

ψC, (2.21)

and the number functional as

NC[ψC] =

∫

dr |ψC(r)|2, (2.22)

where we will use the notation

EC = HC[ψC], (2.23)

NC = NC[ψC], (2.24)

to give the values of the energy and number of particles in the classical region, respec-

tively. These are constants of motion, i.e. under evolution according to Eq. (2.20),

EC and NC are constant. These quantities are therefore important in characterising

the equilibrium states the system thermalises to. Indeed, the PGPE (Eq. (2.20)) is a

microcanonical system, and due to the presence of the nonlinear interactions it’s evolu-

tion is expected to be ergodic for the 3D trapped gas with sufficiently large U0. This

means that the system will move through a series of microstates as it evolves in time,

and sampling these microstates is equivalent to taking an ensemble average, for a long

enough evolution, i.e.

〈O〉ensemble = lim
θ→∞

1

θ

∫

dt〈O〉, (2.25)

where O is some observable. In this work we extensively use time averaging to calculate

equilibrium properties. It is not practical for us to evolve the PGPE over extremely long

periods of time to sample a large portion of the accessible microstates. Some care needs

to be taken when performing finite time averaging. e.g. over∼ 100 trap periods. Usually

the initial state is some non-equilibrium configuration we have generated with the desired

constants of motion. The initial evolution of this state is strongly nonequilibrium and

passes through many microstates not typical of the equilibrium state. Thus to avoid

biasing our averages we do not sample until the system has “thermalised”, which usually

takes of order a few trap periods of evolution (e.g. see Ref. [120])

2.3.4 Common Observables

We can calculate the density of the system by time-averaging the classical field, i.e.

nC(r) = 〈ψ∗
C(r)ψC(r)〉 ≈ 1

MS

MS
∑

S=1

|ψC(r, tS)|2, (2.26)
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where MS is the number of samples taken of the classical field, and tS is the time at

which they are taken. Typically we would use 500 samples at equilibrium, taken over

a time period of the order of 100 trap periods. The momentum space field operator can

be defined as

φC(p) =
1

(2π)3/2

∫

drψC(r)e−ip·r/~ (2.27)

and the corresponding momentum density is given as

nC(p) ≈ 1

MS

∑

S

|φC(p, tS)|2 (2.28)

We give examples of the time-averaged and instantaneous position and momentum den-

sities in later sections of this work.

To find the condensate fraction of our system, we use the Penrose Onsager definition

[121], that the condensate N0 is the largest eigenvalue of the one body density matrix

G1B(x,x′) = 〈ψ∗
C(x)ψC(x)〉, (2.29)

which is easily evaluated with time averaging. We use the eigenvector ψcond associated

with this
∫

dx′G1B(x,x′)ψcond(x
′) = Ncondψcond(x) (2.30)

to define the condensate mode of the system with condensate number Ncond. We em-

phasise here that this condensate mode is not the bare ground state of our basis, rather,

a mixture of the modes of the classical region. We note another definition of the con-

densate “order parameter” used in symmetry-breaking formalisms is the mean value of

the field operator, which in our case would correspond to 〈ψC〉. However, we note that

this average in our case is generally zero, and so this definition is of no practical use in

our formalism.

2.3.5 Temperature

To calculate the temperature and chemical temperature of the classical region we use the

method derived by Rugh [122]. These ideas were first developed for the PGPE theory by

Davis and Morgan [98], and were adapted to the harmonically trapped case by Davis and

Blakie [109]. In Rugh’s formalism, the Hamiltonian is written as HC = HC(Γ), where
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Γ = {Qi, Pi}, consists of the canonically-conjugate coordinates Qn and Pn, defined as

Qn =
1√
2ǫn

(c∗n + cn),

Pn = i

√

ǫn
2

(c∗n − cn). (2.31)

In Rugh’s notation, the Hamiltonian may have a number of independent first integrals,

that are invariant under the dynamics of HC (in addition to EC). In the PGPE formal-

ism, we have that the normalisation of the classical field, NC is constant. This can also

be written as a function of the canonical position and momentum coordinates {Qi, Pi},
i.e. NC = NC(Γ).

The expression for the temperature of a system in the microcanonical ensemble is

1

T
=

(

∂S

∂EC

)

NC

, (2.32)

where the entropy S is defined as

S = kB ln

{
∫

dΓδ[EC −HC(Γ)]δ[NC −NC(Γ)]

}

, (2.33)

Using Rugh’s methods, the temperature of the system can be written as

1

kBT
= 〈D ·XT (Γ)〉, (2.34)

where the angled brackets indicate an ensemble average over all possible states in the

microcanonical ensemble. In our formalism, since the ergodic theorem is applicable, this

can easily be interpreted as a time average. The components of D are

Di = ei
∂

∂Γi

(2.35)

where ei can be chosen to be any scalar value, including zero. We make two particular

choices in our calculations, DP = {0, ∂/∂Pi} and DQ = {∂/∂Qi, 0}. This leads to

two different calculations for the temperature which will only agree if the system is in

thermal equilibrium. The vector XT can be freely chosen within the constraints

DHC ·XT = 1, (2.36)

DNC ·XT = 0. (2.37)

The vector

XT =
DHC − λNDNC

|DHC|2 − λN(DNC ·DHC)
(2.38)
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satisfies these constraints, where we introduce the parameter

λN =
DNC ·DHC

|DNC|2
. (2.39)

The chemical potential can be calculated in a similar manner to the temperature, ac-

cording to

µ

kBT
= −

(

∂S

∂NC

)

EC

= 〈D ·Xµ(Γ)〉 (2.40)

where the constraints on Xµ are

DHC ·Xµ = 0

DNC ·Xµ = 1. (2.41)

The appropriate vector field has the same form as that given in Eq.(2.38) but with HC

and NC interchanged, i.e.

XT =
DNC − λNDHC

|DNC|2 − λN(DHC ·DNC)
. (2.42)

2.3.6 Ground state and Thomas-Fermi Approximation

While our interest lies in finite temperature properties of the system it is of use to

characterise aspects of the zero temperature state. This can be found by minimising the

PGPE energy functional, HC, subject to the constraint of fixed particle number [123].

The ground state orbital, ψg, satisfies the time-independent Gross-Pitaevksii equation

µgψg = H0ψg + U0|ψg|2ψg, (2.43)

where µg is known as the condensate chemical potential. In this case

NC =

∫

dr|ψg|2, (2.44)

and the system is a pure condensate. In the physical system the condensate is slightly

depleted due to interactions, which can be realised by the inclusion of truncated Wigner

noise. However, as our interest is at finite temperatures we will not concern ourselves

with this small correction.

We also note that we have chosen the notation ψg here for the T = 0 condensate
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to distinguish from the finite temperature condensate mode, ψcond, determined by the

Penrose Onsager condition (see Eq. (2.30). For a given number of atoms NC in the

classical region the T = 0 condensate mode gives us a minimum value for the classical

region energy i.e.

EC ≥ Eg, (2.45)

where

Eg =

∫

drψ∗
g

(

H0 +
U0

2
|ψg|2

)

ψg. (2.46)

Thus Eg forms an effective zero point energy. Since our interest is in finite temper-

ature cases, the complexity involved in solving for ψg is unnecessary, and instead an

approximate solution, termed the Thomas-Fermi approximation, is appropriate.

The Thomas-Fermi approximation provides a solution for the condensate mode by ne-

glecting the contribution of the kinetic energy term in the time independent GPE Eq.

(2.43). This approximation is well justified when the condensate is large, and is least

accurate on the edges of the condensate, where kinetic energy is significant. This ap-

proximation leads to an algebraic expression for the ground state mode ψTF , i.e.

~µψTF (r) = [V0(r) +NcondU0|ψTF (r)|2]ψTF (r). (2.47)

This expression may be rearranged to give the wavefunction:

ψTF (r) =

√

~µTF − V0(r)

NcondU0

θ(µTF − V0(r)) (2.48)

where µTF is chosen so that the Thomas-Fermi density is normalised to the condensate

number, Ncond, i.e.

µTF =
1

2
(15a~2

√
mωxωyωzNcond)

2/5, (2.49)

and θ is the Heaviside step function

θ(z) =

{

0 z < 0,

1 z ≥ 0.
(2.50)

The energy of the ground state given by the Thomas-Fermi approximation is

ETF =
5

7
µTFNcond. (2.51)

We will use the Thomas-Fermi approximation later in this thesis as a means of obtaining

a low energy initial state for the PGPE.
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2.4 Incoherent Region

In this thesis we include the incoherent region at a meanfield level of description. We

assume that the classical and incoherent regions are weakly coupled and are in thermal

and diffusive equilibrium, i.e. we assume the incoherent region has a temperature and

chemical potential equal to that determined by the Rugh method for the classical region.

The incoherent region can be described using the one-particle Wigner function

WI(r,p) =
1

h3

1

eβ(E(r,p)−µ) − 1
, (2.52)

where β = 1/kBT . The variables r and p are treated as classical commuting variables

in the semiclassical limit. This should be a good approximation, as the incoherent

region consists of modes that have energy E > ǫcut ≫ ~ω, for which the semiclassical

approximation is well justified. The energy states for the incoherent region are given by

the Hartree-Fock expression

E(r,p) =
p2

2m
+ V0(r) + 2U0(nC(r) + nI(r)), (2.53)

and the incoherent density is evaluated as

nI(r) =

∫

ΩI

dpWI(r,p) (2.54)

The incoherent region density is found self consistently, and we note that the total

number of particles in the incoherent region is

NI =

∫

drnI(r). (2.55)

It follows that the total number of particles in the system is

N = NC +NI. (2.56)

It is necessary to restrict the region of phase space we integrate over to find the incoherent

region density, and in that respect the ΩI on the integral details this restriction; we only

integrate over energy states that have not been included in the classical region, i.e.

ΩI = {r,p :
p2

2m
+ Vtrap(r) > ǫcut}. (2.57)
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2.5 Truncated Wigner formalism

Earlier in this chapter we presented a phenomenological derivation of the PGPE. For

completeness we note that the formal justification for the PGPE (and other c-field

techniques) can be made using a Wigner distribution methodology, and briefly present

the theoretical basis for that treatment here. The Wigner distribution and other phase

space techniques have been widely used in quantum optics (e.g. see [124, 125]). The

theoretical formulation of the Wigner approach for Bose gas dynamics was first made

by the group of Dan Walls in 1998 [59], where it was applied to simulating the time

evolution of a trapped one dimensional Bose gas.

Wigner representation of a many-body quantum system

For a bosonic many-body system with C-region density operator ρ̂C, the symmetrically

ordered characteristic function is defined as

χW (λ,λ∗) = tr

{

ρ̂C

∏

n∈C

eλnâ†
n−λ∗

nân

}

, (2.58)

where λ = [λ0, λ1, . . . , λM−1]
T is a vector of complex variables, with M the number of

modes in C. The symmetrically ordered moments are given by derivatives of χW at

λ = 0, e.g.
〈

{

âs
i

(

â†j

)r}

sym

〉

=

(

∂

∂λ j

)r (

− ∂

∂λ∗i

)s

χW (λ,λ∗)
∣

∣

λ=0
, (2.59)

where {}sym means a symmetrical product of the operators.

The Wigner function, introduced by Wigner in 1932 [126], is the Fourier transform of

the quantum characteristic function

WC(α,α∗) =

∫

dλ

π2M
exp

(

λ
†
α−α

†
λ

)

χW (λ,λ∗). (2.60)

The Wigner function exists for any density matrix [124], and analytic expressions are

know for the Wigner function of many standard quantum states (e.g see Sec. 2.5).

Integrating Eq. (2.60) by parts we see that

∫

dα αs
i (α

∗
j )

rWC(α,α∗) =

(

∂

∂λj

)r (

− ∂

∂λ∗i

)s

χW (λ,λ∗)
∣

∣

λ=0
. (2.61)

Thus (from Eq. (2.59)) the moments of the Wigner function give symmetrically ordered
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operator averages

〈{âs(â†)r}sym〉 = αs(α∗)r ≡
∫

dα αs(α∗)rW (α, α∗), (2.62)

where F (α, α∗) indicates “averaging” the function F (α, α∗) over the Wigner distribu-

tion. This suggests that the Wigner function acts like a probability distribution, indeed

W (α, α∗) is commonly referred to as a quasi-probability since it need not be positive.

However, for many important classes of quantum states the Wigner function is either

positive (or is well-approximated by a positive function) and can be interpreted as a

probability distribution. In these cases the average F (α, α∗) is equivalently calculated

by statistically sampling α as a random variable from this distribution and calculating

the average of F (α, α∗) over many such samples.

Operator correspondences and equations of motion

The equation of motion for the many-particle density operator evolving according to

the effective cold atom Hamiltonian is

i~
∂ρ̂C

∂t
=

[

Ĥ, ρ̂C

]

. (2.63)

The right hand side of Eq. (2.63) involves products of operators and the density operator,

and which can be equivalently mapped onto a differential operator acting on the Wigner

function according to the correspondences [124]

ψ̂C(r)ρ̂C ←→
(

ψC(r) +
1

2

δ̄

δ̄ψ∗
C(r)

)

WC, (2.64)

ψ̂†
C(r)ρ̂C ←→

(

ψ∗
C(r)− 1

2

δ̄

δ̄ψC(r)

)

WC, (2.65)

ρ̂Cψ̂C(r) ←→
(

ψC(r)− 1

2

δ̄

δ̄ψ∗
C(r)

)

WC, (2.66)

ρ̂Cψ̂
†
C(r) ←→

(

ψ∗
C(r) +

1

2

δ̄

δ̄ψC(r)

)

WC, (2.67)

which are used to map the equation of motion for the density operator onto an equation

of motion for WC, and where we have defined the functional derivative

δ̄

δ̄ψC(r)
≡

∑

n∈C

φ∗
n(r)

∂

∂αn

. (2.68)

Using these correspondences we find that the Wigner distribution evolution equation
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for the cold-atom case is

∂WC

∂t

∣

∣

∣

∣

∣

ĤC

=

∫

dr

{

iU0

4~

δ̄2

δ̄ψC(r)δ̄ψ∗
C(r)

ψ∗
C(r)

δ̄

δ̄ψ∗
C(r)

+ h.c.

i

~

δ̄

δ̄ψC(r)

(

[Hsp + δV ] + U0|ψC(r)|2
)

ψC(r) + h.c.

}

WC,

(2.69)

where h.c. represents the Hermitian conjugate. Equation (2.69) as it stands is as difficult

to solve as the full Heisenberg equation of motion for ψ̂C. However, by neglecting the

first line of right hand side terms containing third order derivatives, which is referred to

as the truncated Wigner approximation (TWA), an approximate solution can be found.

In particular, since the Wigner function evolution takes the form of a Fokker-Planck

equation with drift but no diffusion terms, i.e.,

∂WC

∂t

∣

∣

∣

∣

∣

ĤC

≈
∫

dr

{

i

~

δ̄

δ̄ψC(r)

(

[Hsp + δV ] + U0|ψC(r)|2
)

ψC(r) + h.c.

}

WC. (2.70)

The Fokker-Planck evolution can be equivalently mapped to a stochastic partial dif-

ferential equation [127] that describes the trajectory of a single realisation of the field

ψC(r), i.e.

i~
∂ψC(r)

∂t
= PC

{(

Hsp + δV + U0|ψC(r)|2
)

ψC(r)
}

. (2.71)

The lack of a diffusion term in (2.70) means that no explicit noise term appears in the

TWPGPE, however the initial conditions are stochastic and need to be appropriately

sampled from the initial Wigner function.

Sampling the Wigner distribution

Some simple examples of (single mode) Wigner distributions are:

1. Single mode coherent state (i.e. pure state with â|ψ〉 = α0|ψ〉):

Wcoh(α, α
∗) =

2

π
exp

(

−2|α− α0|2
)

, (2.72)

2. Single mode thermalised state (i.e. mixed state defined as ρ = exp(−ǫâ†â/kBT )/Z

with Z = tr{exp(−ǫâ†â/kBT)}):

Wth(α, α
∗) =

2

π
tanh

(

ǫ

kBT

)

exp

[

−2|α|2 tanh

(

ǫ

kBT

)]

. (2.73)
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Both of the above states are positive valued Wigner functions that can be sampled

stochastically (the number state is an example of a state that is negative and cannot be

sampled exactly). A multitude of uncorrelated many-body states can be constructed as

trivial outer products of such simple states, however the ground and finite temperature

states of the cold-atom Hamiltonian have a considerable amount of correlation between

the modes and require elaborate procedures to sample precisely (e.g. the number con-

serving Bogoliubov procedure developed by Sinatra et al. [117]).

Relationship to the PGPE

While the truncated Wigner formalism provides a formal justification for the PGPE as

a means to calculate moments of full quantum system, several important properties of

the finite temperature regime make use of the PGPE more convenient.

1. High mode occupancy. In the PGPE description all modes in the C-region are

highly-occupied, meaning that the distinction between symmetric and non-symmetrically

ordered moments can be neglected (effectively, we can ignore the commutation re-

lations for the highly occupied modes).

2. The ergodicity in the PGPE means that we do not need to concern ourselves with

elaborate procedures for approximately sampling the initial states of the Wigner

function. By fixing constants of motion we can allow the system to evolve to

equilibrium and sample the space of equilibrium states using time evolution (see

Sec. 2.3.3).
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Numerics

In this chapter we give details of the numerical method used to implement the PGPE

formalism [105]. We detail the computational units used in Sec. 3.1. In Sec. 3.2 we

define our basis and expand our classical field in this. We then show how to find an

appropriate initial state in Sec. 3.3. We detail our method of evolving the PGPE in Sec.

3.4, noting the similarities with previous methods [128,129] of the Otago theory group.

In Sec. 3.5 we give details of the quadrature method to evaluate matrix elements of the

nonlinear term in the PGPE, basing our discussion on that found in [120].

3.1 Computational Units

It is useful to transform the PGPE into computational units, and we detail this here.

We choose a convenient reference frequency ω0 to define units of time t0 = 1/ω0 and

distance x0 =
√

~

mω0

. We can then define our dimensionless units of x̃ = x/x0 for

position and t̃ = t/t0 for time. This gives us an expression for the classical field in

dimensionless units, ψ̃C = ψCx
3/2
0 , and we also define our nonlinear constant, NCU0, as

C = NCU0t0/~x
3
0. We note that this means we explicitly normalise our field to unity for

numerical simulations, and NC is explicitly included in the nonlinearity. We can now

write the PGPE in our dimensionless units as

i
∂ψ̃C

∂t̃
= −1

2
∇̃2ψ̃C +

1

2
(λ2

xx̃
2 + λ2

yỹ
2 + λ2

z z̃
2)ψ̃C + C|ψ̃|2ψ̃ (3.1)

where λx = ωx

ω0

, λy = ωy

ω0

, and λz = ωz

ω0

. For the rest of this chapter we will consider the

isotropic case, with ωx = ωy = ωz, and will also take ω0 = 1, to simplify our notation.
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3.2 Basis

Most commonly, grid FFT methods are used to implement GPE methods. For the

harmonically trapped PGPE formalism we use a harmonic oscillator basis set represen-

tation, for two reasons:

1. This makes the projection trivial to implement.

2. That our high mode occupation requires that all modes are propagated accurately.

To this end it is convenient to use the harmonic oscillator basis, which was used to

formally define ψC(r) in Sec. 2.3.1. In dimensionless units we expand

ψ̃C(r̃) =
∑

n∈C

cnφ̃n(r̃) (3.2)

where
(

1

2
∇̃2 +

1

2
|̃r|2

)

φ̃n(r̃) = ǫ̃nφ̃n(r̃), (3.3)

and ǫ̃n is the 3D harmonic oscillator eigenvalue. In the rest of this chapter we detail

the numerical process to simulate the PGPE. We break this into three parts: finding

an initial input state, evolving the PGPE, and evaluation of the nonlinear term in the

PGPE.

3.3 Initial State

We need to prepare an initial input state for evolution in the PGPE. The specific form

of this state is irrelevant, and we require only that it has the appropriate constants of

motion energy and number of atoms in the classical region, given in Eqs. (2.21) and

(2.22). We have three parameters to characterise our initial state vector:

(i) The energy cutoff, ǫcut. This sets the cutoff between the two regions, classical and

incoherent. This parameter sets the number of modes in the classical region, since

only states with energy below this are allowed.

(ii) The number of classical region atoms, NC (or equivalently the nonlinear constant

C). Being the coefficient of the nonlinear term this parameter is responsible for

mode mixing and ergodicity.

(iii) Energy EC, defined as in Eq. (2.21). This is a constant of the motion. To set

the energy of a given state vector, we mix a low energy state (formed within the
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Thomas-Fermi approximation) with a high energy state (a vector of random input

values).

3.3.1 Thomas-Fermi approximation in Computational Units

To use the Thomas-Fermi formalism to make an initial input we will require its form in

computational units, which we give here. The Thomas-Fermi chemical potential can be

written as

µ̃TF =

(

15λxλyλzC

29/2π

)2/5

, (3.4)

and the potential given by the harmonic trap as

Ṽ0(r̃) =
1

2
(x̃2 + ỹ2 + z̃2), (3.5)

We can then form the Thomas-Fermi wavefunction as

ψ̃TF (r̃) =

√

µ̃TF − Ṽ0(r̃)

C
θ(µ̃TF − Ṽ0(r̃)). (3.6)

3.3.2 Initial State Preparation

We form the Thomas-Fermi wavefunction on an appropriate spatial grid and then trans-

form it using quadrature methods back to a c-vector representation (i.e. to obtain the

{cn} coefficients for this state). We can generate a state ηE
˜(r) of desired energy by

superimposing the Thomas-Fermi state with a (high energy) randomised state, ηran
˜(r)

(normalised to NC), according to

ηE
˜(r) = p0ψ̃TF

˜(r) + p1ηran
˜(r), (3.7)

where the variables p0 and p1 are adjusted to obtain the desired energy. In practice, ηran

is approximately orthogonal to ηTF and we can take p1 =
√

1− |p0|2.

3.4 Evolution of the PGPE

To evolve the PGPE, we use an adaptive stepsize Runge-Kutta (RK) method. The RK

method is based on the midpoint method of solving ordinary differential equations, and

the solution is propagated by evaluating derivatives between timesteps to arrive at a

solution at the new time. To evolve the PGPE we will use the adaptive stepsize RK
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method [105], which is an extension of earlier methods developed at Otago, in particular

the RK4IP method, see for example [128, 129] . We will compare and contrast the two

methods where appropriate in the current section. For the remainder of this chapter

we dispense with the tilde notation and all quantities are taken to be in computational

units.

3.4.1 Formal algorithm in Position Space Representation

In this subsection we give an overview of the algorithm in position space, before dis-

cussing the equivalent, but more convenient, basis set form of the algorithm that is the

basis of our numerical implementations.

Interaction picture

The PGPE can be written in the form

∂ψC

∂t
= −i[H0 +K]ψC, (3.8)

where

H0 = −1

2
∇2 +

1

2
(x2 + y2 + z2), (3.9)

K = C|ψC(r)|2 + δV (r, t). (3.10)

We accordingly define an interaction picture for the field evolution as

ψI
C(r, t) = eiH0(t−t′)ψC(r, t), (3.11)

where t′ is the time origin for the interaction picture that we discuss later. Such trans-

formation removes the explicit dependence of the field’s evolution on H0, i.e., the system

now evolves according to
∂ψI

C

∂t
= −iKIψI

C, (3.12)

where

KI ≡ eiH0(t−t′)Ke−iH0(t−t′), (3.13)

= C|ψI
C(r, t)|2 + δV I(r, t), (3.14)

is the interaction operator in the interaction picture, with

δV I(r, t) ≡ eiH0(t−t′)δV (r, t)e−iH0(t−t′). (3.15)
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Since
(

ψI
C(r, t)

)∗
= ψC(r, t)∗e−iH0(t−t′), we have that |ψI

C(r, t)|2 = |ψC(r, t)|2, and so ei-

ther the interaction or the Schrödinger picture field can be used to evaluate the nonlinear

density term.

Adaptive step evolution algorithm

Our aim is to obtain an efficient and accurate algorithm for propagating the PGPE

forward in time from an initial state ψC(r, t0). To do this we will need to recast the

partial differential equation (Eq. (3.12)) as a system of ordinary differential equations

(see Sec. 3.4.2), and then we make use of a Runge-Kutta algorithm to propagate this

system of equations forward in time. In this procedure the field is evaluated at a discrete

set of times

tj ∈ {t0, t1, t2, . . . , tF}, j ∈ [0, F ], (3.16)

where tF is the final time and F is the number of steps used to complete the simulation.

We use an adaptive step algorithm and the time steps,

∆tj = tj − tj−1, j ∈ [1, F ], (3.17)

are in general not equally sized.

We can now focus on the irreducible element of this procedure, the single step, i.e. the

scheme for obtaining ψI
C(r, tj+1) given ψI

C(r, tj). For simplicity it is convenient to choose

the origin of the interaction picture to be the start time of each time step, i.e.

ψ
I(j)
C (r, t) ≡ eiH0(t−tj)ψC(r, t).

We use the adaptive stepsize Runge-Kutta method, which provides a fourth and fifth

order accurate approximations to ψ
I(j+1)
C (r, tj+1) (see Sec. 3.4.2). By comparing these

two estimates we can control the relative error of the solution by adjusting the time step

size.

Comparison to RK4IP

This choice of interaction picture differs from that usually made for the Runge-Kutta

4th order interaction picture (RK4IP) algorithm developed in the Otago theory group

by Ballagh and coworkers [128,129] over the past decade.

• In RK4IP the interaction picture is defined by the operator H0 = −1
2
∇2, and the

harmonic trapping potential is thus left with the interaction term K. This choice
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was made because the RK4IP method is based on a planewave/FFT representation

in which −1
2
∇2 is diagonal. Since we work in the harmonic oscillator basis of

the full single particle Hamiltonian (excluding the perturbation potential) we can

exponentiate both kinetic and trap potential terms.

• In RK4IP the propagation is done using a 4th order Runge-Kutta algorithm and

the time origin is taken to be the mid-point between tj and tj+1. This time

origin choice leads to certain efficiencies in the detailed implementation since the

time step sizes are fixed. However, we have instead focused on implementing an

algorithm that is higher order and controls the error accumulated, although at

greater computational cost per time step.

3.4.2 Basis Set Algorithm

The previous position space representation of the PGPE can be converted to the basis

set representation by projecting the equations onto the oscillator basis of Sec. 3.2. In

particular, taking

ψ
I(j)
C (r, t) =

∑

n

cI(j)n φn(r), (3.18)

(c.f. Eq. (3.2)), we observe that the interaction picture transformation is trivial since

H0 is diagonal in the φn(r) basis, i.e.

cI(j)n =

∫

drφ∗
n(r)eiH0(t−tj)ψC(r, t), (3.19)

= eiǫn(t−tj)cn(t). (3.20)

The interaction picture PGPE takes the form

∂c
I(j)
n

∂t
= −iKI

n[{cI(j)n }, t], (3.21)

where

KI
n[{cI(j)n }, t] = F I

n[{cI(j)n }] +
∑

m

GI
nm(t)cI(j)m , (3.22)

F I
n[{cI(j)m }] = C

∫

drφ∗
n(r)|ψI(j)

C (r, t)|2ψI(j)
C (r, t), (3.23)

GI
nm(t) =

∫

drφ∗
n(r)δV I(r, t)φm(r), (3.24)

and we have introduced the nonlinear (F I
n[{cI(j)m }]) and perturbation potential (GI

nm)

matrix elements. The notation F I
n[{cI(j)m }] emphasises that the nonlinear matrix element
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depends on the field ψI
C, i.e. all the coefficients {cI(j)n }. In Sec. 3.5 we show that both

F I
n[{cI(j)m }] and GI

nm can be evaluated accurately and efficiently.

For the remainder of this section we explain our propagation algorithm assuming that

we can evaluate these two quantities. For the purposes of efficient notation we shall use

a vector notation, i.e.

cI(j)n ↔ cI, (3.25)

KI(j)
n [{cI(j)n }, t] ↔ KI[cI, t], (3.26)

ǫn ↔ e, (3.27)

and so on, where we have suppressed indicating the interaction picture time origin.

The Runge-Kutta method for propagating Eq. (3.21) is

kI
1 = −iKI[cI(tj), tj], (3.28)

kI
2 = −iKI[cI(tj) + b21k

I
1, tj + a2∆tj], (3.29)

kI
3 = −iKI[cI(tj) + b31k

I
1 + b32k

I
2, tj + a3∆tj], (3.30)

kI
4 = −iKI[cI(tj) + b41k

I
1 + b42k

I
2 + b43k

I
3, tj + a4∆tj], (3.31)

kI
5 = −iKI[cI(tj) + b51k

I
1 + b52k

I
2 + b53k

I
3 + b54k

I
4, tj + a5∆tj], (3.32)

kI
6 = −iKI[cI(tj) + b61k

I
1 + b62k

I
2 + b63k

I
3 + b64k

I
4 + b65k

I
5, tj + a6∆tj]., (3.33)

Together all these kI
j values give us the approximate solution at time tj+1 as

cI(tj+1) = cI(tj) +
6

∑

k=1

ckk
I
k, (3.34)

which is 5th order accurate in the time step ∆tj, where the coefficients {ak, bk, ck} are

the Cash-Karp coefficients (e.g. see [130]) given in Table 3.1.

i ai bij ci c̄i

1 37
378

2825
27648

2 1
5

1
5

0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10

- 9
10

6
5

125
594

13525
55296

5 1 -11
54

5
2

-70
27

35
27

0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j 1 2 3 4 5

Table 3.1: The Cash-Karp coefficients for Embedded Runge-Kutta Method
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We can also obtain a 4th order accurate estimate for the solution, i.e.

c̄I(tj+1) = cI(tj) +
6

∑

k=1

c̄kk
I
k, (3.35)

with coefficients c̄k in Table 3.1. We can then obtain the maximum relative error as

δXrel = max

{

|cI(j)n (tj+1)− c̄I(j)n (tj+1)|2

|cI(j)n (tj+1)|2

}

, (3.36)

where we only include non-negligibly occupied modes (i.e. those satisfying |cn|2 >

10−3 max{|cn|2}) to avoid the pathological behaviour of the relative error measure on

modes of vanishingly small occupation.

We can use δXrel to decide if a step was sufficiently accurate. Indeed, generally we

require a relative tolerance of our time propagation of TOL = 10−6, meaning that

δXrel < TOL for each time step. At the conclusion of a time step δXrel is analysed and

the algorithm makes the following decision:

Successful step (δXrel < TOL): We accept the solution and choose a step size for the

next time step of

∆tj+1 = 0.92∆tj

(

TOL

δXrel

)1/5

. (3.37)

Failed step (δXrel ≥ TOL): We reject the current solution and repeat the calculations

for the current time interval with a smaller time step given by

∆tnew
j = 0.92∆tj

(

TOL

δXrel

)1/4

. (3.38)

We note that the factor of 0.92 is a “safety factor” designed to give a greater likelihood

of success for the next step, as is the exponent of 1/4 in the failed step adjustment (the

method should be fifth order accurate, hence the normal use of an exponent of 1/5 for

adjusting the step size to obtain the desired tolerance, see e.g. [130]).

To provide a complete description of the code, we note that we have chosen to implement

the algorithm in Eqs. (3.28)-(3.33) transformed back into the Schrödinger picture for
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the purpose of simplifying the operator evaluation, i.e.

kI
1 = −iK[cI(tj), tj], (3.39)

kI
2 = −ieiea2∆tjK[e−iea2∆tj(cI(tj) + b21k

I
1), tj + a2∆tj], (3.40)

kI
3 = −ieiea3∆tjK[e−iea3∆tj(c(tj) + b31k

I
1 + b32k

I
2), tj + a3∆tj], (3.41)

kI
4 = −ieiea4∆tjK[e−iea4∆tj(cI(tj) + b41k

I
1 + b42k

I
2 + b43k

I
3), tj + a4∆tj], (3.42)

kI
5 = −ieiea5∆tjK[e−iea5∆tj(cI(tj) +

4
∑

k=1

b5kk
I
k), tj + a5∆tj], (3.43)

kI
6 = −ieiea6∆tjK[e−iea6∆tj(cI(tj) +

5
∑

k=1

b6kk
I
k), tj + a6∆tj], (3.44)

where

Kn[{cn}, t] = Fn[{cn}] +
∑

m

Gnm(t)cm, (3.45)

Fn[{cm}] = C

∫

drφ∗
n(r)|ψC(r, t)|2ψC(r, t), (3.46)

Gnm(t) =

∫

drφ∗
n(r)δV (r, t)φm(r), (3.47)

are the Schrödinger form of the operators introduced earlier.

3.5 Quadrature

To evaluate the matrix components of Eqs. (3.23) and (3.24), it is necessary to introduce

new notation for our basis, which is separable in the spatial dimensions. We introduce

new notation for 1D energy values, so that ǫn = εα + εβ + εγ, with the indices {α, β, γ}
corresponding to the directions {x, y, z}. We also introduce the decomposition

ψC(r, t) =
∑

αβγ∈C

cαβγ(t)ϕα(x)ϕβ(y)ϕγ(z) (3.48)

The basis functions ϕ have the form of Hermite polynomials, given by

ϕα(x) = hαHα(x)e−x2/2 (3.49)

where Hα is a Hermite polynomial of degree α, and hα is an appropriate normalisation

factor (determined so the wavefunction is normalised to unity). The vector cαβγ(t) gives

the complex number amplitudes of the basis functions outlined above, and we will refer

to this from now on as the c-vector. The classical field wavefunction is completely
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described just by the c-vector, and determining the time evolution of cαβγ(t) will allow

us to find solutions of the PGPE. We expand the PGPE in our chosen basis, to give the

equation of motion of cαβγ(t):

∂cαβγ(t)

∂t
= −i[(εα + εβ + εγ)cαβγ(t) + Fαβγ(ψC), (3.50)

which is the Schrödinger picture form of Eq. (3.21) where Fαβγ(ψC) is defined as

Fαβγ(ψC) =

∫

drϕ∗
α(x)ϕ∗

β(y)ϕ∗
γ(z)|ψC(r)|2ψC(r), (3.51)

(c.f. Eq. (3.23))

We now write in detail how we calculate the nonlinear term, Fαβγ in the above evolution.

The nonlinear term has the form

Fαβγ =

∫

drϕ∗
α(x)ϕ∗

β(y)ϕ∗
γ(z)|ψC(r, t)|2ψC(r, t). (3.52)

Let αmax be the maximum number of distinctive values that any one of the indepen-

dent variables can take (i.e. α ∈ [0, αmax − 1] in the C-region). Using our Hermite

polynomials, we can write the field at any time as

ψC(r, t) = Q(x, y, z)e−(x2+y2+z2)/2, (3.53)

where

Q(x, y, z) =
∑

αβγ

cαβγ(t)hαHα(x)hβHβ(y)hγHγ(z). (3.54)

Q(x, y, z) is a polynomial of maximum order αmax in the independent variables. We can

now write the nonlinear term as

Fαβγ =

∫

dre−2(x2+y2+z2)P (x, y, z), (3.55)

with

P (x, y, z) = hαHα(x)hβHβ(y)hγHγ(z)|Q(x, y, z)|2Q(x, y, z), (3.56)

which is a polynomial of maximum degree 4αmax in the independent variables. To

evaluate Fαβγ it is desirable to use Gaussian quadrature since it can evaluate the matrix

elements in Eq. (3.55) exactly. We give some background detail on these here (further

details on general Gaussian quadrature is found in [130]). We start with the quadrature

expression
∫ b

a

W (x)f(x)dx ≈
N

∑

j=1

wjf(xj), (3.57)
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where W (x) is the weight function, wj are the weights, and xj are the quadrature points

Say we form a set of orthonormal, orthogonal polynomials pN(x), which are mutually

orthogonal over the weight function W (x), i.e.

∫ b

a

W (x)pi(x)pj(x)dx = 0 (3.58)

for any i, j in our set. It can be shown that pN(x) has exactly N distinct roots in the

interval [a, b]. It can also be shown that these roots are the xj required in the quadrature

expression above Eq. (3.57). The weight functions can be found once the roots are

known (see Ref. [130] for the general case). This quadrature, with N polynomials, is

accurate for polynomials of order 2N − 1 or less. In our particular case, we recognise

that our function Fαβγ takes the form required for Gauss-Hermite quadrature in each

direction, with weight function W (x) = e−x2/2. In this case, the appropriate roots and

weight functions can be found, and the integral of the 4αmax polynomial P (x, y, z) will

be exact if a quadrature of order 2αmax is used along each direction (i.e. a 3D grid

rijk = (xi, xj, xk) of 2αmax×2αmax×2αmax points), which we refer to as our quadrature

grid. We note that while the computational cost of this quadrature step is O(α4
max),

calculating the nonlinear term directly in the spectral basis takes O(α12
max), and so a

significant saving of computational time has been made.

We can therefore write our nonlinear term as

Fαβγ =
∑

ijk

wiwjwkPαβγ(xi, xj, xk), (3.59)

where xi and wi are the 2αmax roots and weights of the 1D Gauss-Hermite quadrature

with weight function W (x) = e−2x2

. To calculate our nonlinear term, we undertake the

following procedure: We transform the field to spatial representation, on the quadrature

grid, i.e.

ψC(rijk, t) =
∑

αβγ

UiαUjβUkγcαβγ(t), (3.60)

where

Uiα = ϕα(xi). (3.61)

The integrands are then constructed as quadratures by dividing by the weight function

and premultiplying by the weights, i.e.

f(rijk) = wiwjwke
2|rijk|

2 |ψC(rijk, t)|2ψC(rijk, t) (3.62)
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We then inverse transform, to give the desired matrix elements

Fαβγ =
∑

ijk

U∗
iαU

∗
jβU

∗
kγf(rijk). (3.63)

3.5.1 Time-dependent Perturbation

We wish to discuss evaluation of the perturbation potential term in the PGPE, i.e. of

the form

Gαβγ =

∫

drϕ∗
α(x)ϕ∗

β(y)ϕ∗
γ(z)δV (r, t)ψC. (3.64)

We will assume that δV (r, t) can be evaluated on the quadrature grid we used for the

nonlinear term. In this thesis our interest is in perturbations of the form

δV (x, t) = A sin(ωxt)ω
2
xx

2, (3.65)

and similar generalisations for exciting collective modes (e.g. see Chapter 4). We have

developed a time-dependent algorithm for evaluating this term. We investigate the

accuracy of this algorithm by testing it in the non-interacting limit against an analytical

result, and we present this in Appendix B.

3.6 Discussion on Computational Resources

We have made significant use of computational resources to generate the results pre-

sented in this thesis.

A single trajectory simulation can take anywhere between 30 minutes and 24 hours to

run on a typical workstation and has a very small memory footprint (typically ∼ 1MB).

The simulation time is very dependent on the number of modes and nonlinearity being

simulated due to the adaptive step tolerance control. This large variability in simulation

time (i.e. number of steps and step size) indicates the importance of our adaptive

stepsize algorithm over the fixed step RK4IP method. To generate the large numbers

of trajectories and data sets required here we have made substantial use of the Vulcan

cluster made available by the LART research theme. The total CPU time we have used

on this cluster is in excess of one year.

We also note that due to the nature of our input state of the PGPE, it can be difficult

to determine in advance what the appropriate values of EC, NC, and ǫcut should be to

obtain states with certain desired macroscopic parameters (such as a fixed total number,

or temperature). For this reason, it is often necessary to keep refining the input state
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and repeating simulations. Several hundred simulations would usually be needed to

produce a dozen states within the desired macroscopic parameters, such that it often

took weeks of computation and refinement to generate the states used for the studies

presented in the following chapters.
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Excitations
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Chapter 4

Quadrupolar Excitations of the

Bose gas

4.1 Introduction

In this section we undertake a comprehensive study into the excitation spectrum of

a finite temperature Bose gas. We model the experiment of Jin et al. [3], which has

become a benchmark test for finite temperature theory. This is the first time that the

PGPE has been applied to a dynamical system which has allowed qualitative comparison

with experiment, and we use this opportunity to evaluate the performance of the PGPE

formalism in this regime. We begin by outlining the application of the PGPE to the

experiment in Sec. 4.2. We then present our results in Sec. 4.3, giving comparison

with previous experimental and theoretical findings where appropriate, and giving an

analysis of the dependence of our results on the energy cutoff ǫcut used to define the

c-field region.

4.2 Formalism

Here we outline the formalism for modelling the experiment of [3]. We begin detailing the

experimental method in Sec. 4.2.1. We then show how to find appropriate equilibrium

states in Sec. 4.2.2, and then give our dynamic modeling formalism in Sec. 4.2.3.
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4.2.1 Experimental Procedure

The theory we develop here is relevant to the finite temperature excitation experiment

undertaken by Jin et al. in Ref. [3]. It is instructive to outline the details of that

experiment, and we do that here. In the experiment a degenerate 87Rb Bose gas was

prepared in a magnetic trap with frequencies ωr ≡ ωx,y = 2π×129Hz, ωz = 2π×365Hz,

and initial temperatures ranging from 0.4–1.4Tc. The total number of atoms increased

with temperature, varying from about 5× 103 to 60× 103 atoms over that temperature

range, with a condensate number of about 6× 103 ± 2× 103 for T . 0.9Tc.

Two different symmetries of perturbation were investigated in experiments, chosen to

effectively couple to the lowest energy m = 0 and m = 2 collective modes. To excite the

collective mode the trap was perturbed for 14 ms and then evolved in the static trap

for a variable hold time before the cloud was released and imaged after expansion (see

Fig. 4.1(a)). The condensate and non-condensate components were determined using

bimodal fits to the absorption image, and the widths of each component were extracted

as a function of time. These results were analysed to give excitation frequencies and

damping rates for both components.

Time-dependent perturbation

The perturbation used to drive the m = 0 mode was a weak sinusoidal modulation of

the radial trap frequency (see Fig. 4.1(b)). For the m = 2 mode the trap frequencies

in the x and y directions were modulated sinusoidally with π phase difference (see Fig.

4.1(c)). For calibration, the dipole mode was also measured by center-of-mass excitation

(see Fig. 4.1(d)).

Our system is described by the second quantised Hamiltonian given in Eq. (2.1). Here,

our trapping potential will be given by

V (r, t) = V0(r) + δV (r, t), (4.1)

where V0(r) is the static harmonic trap potential, given in Eq. (2.5), and δV (r, t) is a

time-dependent perturbing potential whose form we will change dependent on the cloud

perturbation we wish to model. We discuss this further below. In our approach to

modeling these collective excitations we explicitly simulate the perturbation procedure

used in experiments. To do this we use a perturbation potential of the form

δV (r, t) =
m

2
A(t)

{

ω2
xx

2 cos(ωpt+ φ) + ω2
yy

2 cos(ωpt)
}

, (4.2)
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Figure 4.1: Experimental time sequence and form of trap perturbations used to excite
the Bose gas. (a) Overview of time sequence used in the experiment to excite and
observe collective excitations in the system. (b)-(d) Schematic representations of the
various trap perturbations used (see text). Contours of equipotential in the xy-plane
are shown for the unperturbed (solid lines) and for the perturbed (dashed lines) traps.
(b) Symmetric perturbation used to drive the m = 0 mode. (c) The perturbation used
to drive the m = 2 mode corresponds to a rotating ellipse. (d) Trap center displacement
used to drive the dipole mode.

where ωp is the perturbation frequency, φ is a phase factor between the x and y per-

turbation, and A(t) is the dimensionless time-dependent amplitude of the perturbation

(see Fig. 4.1(a)) of the square pulse form

A(t) =

{

A0, 0 ≤ t ≤ 14 ms,

0, otherwise,
(4.3)

with A0 = 0.015. The choice of φ = 0 (φ = π) in Eq. (4.2) corresponds to the perturba-

tion used in experiment to excite the m = 0 (m = 2) mode. In the experiment ωp was

chosen “to match the frequency of the excitation being studied”, with the motivation

that this should cause the system to oscillate at its natural frequency.

To drive the dipole oscillation, we use a perturbation potential of the form

δV (r, t) =
1

2
mω2

x{d2 sin2(ωxt)− 2xd sin(ωxt)}, (4.4)

where d = 0.034µm is the amplitude of the sinusoidal motion of the trap in the x
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direction.

4.2.2 Equilibrium States

To use the PGPE to model a dynamical system, we first need to form equilibrium states

that have the N , Ncond, and T of the original states in the experiment. This is to ensure

that the effects we see from our analysis are due solely to the perturbation applied to

the system, as opposed to the thermalisation of states. While the procedure for forming

an initial state has been detailed in Sec. 3.3, we need to show how to form states with

specified N , Ncond, and T , as these are not input values to the formation of our initial

state.

The overall algorithm for generating equilibrium states within the PGPE formalism is

summarised as a three step process:

1. Using selected values of {EC, NC, ǫcut}, an appropriate randomised state is con-

structed and evolved according to the PGPE. Using time averagingNcond, nC(r), T,

and µ are calculated.

2. Using nC(r), T, and µ, the incoherent region is analysed, yielding nI(r), and hence

the total atom number

N = NC +NI. (4.5)

3. The values obtained for N , T , and Ncond are compared to the desired values from

experiment and the values of {EC, NC, ǫcut} are adjusted before returning to step

1.

Following this procedure, we have sampled equilibrium configurations with condensate

occupation Ncond ≈ 6000 ± 2000 over the temperature range 0.51Tc to 0.83Tc (see Sec.

4.3.1). These samples of the equilibrium state are used as initial conditions for the

collective mode excitation procedure we discuss next. We examine attributes of the

initial states, particularly the dependence on ǫcut, later in this chapter.

4.2.3 Formalism for Dynamical Modeling of Collective Mode

Excitation

The fundamental approximation in our treatment of collective mode excitation is to

neglect the the dynamics of the I region, and their influence on the C region. In this
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approximation the many-body dynamics are described by the PGPE

i~
∂ψC

∂t
= H0ψC + PC

{(

δV (r, t) + U0|ψC|2
)

ψC

}

, (4.6)

which differs from the PGPE used to generate equilibrium states by the inclusion of the

perturbation potential. The motivation for considering only the C region is that many

noncondensate modes and their effect on the collective mode dynamics are included in

C. We critically examine this approximation later.

Initial conditions

We begin our simulations at t = 0 when the perturbation potential is first applied (see

Eqs. (4.2) and (4.3)). The perturbation potential, and the ensuring dynamics it gener-

ates, break the ergodicity of the PGPE for some period of time after the perturbation

has concluded (until the system rethermalised when the collective modes have damped

out). Ensemble averages of the dynamical system thus need to be taken as an average

over many trajectories. For each trajectory, we take as an initial condition

ψ
(j)
C (r, t = 0) = ψEq

C (r, τj), (4.7)

where we have used the notation ψEq
C to represent the equilibrium states generated for

the time independent potential (i.e. the states ψC(r, τj) appearing in Eq. (2.26)), and

ψ
(j)
C to represent the j-th trajectory for the simulation of the collective mode dynamics.

The subsequent evolution of ψ
(j)
C (r, t) is according to Eq. (4.6), which excites collective

modes in the system .

Observations and analysis

In the analysis of the system dynamics we present in the next section we make extensive

use of the line density, defined for the j-th trajectory as

n
(j)
l (x, t) =

∫

dydz |ψ(j)
C (r, t)|2. (4.8)

This quantity, for a single trajectory, is itself of interest as the spatial integration cor-

responds to a spatial averaging of the system over the many modes in the C region,

and there is some evidence that single trajectories of the PGPE can be compared to

single experimental results. However, we will also be interested in the trajectory average
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calculated as

nl(x, t) =
1

Mt

Mt
∑

j=1

n
(j)
l (x, t), (4.9)

where we use Mt = 20 for the trajectory averaged results presented in this paper.

We will also be interested in the momentum space equivalent line densities,

n
(j)
l (px, t) =

∫

dpydpz |φ(j)
C (p, t)|2, (4.10)

nl(px, t) =
1

Mt

Mt
∑

j=1

n
(j)
l (px, t). (4.11)

We emphasise that these line densities only include contributions from atoms in the C

region.

We can also use trajectory averaging to obtain other quantities, such as the coherent

condensate component of the system. We do this by extending the one-body density

matrix to the nonequilibrium case and evaluating it with trajectory averaging, i.e.

G(1)(r, r′, t) =
Mt
∑

j=1

(

ψ
(j)
C (r, t)

)∗

ψ
(j)
C (r′, t). (4.12)

Diagonalising G(1)(r, r′, t) at each time we can obtain the instantaneous condensate

(coherent) field ψcond(r, t), and hence the condensate line density

ncond
l (x, t) =

∫

dydz |ψcond(r, t)|2. (4.13)

4.3 Results

In this section, we present a detailed analysis of the PGPE simulations of the JILA

experiment [3]. First, in Sec. 4.3.1, we present the parameters of the equilibrium states

we have generated that we use as the basis for our collective excitation modeling. Then

in Sec. 4.3.2, we develop convenient observables and examine the density response of

the Bose cloud to the perturbative drive. We then use Fourier methods to attempt to

examine the density response of the system in Sec. 4.3.3. In Sec. 4.3.4 we formulate a

new method of analysis and present results for the frequencies and decay rates of the

lowest energy m = 2 and m = 0 modes. Then, in Sec. 4.3.5, we analyse the effect of the

energy cutoff in our formalism, and provide evidence for how it affects the equilibrium

and dynamic properties of the Bose cloud. For completeness, we then calculate the

frequencies of the dipole mode as a function of temperature in Sec. 4.3.6, and lastly
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Figure 4.2: Equilibrium state properties. (a) Temperature, (b) total atom number, and
(c) condensate number as a function of T/Tc. PGPE results (diamonds) and lines are
guides to the eye.

discuss the phase of the noncondensate and condensate oscillations in Sec. 4.3.7.

4.3.1 Equilibrium States

First we present a summary of our results for the equilibrium states generated according

to the procedure discussed in Sec. 3.3. The macroscopic parameters of the states we

have produced are shown in Fig. 4.2. These states provide initial conditions over the

temperature range 0.51Tc − 0.83Tc with a condensate number in the range 3.5× 103 −
7.5 × 103, which is comparable to the spread in condensate values used in experiment

over this temperature range (see. Fig. 1(c) of Ref. [3]). A complete list of the parameters

and properties of our initial equilibrium states is given in Table 4.1.
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ǫcut [~ωx] NC × 103 EC [~ωx] Ncond × 103 N × 104 T [nK] T/Tc nmin

17 4.64 7.2 3.95 0.613 70 0.51 0.89
17 4.54 7.25 3.74 0.64 78 0.55 1.12
18 4.54 7.3 3.74 0.591 71 0.52 0.94
19 4.54 7.5 3.67 0.598 74 0.54 0.89
17 5.05 7.5 4.24 0.78 90 0.6 1.26
32 11.9 12.3 7.46 1.75 127 0.64 0.89
32 11.4 12.3 7.05 1.7 126 0.65 0.84
32 11.1 12.3 6.8 1.7 126 0.65 0.79
32 11.9 12.6 6.95 1.88 134 0.66 0.83
32 10.9 12.3 6.26 1.62 126 0.66 0.81
31 10.6 12.1 6.31 1.64 128 0.66 0.86
30 10.6 11.9 6.52 1.75 133 0.67 0.91
32 11.9 12.8 6.83 1.99 141 0.68 0.84
36 11.9 14.4 5.6 1.95 143 0.71 0.81
37 11.9 15 5.16 1.96 147 0.72 0.7
36 11.9 14.6 5.64 2.01 149 0.72 0.85
33 12.4 13.5 7.12 2.33 157 0.72 1.02
35 12.4 14.4 6.22 2.27 158 0.73 0.91
32 12.4 13.2 7.41 2.38 160 0.73 1.09
46 13.1 22 5.77 2.03 154 0.74 0.67
34 12.4 14.1 6.57 2.42 163 0.74 0.99
38 11.9 16 4.92 2.15 159 0.75 0.88
35 12.1 14.6 5.72 2.34 163 0.75 1.02
33 12.4 13.8 6.89 2.51 168 0.76 1.01
36 11.9 15.5 5.26 2.5 174 0.78 1.05
33 12.4 14.1 5.98 2.79 179 0.78 1.15
27 10.1 11.7 6.32 2.47 172 0.78 1.44
32 12.4 13.8 7.06 2.98 186 0.79 1.29
36 11.9 16 4.67 2.83 186 0.8 1.06
37 11.9 16.5 4.62 2.72 185 0.81 1.03
32 12.4 14.1 6.86 3.32 197 0.81 1.32
25 9.59 11.3 6.32 2.96 190 0.81 1.79
36 11.9 16.5 5.14 3.24 202 0.83 1.14

Table 4.1: A summary of the equilibrium state parameters used for the results reported
in Fig. 4.2 and used as initial states for the results presented in Sec. 4.3.4. The first
three columns give the parameters used to generate the initial states and the remaining
columns give the macroscopic parameters determined for these states.

66



CHAPTER 4. Quadrupolar Excitations of the Bose gas

4.3.2 Density Response

In this section, we show examples of the density response of the system after the sinu-

soidal perturbation has been switched off, and the cloud is evolving in situ in a static

harmonic potential.

Figures 4.3(a)-(e) and Figs. 4.4(a)-(b) show the evolution of the position and momentum

line densities for a Bose gas after the perturbation with m = 0 symmetry has been

applied, where the time is measured with t = 0 corresponding to the beginning of the

perturbation (see Fig. 4.1). The timescale of these results corresponds to the period of

observation used in experiments. The position line density has a clear width oscillation

induced by the perturbation. We have made similar observations of the y and z line

densities (defined analogously to Eqs. (4.8) and (4.10)) and have verified that width

oscillations also occur. For the m = 0 symmetry perturbation we find that the x and

y oscillations are in phase, whereas the x and z oscillations are out of phase. Thus we

conclude that the perturbation has excited the m = 0 mode more strongly than any

other mode.

A similar study of the density response of the system to the perturbation with m = 2

symmetry reveals expected behaviour: the widths in the x and y directions oscillate out

of phase, and the z width remains (approximately) constant.

Figure 4.3(d) shows the momentum line density for a single trajectory of a Bose gas

after the perturbation with m = 0 symmetry has been applied. Figure 4.3(e) and Fig.

4.4(b) show the trajectory averaged line density. The momentum line density is sharply

peaked at px = 0 due to the presence of a condensate. The peak value of the momentum

line density oscillates periodically with minor peaks occurring between major peaks (see

Fig. 4.4(b)). The major peak occurs first at t ≈ 16 ms and then returns each time the

condensate width reaches the outer turning point of its oscillation in position space (i.e.

the condensate is at its widest, see Fig. 4.3(c)). This connection between the position

space width and momentum space peak value for the condensate arises through the

Heisenberg relationship, i.e. the position and momentum widths of the condensate

mode are inversely related. The intermediate minor peak arises because of the out of

phase oscillation of condensate width in the different directions integrated over to obtain

the line density. In the case of the m = 0 mode the out-of-phase oscillations is along the

z direction, whereas for the m = 2 mode is it along the y direction (e.g. see Fig. 1.2)

In addition to the dominant condensate peak at px = 0, a broad background feature

is apparent in the momentum density at larger |px| values. This feature, which we

attribute to the non-condensate portion on the system in the C region, is more clearly

apparent in momentum line density shown in Figs. 4.5 (a) and (b).
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Figure 4.3: Line densities evolution after perturbation. (a) A single trajectory position

space line density n
(j)
l (x, t). (b) Trajectory averaged position space line density nl(x, t).

(c) Condensate position space line density ncond
l (x, t). (d) A single trajectory momentum

space line density n
(j)
l (px, t). (e) Trajectory averaged momentum space line density

nl(px, t). Results for a system with T = 154 nK, N = 2.0× 104, Ncond = 5.7× 103.
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Figure 4.4: Surface plots of trajectory averaged line density plots. (a) Trajectory av-
eraged position space line density nl(x, t). (b) Trajectory averaged position space line
density nl(px, t). Same data as displayed in Fig. 4.3(b) and (e).
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Figure 4.5: (a) Single trajectory and (b) trajectory averaged momentum line density
at t = 32 ms for the condensate domain (dark shaded region) and the noncondensate
domain (light shaded region) are shown (see text). Results for the same parameters
given in Fig. 4.3.
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4.3.3 Fourier Analysis of Field Moment Dynamics

We wish to study the collective modes excited by either the m = 0 or m = 2 exci-

tation symmetries, and so look for observables that would be sensitive to oscillations

in the width of the system. Experimentally, the width of the condensate and thermal

components is probed by fitting a bimodal function to the density distribution of atoms

released from the trap. The in situ momentum distribution (e.g. see the momentum

line density in Fig. 4.5(b)) clearly reveals the distinct character of the condensate and

noncondensate components, and (like in experiments) fitting a bimodal distribution to

determine the widths of the condensate and thermal components would seem to be an

obvious choice for observable. However, the in situ condensate momentum peak is ex-

tremely narrow and we have found that performing bimodal fits to the momentum line

density is ambiguous and noisy. We note that in experiments the expansion procedure

gives rise to considerable broadening of the condensate momentum distribution (e.g.

see [131]) and thus cannot be compared directly to our in situ line density. This moti-

vates us to examine other observables that reveal the collective response of the system.

Our first consideration is the x direction position and momentum moments

〈xm〉j =

∫

dr|ψ(j)
C (r, t)|2xm (4.14)

〈pm
x 〉j =

∫

dp|φ(j)
C (p, t)|2pm

x (4.15)

for each timestep t of each trajectory evolution, for m = 1 or m = 2 . The 〈x〉 moment,

for example, shows the fluctuation in the average position of the cloud along the x axis,

while the 〈x2〉 moment shows the fluctuations in the width of the cloud, and likewise

for the moments in momentum space. Studying the frequency of the fluctuations in

these moments gives direct information on the system dynamics caused by various exci-

tations, however does not distinguish between condensate and noncondensate response.

To analyse our results, we first calculate the power spectrum of individual trajectories

for position and momentum space, defined as

F j
〈xm〉j

(ω) ≡ |
∫

dte−iωt〈xm(t)〉j|2 (4.16)

F j
〈pm

x 〉j
(ω) ≡ |

∫

dte−iωt〈pm
x (t)〉j|2. (4.17)
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We can then calculate the average of the trajectory power spectrums as

F〈xm〉(ω) =
1

Mt

Mt
∑

1

F j
〈xm〉j

(4.18)

F〈pm
x 〉(ω) =

1

Mt

Mt
∑

1

F j
〈pm

x 〉j
. (4.19)

We evaluate our power spectrums using a discrete Fourier transform (via MatLab FFT

function) over the finite time interval tmax = 180ms, with a total number of steps

Nsteps = 5550 , this gives us a frequency resolution of

ωres =
1

∆Nsteps

(4.20)

where

∆ =
tmax

Nsteps − 1
(4.21)

this gives ωres ≈ 0.04ωx in our units. The Nyquist frequency is given as

ωnyq =
1

2∆
(4.22)

which is ωnyq ≈ 118ωx. We now discuss results of the analysis of each of these moments

in turn.

In Fig. 4.6 we show the results for the 〈x〉 moment for an equilibrium cloud and a

cloud where the dipole perturbation (see Eq. (4.4)) is applied, where the cloud has

N = 6131, Ncond = 3947, and T/Tc = 0.51. These moments show just the center of

mass motion of the cloud. For an equilibrium system (no trap perturbation), we see that

the cloud has center of mass motion with a frequency of 0.95ωx (where ωx is the radial

trap frequency). This corresponds to the dipole or Kohn mode, which is associated

with a “sloshing” motion of the gas in the trap. These modes have frequencies which

are equal to the trap frequency. Our results of 0.95ωx is below the expected result; we

present some ideas at the end of this section as to why this method of analysis could be

inaccurate. We make the important note here that since our equilibrium system is at

finite temperature, there will be excitations already present. We see this here, through

the finite excitation of the dipole mode in an unperturbed cloud, showing that there is

some center of mass motion of the cloud already present.

When we drive the cloud with the dipole perturbation of form given in Eq. (4.4) we see

a 40% increase in the strength of the signal in the power spectrum of Fig. 4.6. This

shows that our trap perturbation has indeed excited the correct mode. We note also

that there is no change in the frequency of the excitation. Similar results are found for
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Figure 4.6: Power spectrum of the time evolution of the 〈x〉 moment for a cloud with
the dipole perturbation applied (dotted) and in equilibrium (solid). System N = 6131,
Ncond = 3947, and T/Tc = 0.51.

the dipole moment by analysing the power spectrum of the 〈p〉 moment, and we do not

repeat them here.

The power spectrum for the 〈x2〉 moment for an equilibrium system (with the same

parameters as above) is shown in Fig. 4.7. This moment most strongly reveals system

dynamics related to width fluctuations of the cloud. We see two prominent peaks in

Fig. 4.7, which have frequencies of 1.45ωx and 1.85ωx. These correspond to the m = 0

and m = 2 modes, respectively, with these frequencies agreeing well with experimentally

measured results at this temperature. We note here again, that the presence of these

excitations in the equilibrium system is due to there being small amounts of excitation

in the finite temperature system. In Fig. 4.8 we show results for the power spectrum of

the 〈x2〉 moment at the same temperature, but after the system has been excited with

the m = 0 symmetry perturbation (i.e. Eq. (4.2) with φ = 0). This should couple most

strongly to the m = 0 mode, and indeed, we see a 40-fold increase in the peak power

at the frequency corresponding to the m = 0 mode, showing that our trap perturbation

has selectively excited this mode. Similarly, the peak at ω ≈ 1.45ωx is enhanced with

the m = 2 symmetry perturbation.

We have attempted to use the power spectra, as outlined above, to characterise the

collective mode frequency as a function of temperature. This analysis led to poor results

for the following reasons. First, that the extended timescale needed to obtain good
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Figure 4.7: Power spectrum of the time evolution of the 〈x2〉moment for an unperturbed
cloud with N = 6131, Ncond = 3947, and T/Tc = 0.51.

1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20

25

30

35

40

frequency ω/ω
x

F
〈 x

2  〉(ω
) 

[a
rb

. u
ni

ts
]

Figure 4.8: Power spectrum of the time evolution of the 〈x2〉 moment for a cloud with
the m=0 perturbation applied. System has N = 6131, Ncond = 3947, and T/Tc = 0.51.
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Figure 4.9: Power spectrum of the time evolution of the 〈p2〉 moment for a perturbed
cloud with N = 19862, Ncond = 3169, and T/Tc = 0.73 (dotted line) compared with
power spectrum of the time evolution of the 〈p2〉 moment for a perturbed cloud with
N = 6131, Ncond = 3947, and T/Tc = 0.51.

frequency resolution means that the original excitations in the system have damped.

Second, that the moments being calculated give no means to distinguish the condensate

and thermal dynamics. Third, at high temperatures, we would expect to see a strong

peak in the excitation spectrum at 2ωx, corresponding to oscillations of just the thermal

cloud, for both the m = 0 and m = 2 perturbations. However, we do not see this in

the power spectrum of 〈x2〉 at any temperature. The reason for this can be seen by

examining the spectrum of 〈p2〉, which is more sensitive to oscillations in the respective

components of the cloud. In Fig. 4.9 we show the power spectrum for 〈p2〉 for a cloud

driven with the m = 0 symmetry for the parameters given above, and we compare this

to the results for a high temperature system, which has N = 19862, Ncond = 3169, and

T/Tc = 0.73, and is plotted with a dotted line on Fig. 4.9. For the lower temperature

system, we see just a peak corresponding to the excitation of the condensate mode, as

at this temperature the thermal component is very small, and it leaves no discernible

signature in the excitation spectrum. For the higher temperature system, however, we

can see that the condensate peak has broadened considerably, and a noncondensate

response at ≈ 2ωx is apparent. We cannot resolve the thermal component by itself,

however, and so we conclude that this observable is not appropriate to perform an

analysis of the separate behaviour of the condensate and noncondensate fractions as

was done in experiment.
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4.3.4 Frequencies and Decay Rates of Collective Modes

Observables

In light of the problems associated with analysing the frequencies of the collective modes

using Fourier methods, we develop two new observables that avoid both Fourier trans-

forms, and the need to fit to our bimodal distribution. First we observe that the two

momentum domains, defined as

c = {px : |px| ≤ p0}, (4.23)

n = {px : |px| > p0}, (4.24)

with p0 =
√

2~mωx, are dominated by the condensate (i.e. narrow peak) and noncon-

densate (broad background) respectively (see shaded regions in Figs. 4.5 (a) and (b)).

We thus refer to these domains as the condensate (i.e. c) and noncondensate (i.e. n)

domains respectively. The value of p0 is in some sense arbitrary as long as it is greater

than the condensate momentum width, and much less than the characteristic thermal

momentum (pth = h/λdB, with λdB the thermal de Broglie wavelength). Our choice,

p0 =
√

2~mωx, satisfies both of these criteria.

We can now define our two observables, as the variance of the momentum line densities

on these restricted domains, i.e.

Pc(t) = 〈p2
x〉c − 〈px〉2c, (4.25)

Pn(t) = 〈p2
x〉n − 〈px〉2n, (4.26)

where

〈pj
x〉σ =

∫

σ
dpxnl(px, t)p

j
x

∫

σ
dpxnl(px, t)

, (4.27)

with σ = {c, n}. We note that the denominator of Eq. (4.27) appropriately normalises

the moments, and the choice of variance for Pσ, rather than the second moment 〈p2
x〉σ,

is to remove the effects of any residual center of mass motion of the system.

We note here that our choice of observables is made to coincide with that made in

the experiment of [3], in which the condensate and noncondensate components of the

cloud were treated separately. It has been argued (see for example [14, 20]) that at

high temperatures where the system behaves collectively there is an unclear division

between the condensate and noncondensate, but since we aim to adhere to experimental

procedure as closely as possible, we will not consider that here.

In Fig. 4.10(a) and (b) we show examples of Pc(t) and Pn(t), evaluated from the PGPE
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Figure 4.10: (a) Condensate domain observable, Pc(t), and (b) noncondensate domain
observable, Pn(t), as a function of time. For a system excited by the m = 0 symmetry
perturbation: Trajectory averaged result (black line), and single trajectory result (grey
line). For unperturbed equilibrium system: Trajectory averaged result (black diamond
line), and single trajectory result (grey diamond line). System parameters: T = 159
nK≈ 0.75Tc, N = 2.1× 104, Ncond = 4.9× 103.
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Figure 4.11: Fits to observables: (a) Condensate domain observable, Pc(t), (line) and
(b) noncondensate domain observable, Pc(t), (line) as a function of time for a system
excited by the m = 0 symmetry perturbation. Fits to observables using Eq. (4.28)
shown (dotted lines). System parameters: T = 159 nK≈ 0.75Tc, N = 2.1 × 104,
Ncond = 4.9× 103.

simulation of an equilibrium system and a system excited by the perturbation with

m = 0 symmetry. From these results it is clear that the observables reveal the collective

mode induced by the perturbation compared to the much smaller thermal fluctuations

in the equilibrium states. In the collective mode analysis we always use Pc(t) and Pn(t)

evaluated from the trajectory averaged line density, nl(px, t), however the results in Fig.

4.10 show that if the single trajectory line density, n
(j)
l (px, t), is used to evaluate these

quantities a useful signal is also obtained.

For both Pc(t) and Pn(t) we notice that considerable damping occurs over the period

of observation. In both signals anharmonic features are present, but are most apparent

in the condensate observable where a weaker intermediate dip is apparent. The origin

of this feature is the same as for the intermediate peak in Fig. 4.4(b) (see discussion

in Sec. 4.3.2): integration over the out of phase oscillation of the m = 0 mode in the

z direction. We have also verified that the observable signal is relatively insensitive to

small adjustments of the value of p0 used to define the c and n domains.

As in the experiment we fit a decaying sinusoid of the form

Pfit(t) = Ae−γt sin(ωt+ ϑ) +B, (4.28)
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to our results, to obtain the collective mode frequency (ω) and damping rate (γ). Ex-

ample fits to the observable, shown in Figs. 4.11(a) and (b), indicate that while our

combination of observable and fitting function is adequate for accurately determining

the mode frequency, it does not provide a good description of the amplitude or damping

behaviour of the modes. We do note, however, that for the finite observation time, this

method gives better frequency resolution than Fourier transforming, as was carried out

in Sec. 4.3.3

Mode frequencies

Our results for the mode frequency variation with temperature are presented in Fig.

4.12, along with the experimental results from Jin et al. [3] for comparison. We show

results for the m = 0 mode and the m = 2 mode, and give the frequencies for both the

condensate (solid symbols) and noncondensate (open symbol) components.

We first examine the m = 0 mode behaviour shown in Fig. 4.12(a). At temperatures

below 0.6Tc the m = 0 mode frequencies of the condensate and noncondensate compo-

nents are almost the same, indicating that the two components oscillate together. In

this temperature range the agreement with the experimental results for the condensate

frequency is good. There are no experimental measurements for the noncondensate

behaviour in this regime as the noncondensate fraction is too small to measure. At tem-

peratures above 0.6Tc our theoretical predictions and the experimental results exhibit

markedly different behaviour: As temperature increases above 0.6Tc our results (for both

the condensate and noncondensate) decrease in frequency, whereas the experimental re-

sults show a rather rapid increase in frequency. This feature of the experimental results

evaded theoretical description (e.g. see [12]) until the works of Jackson et al. [20] in

2002 and Morgan et al. [14] in 2003. We discuss the origin of the disagreement between

PGPE and the experimental results further in Sec. 4.3.5, and show that it arises from

our lack of a dynamical description of the I region. We note that the PGPE predictions

of a downward trend in the frequency of the m = 0 mode is consistent with the results

of gapless Hartree-Fock-Bogoliubov calculations (see Fig. 2 of Hutchinson et al. [11]),

indicating that anomalous average effects are included in our description. Our predic-

tions are also in good agreement with the second order theory of Morgan et al. for the

mode frequency in the absence of direct thermal driving (see diamond symbols on Fig.

1(a) of Ref. [14]).

In Fig. 4.12(b) them = 2 mode is considered. Here we see reasonable agreement between

the PGPE predictions for the condensate oscillation frequency and the experimentally

measured values at all temperatures simulated. At high temperatures our predictions lie

slightly above the experimentally measured values in a similar manner to the full second
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Figure 4.12: Results for the frequency dependence on temperature for PGPE and ex-
perimental results of [3]. (a) m = 0 mode frequencies. (b) m = 2 mode frequencies.
Experimental results (grey symbols) and PGPE results (black symbols). Frequency for
condensate (solid symbols) and noncondensate (open symbols). Error bars on some
PGPE results indicate the spread in values from different calculations at the same tem-
perature.
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Figure 4.13: Results for the damping rates variation with temperature for PGPE and
experimental results. Results are given for the condensate m = 0 modes (triangles) and
m = 2 modes (circles). Experimental results (grey symbols) and PGPE results (black
symbols). Error bars on some PGPE results indicate the spread in values from different
calculations at the same temperature.

order predictions (i.e. including thermal driving) of Morgan et al. (see open circles in

Fig. 1(b) of Ref. [14]). For the m = 2 mode noncondensate oscillation frequency, we see

poor agreement with experimental results. There are no other theoretical predictions for

the m = 2 thermal modes for us to compare against as neither Ref. [20] or [14] present

results for this case. The PGPE predictions for the noncondensate mode at temperatures

above 0.70Tc show that the noncondensate decouples from the condensate, and that its

frequency is well above that of the condensate. This behaviour is qualitatively the

same as that seen in experimental results (with experimental results only available at

temperatures above 0.78Tc), however the upward shift of the thermal mode frequency

we calculate is much lower than that observed in experiments. We discuss the origin of

this quantitative disagreement between the PGPE and experimental results further in

Sec. 4.3.5.

Mode damping

In Fig. 4.13 we present the PGPE predictions for the damping rates of the m = 0 and

m = 2 condensate modes, which we compare against the experimental results. Although

there is considerable scatter in the PGPE results, they appear to be consistent with the

experimental measurements. In particular, we observe that in the temperature range

0.5Tc − 0.6Tc the m = 0 mode decays most rapidly (i.e. larger γ), while at higher
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temperatures the m = 2 mode gradually takes over with a larger damping rate, broadly

consistent with the experimental findings. We note that our choice of observable is more

appropriate for determining mode frequency than decay due to the non-sinusoidal shape

of the observable signal (see discussion in Sec. 4.3.4). This will lead to a systematic

shift in our predictions for the damping rate and may be responsible for the general

downward shift of our results relative to the experimental measurements. Future work

should look into other observables to improve the accuracy with which to analyse the

mode damping rates.

4.3.5 Cutoff Dependence

In this section we investigate the dependence of equilibrium and dynamic properties of

the system on the energy cutoff (ǫcut) used in our simulations.

Dependence of equilibrium states on ǫcut

To consider the effect of varying cutoff we follow the procedure discussed in Sec. 4.2.2

to prepare an initial state with a cutoff of ǫcut = 46~ωx, and equilibrium parameters

of T = 154nK= 0.74Tc, Ncond = 5.8 × 103, and nmin = 0.65 where nmin is the mean

occupation of the highest energy mode in the C region (i.e. the least occupied C region

mode). The quantity nmin is an important indicator of the PGPE validity, as it allows

us to ensure that all the modes in C are appreciably occupied.

To investigate the cutoff dependence we down-project the equilibrium microstates ψC of

this system according to

ψC′ = P ′{ψC}, (4.29)

where P ′ is the projector for the cutoff ǫ′cut < ǫcut. The effect of this projection is to

reduce the size of C to a smaller region, C′, and thus remove the occupation and energy

of the modes lying between ǫ′cut and ǫcut. Since the constants of the motion, EC′ (< EC)

and NC′ (< NC) have changed it is interesting to investigate if the equilibrium properties

of the down-projected state differ from the original state. To check this we evolve ψC′

according to the PGPE (2.20) (on region C′), and analyse the thermal state that ψC′

describes, after it is given time to thermalise. For the results we present here, we change

ǫ′cut from 45~ωx to 30~ωx. Over this range the number of C region modes decreases

from 5706 (for the original state with ǫcut = 46~ωx) down to 1575 (for ǫ′cut = 30~ωx),

i.e. the total number of C regions modes changes by a factor of 3.6 between the cutoff

extremes we consider.

In Fig. 4.14 we present results for the equilibrium properties of our down-projected
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Figure 4.14: Dependence of equilibrium variables of down-projected state on the energy
cutoff ǫ′cut. (a) Average occupation of highest energy C region mode nmin (diamonds),
(b) temperature T (diamonds), (c) condensate number Ncond (diamonds) and (d) total
atom number N (diamonds) and C region atom number NC (squares). Dashed line in
(a) is a linear fit to nmin in the variable 1/ǫ′cut, solid lines in (b)-(d) are linear fits to the
data. In (d) the shaded regions indicate the relative number of atoms in the C and I
regions for each value of ǫcut.
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states. Fig. 4.14(a) shows the population (nmin) of the highest harmonic oscillator state

present in the simulation as a function of the energy cutoff. As ǫ′cut is lowered, we see

that the number occupying this highest state increases, in a manner consistent with the

equipartition occupation of this mode (i.e. nmin ∼ kBT/ǫ
′
cut).

Figures 4.14(b)-(d) show the results for the macroscopic parameters T , Ncond, NC, and

N , respectively, of the down-projected state. We can see that these parameters (ex-

cluding NC) do not vary systematically with ǫ′cut, and conclude that the equilibrium

parameters of our PGPE simulations are not dependent on the energy cutoff. These

are the first results we are aware of showing the insensitivity of classical field method

predictions to cutoff. Of course there are limits to how low we can take ǫ′cut, since our C

region must represent the condensate mode accurately which requires us to use a cutoff

energy greater than the condensate chemical potential.

Collective mode dependence on ǫcut

Above we have shown that the equilibrium properties are insensitive to the cutoff defin-

ing the portion of the system in the C and I regions. In contrast we would expect that

the PGPE theory for simulating collective modes, as developed here, will show depen-

dence on the cutoff. Fundamentally this is because the full dynamics of the C region

are simulated, while the population of the I region is neglected. Thus, in situations

where the noncondensate dynamics are important the number of noncondensate modes

included in C will have a direct effect on the dynamical observables of the system. It

would therefore seem desirable to include as much of the noncondensate population in

the C region as is possible, i.e. increase ǫcut. However, there is a limit to how high we

can set ǫcut. As discussed in Sec. 2.3, we formally require that all the C modes are

appreciably occupied for the classical field approximation to be a valid description of

the Bose gas. For ǫcut = 46~ωx we have nmin ≈ 0.65, and so there is limited scope for

using higher energy cutoffs.

In the absence of a dynamical theory for the I region, adjusting the value of ǫcut allows

us a mechanism by which to qualitatively investigate the role of the noncondensate

dynamics in the collective mode dynamics. As we increase ǫcut from 30~ωx to 46~ωx the

percentage of the total number of atoms in the C region increases from approximately

50% to 65% (see Fig. 4.14(d)).

We now investigate the frequency dependence of the m = 0 and m = 2 modes on the

energy cutoff. Our procedure is the same as in Sec. 4.3.4, except that we consider

a single temperature of 0.74Tc and sample our initial conditions for the PGPE from

the equilibrium states of varying ǫ′cut (i.e. those used to average for the macroscopic
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Figure 4.15: Frequency dependence of mode excitation on energy cutoff, for (a) m =
0 mode and (b) m = 2. Condensate frequency (solid symbols) and noncondensate
frequency (open symbols). Solid lines are linear fits to the condensate data, and dashed
line in (a) is fit to the noncondensate data.

parameters shown in Fig. 4.14). From these simulations we determine frequencies of

oscillation of the condensate and noncondensate components, with the results shown in

Fig. 4.15(a) and (b). The frequency of the noncondensate m = 2 mode for ǫ′cut/~ωx ∈
[38, 44] are omitted as a single frequency fit of sufficient quality cannot be found (see

discussion below).

The m = 0 modes show a dependence on ǫ′cut, with the frequency of oscillation increasing

as ǫ′cut increases. The noncondensate frequency increases at a greater rate than the

condensate, which is consistent with the increase in the condensate frequency arising

from it being driven by the noncondensate component. Morgan has also seen this effect

in his second order treatment by examining the influence of including thermal driving

on the condensate mode (see Ref. [17]). Our results clearly indicate that including the

dynamics of all noncondensate atoms is crucial to obtain a condensate mode frequency

that would be comparable with the experimental results of Jin et al. [3].
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The m = 2 condensate mode shows almost no dependence on the energy cutoff, sug-

gesting that the noncondensate component does not couple strongly to this motion of

the condensate. However, the noncondensate m = 2 mode does show cutoff depen-

dence: At low ǫ′cut (small thermal component) the noncondensate oscillates at the same

frequency as the condensate, while at high ǫ′cut (large thermal component) it oscillates

at a frequency of ω ≈ 2ωx (which the expected value for the noninteracting limit of

a thermal cloud). In the intermediate cutoff range, ǫ′cut/~ωx ∈ [38, 44], a combination

of the condensate dominated and noninteracting limit behaviours occur, and we were

unable to fit a single frequency to these values. This suggests that there is a cutoff value,

∼ 40~ωx, at which sufficient noncondensate is dynamically simulated for it to oscillate

independently of the condensate.

We now make some observations, from comparison of the goodness of the PGPE de-

scription of the experimental frequencies in Fig. 4.12 to the cutoff analysis of the modes

in this section. For the m = 0 modes, both the condensate and noncondensate pre-

dictions are in poor agreement with experiment at 0.74Tc, and both are observed to

be cutoff dependent [Fig. 4.15(a)]. For the m = 2 mode we find that: (i) The con-

densate dynamics, which are in good agreement with experiment, are independent of

cutoff [Fig. 4.15(b)]. (ii) The noncondensate results, which are in poor agreement with

the experiment at high temperatures, are strongly cutoff dependent [Fig. 4.15(b)]. In

general, these observations lead us to expect that cutoff independent predictions of the

dynamical PGPE theory are likely to be accurate in the absence of a dynamical theory

of the I region, while cutoff dependent predictions are unreliable. In the latter case a

dynamical theory of the I region is required.

4.3.6 Dipole Mode

It is rigorously known that a harmonically trapped system will have a center-of-mass

motion oscillation mode at the trapping frequency (Kohn mode) [132]. This mode is

an important test of theory and was analysed in experiment [3] for the purposes of

frequency calibration. Due to the presence of a projector in the PGPE theory the Kohn

mode is not a constant of motion (see Ref. [118]) and so for completeness we investigate

the dynamics of this mode here. To do this we use the PGPE (2.20) following the

same procedure for setting up simulations as was done for the m = 0 and m = 2

modes, but with the dipole perturbation potential (4.4). To analyse our data, we study

the first moments 〈px〉σ for σ = {c, n} (see Sec. 4.3.4) to provide observables for the

condensate and noncondensate behaviour. Our results, shown in Fig.4.16, indicate that

the condensate and noncondensate components both oscillate at approximately 1.0ωr,

as expected.
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Figure 4.16: Frequency of dipole mode as a function of temperature. Condensate (solid
squares) and noncondensate (open squares). Error bars on some results indicate the
spread in values from different calculations at the same temperature. Linear fit to the
condensate (line) and noncondensate (dashed) results.

4.3.7 Relative Phase of Condensate-Noncondensate Oscillations

The relative phase of the condensate and noncondensate oscillations has played a central

part in the explanation of the sharp jump in the frequency spectrum of the m = 0 mode.

Stoof and coworkers [18,30] argued that the anomalous jump was caused by a transition

from out-of-phase to in-phase oscillations of the condensate and noncondensate com-

ponents at high temperature. Morgan [17] lends support to this theory by calculating

the relative phase between the oscillations of the condensate and noncondensate com-

ponents, and shows that at moderate temperatures (∼ 0.5Tc) the components oscillate

out of phase, whereas at high temperatures (∼ 0.8Tc) they oscillate in phase. This is

consistent with the physical picture that a large noncondensate fraction oscillating at

the noninteracting frequency 2ωx couples strongly to the condensate m = 0 mode and

drives it at this higher frequency. Morgan’s results for the m = 2 mode show the rela-

tive phase between the components increases with increasing temperature up to about

0.85Tc, at which point a slight decrease is observed to begin.

Here we follow the method of Morgan [17] closely. We calculate the phase difference

between the two components using the first oscillation cycle after the perturbation is

concluded. We find the relative phase by using the difference in minima of the two

observable curves (see Fig. 4.11) as a fraction of the half period of the condensate os-

cillation, to give a result from zero to π. We present our results in Fig. 4.17. These
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Figure 4.17: Relative phase between the condensate and noncondensate collective modes
for the different symmetries studied: m = 0 mode (triangles) and m = 2 (circles). Error
bars on some PGPE results indicate the spread in values from different calculations at
the same temperature. Solid line is a linear fit to the m = 0 data and dashed line is a
linear fit to the m = 2 data. Same parameters as in Fig. 4.15.

results are in reasonable qualitative agreement with those of Morgan at low tempera-

tures, where the relative phases of each mode are increasing with temperature, with the

m = 2 mode having a larger phase angle to the m = 0 mode at any given temperature

(c.f. Fig. 11 [17]). However, generally our predicted values for the relative phase are

less than those calculated by Morgan, and more importantly, we do not see the sudden

reduction in phase angle for the m = 0 mode as temperatures increases above ∼ 0.7Tc.

The likely explanation for our disagreement is that the fraction of noncondensate be-

ing dynamically simulated is not great enough so that: (i) At moderate temperatures

(∼ 0.5Tc) the noncondensate is being dominated by the condensate oscillation, leading

to a smaller than expected relative phase between the components (for both m = 0 and

m = 2 modes). (ii) At higher temperatures (> 0.7Tc) the noncondensate component is

insufficiently dominant to effectively drive the condensate back in-phase with its natural

oscillation (applying only to the resonantly coupled m = 0 mode).

To further investigate these effects, in Fig. 4.18 we show the dependence of the relative

phase on the energy cutoff ǫ′cut, and hence noncondensate fraction in the C region. In

particular, we consider a system at temperature 0.74Tc for various ǫ′cut (i.e. the same as

was examined in Sec. 4.3.5). At this temperature Morgan predicts a relative phase of

0.25π for the m = 0 mode (and that with increasing temperature this phase decreases)

and a relative phase of 0.45π for them = 2 mode (which remains approximately constant

with increasing temperature, before starting to decrease at about 0.85Tc). Our results
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Figure 4.18: Relative phase between the condensate and noncondensate collective modes
the m = 0 (triangles) and m = 2 modes (circles) as a function of the down-projected
energy cutoff ǫ′cut. Solid line is a linear fit to the m = 0 data and dashed line is a linear
fit to the m = 2 data. Same parameters as in Fig. 4.15.

for the dependence on ǫ′cut show that the relative phase of both modes increase with

increasing cutoff, although the m = 0 mode does so more slowly than the m = 2 mode.

The m = 2 behaviour indicates that as the noncondensate component being simulated

increases (i.e. as ǫ′cut increases) it’s phase, relative to the condensate, becomes more

independent. We note that while the m = 2 condensate mode is cutoff insensitive, the

relative phase between the m = 2 modes shows a dependence because the noncondensate

mode does change character with ǫ′cut (see Sec. 4.3.5). The slower rate of increase in the

the relative phase of the m = 0 modes with cutoff (as compared to the m = 2 modes,

see Fig. 4.18) may be indicative of the resonant coupling between the components.

At our maximum value of cutoff (ǫ′cut = 45~ωx), about 50% of the noncondensate atoms

are included in the PGPE description, and we speculate that a complete dynamical

representation of the noncondensate would lead to this mode driving the condensate

and the return to an in phase oscillation.
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Chapter 5

Two point Correlations of the Bose

Gas

5.1 Introduction

In this chapter we will develop formalism to calculate two-point correlations within a

harmonically trapped Bose gas. We will analyse separately the role of the condensate

and thermal components in the coherence of a system. We begin in Sec. 5.2 by giving

definitions of the correlation functions we use, and showing how these apply in our finite

temperature formalism. We give results for these correlation functions in Sec. 5.3.

5.2 Formalism

5.2.1 System and Correlation Functions

We will develop the PGPE formalism to calculate two-point correlations in a finite tem-

perature three dimensional Bose cloud. We begin by defining the correlation functions

of interest, and then showing how to apply the methods developed in Chapter 2 to

explore the correlations in our system.
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Position space correlation functions

The density and unnormalised first and second order correlation functions (e.g. see [52])

are defined as

n(r) = 〈Ψ̂†(r)Ψ̂(r)〉, (5.1)

G1(r, r′) = 〈Ψ̂†(r′)Ψ̂(r)〉, (5.2)

G2(r, r′) = 〈Ψ̂†(r′)Ψ̂†(r)Ψ̂(r)Ψ̂(r′)〉, (5.3)

where the averages are to be interpreted as thermal averages. We note that local first

order correlations are equal to the density, i.e. n(r) = G1(r, r). For the purposes of

interpreting particle correlations it is convenient to introduce the normalised versions of

the correlation functions

g1(r, r′) =
G1(r, r′)

√

n(r′)n(r)
, (5.4)

g2(r, r′) =
G2(r, r′)

n(r′)n(r)
. (5.5)

The first order correlation function describes phase fluctuations in the system, and

as G1 is the one-body density matrix of the system, off-diagonal long range order in

this quantity is the defining characteristic of Bose-Einstein condensation [121]. The

second order function is a measure of pair correlations in the system, for instance the

atoms tendency to cluster (bunch) or separate (anti-bunch). Recent experiments in a

superfluid Fermi gas have revealed non-local pairing through measurements of second

order correlations [48]. We note here that the normally ordered second order correlation

function that we define can be related to the density correlation function by [52]

〈Ψ̂†(r)Ψ̂(r)Ψ̂†(r′)Ψ̂(r′)〉 = G2(r, r′) +G1(r, r)δ(r− r′). (5.6)

We will not calculate the density correlation function here, but note that it has been

used in other theoretical works (e.g. see Ref. [133]).

Momentum space correlation functions

Often the correlation functions for ultra-cold atom systems are measured after time

of flight expansion for time texp. In this situation the measured correlations are pro-

portional to the in situ momentum correlations, with the relationship between final

(observed) position R and in situ momentum given by R/texp = p/m. For this reason

we also develop our formalism to calculate momentum space correlations, defined in
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terms of the momentum field operator Φ̂(p), as

n(p) = 〈Φ̂†(p)Φ̂(p)〉, (5.7)

G1(p,p′) = 〈Φ̂†(p′)Φ̂(p)〉, (5.8)

G2(p,p′) = 〈Φ̂†(p′)Φ̂†(p)Φ̂(p)Φ̂(p′)〉. (5.9)

Many aspects of the formalism we present for position and momentum space are similar,

and in what follows we focus primarily on giving a detailed derivation for the position

case, and will only comment on any important differences that arise in the momentum

case.

5.2.2 Finite Temperature Formalism

To describe the trapped Bose gas within our finite temperature formalism we split the

full field operator as previously noted Eq. (2.16)

Ψ̂ = ψC + ψ̂I (5.10)

We now use this decomposition to find expressions for the full correlation functions using

just the incoherent and classical region field operators.

Substituting expression (5.10) into the Eqs. (5.1)-(5.3) gives

n(r) = nC(r) + nI(r), (5.11)

G1(r, r′) = G1
C(r, r′) +G1

I(r, r
′), (5.12)

G2(r, r′) = G2
C(r, r′) +G2

I(r, r
′) + 2G1

I(r, r
′)G1

C(r, r′)

+nI(r)nC(r′) + nI(r
′)nC(r), (5.13)

where

nj(r) = 〈ψ†
j(r)ψj(r)〉 (5.14)

G1
j(r, r

′) = 〈ψ†
j(r

′)ψj(r)〉, (5.15)

G2
j(r, r

′) = 〈ψ†
j(r

′)ψ†
j(r)ψj(r)ψj(r

′)〉, (5.16)

with j = {I,C} for the incoherent and classical regions respectively.

Several approximations have been made in deriving Eqs. (5.11)-(5.13). We assume that:

(i) the classical and incoherent regions are uncorrelated, so that expectations of mixed

terms of classical and incoherent operators can be factorised, e.g. 〈ψ̂†
Iψ

∗
CψCψ̂I〉 =

92



CHAPTER 5. Two point Correlations of the Bose Gas

〈ψ̂†
Iψ̂I〉〈ψ∗

CψC〉. For this to be a good approximation we require that our fields

are expanded in a basis that approximately diagonalises the problem at the en-

ergy cutoff. For our purposes the single particle basis of the harmonic oscillator

potential is satisfactory (also see [111]).

(ii) we can neglect the averages of single fields. We note that in the classical region

this is justified because we do not make the symmetry breaking approximation to

describe the condensate.

(iii) we can neglect the averages of anomalous fields, e.g. 〈ψCψC〉. The anomalous

average of the fields is rigorously zero, and only occurs as a nonzero contribu-

tion in symmetry broken formalism such as Hartree-Fock-Bogoliubov. Thus the

anomalous average of the classical operator is zero for our classical field approxi-

mation, and the anomalous expectation of the incoherent field is also zero within

the Hartree-Fock approximation we use here.

5.2.3 Classical Region

The classical region is described with the PGPE formalism.

Taking Ns samples of the coherent field at times {tj} after it has thermalised, we evoke

the ergodic hypothesis to evaluate the correlation functions as

nC(r) =
1

Ns

Ns
∑

j=1

|ψC(r, tj)|2 , (5.17)

G1
C(r, r′) =

1

Ns

Ns
∑

j=1

ψ∗
C(r, tj)ψC(r′, tj), (5.18)

G2
C(r, r′) =

1

Ns

Ns
∑

j=1

|ψC(r′, tj)|2 |ψC(r, tj)|2 . (5.19)

Correlation functions in momentum space can be immediately evaluated using the pro-

cedure in (5.17)-(5.19), but using the momentum field as given in Eq. (2.27)

5.2.4 Incoherent Region

The incoherent region is treated using the meanfield treatment detailed in Sec. 2.4, and

is thus a Gaussian theory. To calculate correlation functions for the incoherent region

we closely follow the work of Glauber [52].
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Figure 5.1: Instantaneous density slice of classical field in xz-plane showing the system
and correlation measurement geometry. The x-axis is indicated (white line) and two
points x and x′ are shown. The field and density correlations between these points
define G1

c(x, x
′) and G2

c(x, x
′) respectively. This result is for a system of 3 × 105 87Rb

atoms in the trap described in the text at a temperature of 159 nK.

The Wigner function for the incoherent region is related to the first order correlation

function by [52]

G1
I(r, r

′) =

∫

ΩI

dp e−ip·(r−r′)/~WI

(

r + r′

2
,p

)

. (5.20)

Since our Hartree-Fock treatment of the incoherent region is Gaussian, the second order

correlation function is

G2
I(r, r

′) = G1
I(r, r)G

1
I(r

′, r′) + |G1
I(r, r

′)|2, (5.21)

which can be justified by Wick’s theorem.

The momentum space correlation functions for the incoherent region can be obtained

in a similar manner to the position space case using the result

G1
I(p,p

′) =

∫

ΩI

dr e−ir·(p−p′)/~WI

(

r,
p + p′

2

)

. (5.22)

Equation (5.21) can also be applied to the momentum space result, and we do not repeat

it here.

For our case of a system with external confinement, the two-point correlation functions

will depend on all coordinates 1. Hence a complete characterisation of these correlations

in the 3D system requires six-dimensions. The results we present here are for the

correlation functions of the full 3D system for the case of both points lying on the x-

axis, e.g. G1(r = xx̂, r′ = x′x̂), where x̂ is the unit vector in x direction, and this will

now be abbreviated to just G1(x, x′). The geometry of this is indicated in Fig. 5.1.

Here we detail how to calculate the appropriately integrated Wigner functions needed

1This is in contrast to the homogeneous case where translational invariance means that correlation
functions only depend on the relative separation of the points e.g. G2

hom
(r, r′) = G2

hom
(r− r

′).
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Figure 5.2: Wigner function W pos
I (x, px) (arb. units) for a cloud of 3× 105 87Rb atoms

in a trap with frequencies {ωx, ωy, ωz} = 2π {1, 1,
√

8}×40 s−1 at 93 nK (a) and 159 nK
(b).

to calculate such correlations, and give examples of the form they take for systems of

interest.

For the position space correlation function, we wish to calculate

G1
I(x, x

′) ≡ G1
I(xx̂, x

′x̂) =

∫

ΩI

dpe−ip.(xx̂−x′x̂)/~WI(
xx̂ + x′x̂

2
,p) (5.23)

This integral is separable in the momentum coordinates, and so our procedure to cal-

culate Eq. (5.23) has two steps. First, we integrate over the py and pz coordinates, as

these coordinates are independent of the Fourier transform to be taken. We wish to

calculate

W pos
I (xx̂, pxp̂x) =

∫

ΩI

dpydpzWI(xx̂,p). (5.24)

We restrict the momentum space to be integrated by

ǫcut >
p2

2m
+ V0(r). (5.25)

In Fig. 5.2 we show the Wigner function of Eq. (5.24), for temperatures 93nK (a)

and 159nK (b). These Wigner functions will be used in the construction of results

shown in the following section. Comparing Fig. 5.2 (a) and (b), we see that at higher
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temperatures the meanfield potential arising from the classical region atoms is weaker

and the incoherent region atoms are more strongly thermally activated. As such we

have higher occupation of phase space in the small x and px region. We note that the

maximum value of W pos
I is set by the lower energy bound, not the upper bound on our

integration, as we take this high enough that there are no states at that energy.

The second step is now to take the Fourier transform of W pos
I , i.e. calculate

G1
I(x, x

′) =

∫

ΩI

dpxe
−ipx(x−x′)/~W pos

I (
x+ x′

2
, px) (5.26)

In practice this Fourier transform can be implemented as a discrete Fourier transform,

however the discrete spatial and momentum grids (which are reciprocally related) must

be chosen carefully to accurately represent the system properties. The details of these

choices, and the efficient numerical algorithm for carrying out the transformation of Eq.

(5.26) forms an important contribution of our research and are discussed in detail in

Appendix A.

The momentum space correlation function, G1
I(px, p

′
x) is found in an analogous way. We

first calculate

Wmtm
I (xx̂, pxp̂x) =

∫

ΩI

dydzWI(x, pxp̂x) (5.27)

This is computationally more taxing, since the position space energy values are depen-

dent on not just the trap potential but the meanfield effects of the atoms in the system.

This total potential is not isotropic and so this potential in coordinates (y,z) must be

integrated for each position in (x,px) space.

Figure 5.3 shows the appropriate incoherent region Wigner distribution, Wmtm
I for cal-

culating the momentum space correlation functions. With increasing temperature, we

again see an increase in the Wigner function. There is a sharp feature at px = 2 in both

graphs, this corresponds to integration over the y,z components at an energy where

there is a potential minimum between the meanfield effect of the coherent region atoms,

and the trap potential. The Fourier transform of Wmtm
I

G1
I(px, p

′
x) =

∫

ΩI

dxe−ix(px−p′x)/~Wmtm
I (x,

px + p′x
2

), (5.28)

yields the correlation function. A numerical method similar to that for the position case

can be used to efficiently implement this transformation (see Appendix A).
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Figure 5.3: Wigner function Wmtm
I (x, px) (arb. units) for a cloud of 3× 105 87Rb atoms

in a trap with frequencies {ωx, ωy, ωz} = 2π {1, 1,
√

8}×40 s−1 at 93 nK (a) and 159 nK
(b).

5.3 Results

In this section we present results of the application of our formalism to an ultra-cold Bose

cloud. The system we consider consists of approximately 3× 105 87Rb atoms confined

in an anisotropic harmonic trap of frequencies {ωx, ωy, ωz} = 2π {1, 1,
√

8}× 40 s−1. We

explore a temperature range of approximately 0.6Tc – 1.0Tc to investigate the interplay of

the thermal and condensate clouds, and to see how this affects the correlation functions.

The analytic estimate of the critical temperature including finite size and mean-field

shifts [134] gives Tc ≈ 162 nK for this system, however our results suggest the actual Tc

may be slightly lower, with the system attaining ∼ 1% condensate fraction at about 159

nK. In Fig. 5.4 we present the macroscopic parameters of the states we will analyse in

this section. A complete list of the parameters and properties of our equilibrium states

is given in Table 5.1.

5.3.1 Position Space Correlations

Figure 5.5 shows the one body density matrix (G1(x, x′)) at a temperature of 93 nK

calculated for the coherent region (a) and incoherent region (b). In the one body density

matrix for the coherent region, (a), two distinct features are clearly apparent. (i) A

narrow ridge runs down the diagonal. The peak values of this ridge gives the density of

the system (recall n(x) = G1(x, x′)). We interpret the width of the ridge as the length

scale over which phase coherence decays for the thermal component of the coherent
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ǫcut [~ωx] NC × 104 EC [~ωx] Ncond × 104 N × 105 T [nK] T/Tc nmin

40 7.56 18.1 5.22 3.16 136 0.78 2.64
40 3.64 19 1.59 3.01 149 0.87 2.6
41 6.26 18.3 3.95 3.10 141 0.82 2.41
36 1.83 20.5 0.35 3.10 159 0.92 2.77
38 2.27 20.5 0.57 3.02 155 0.91 2.63
33 7.52 16.4 6.00 2.97 129 0.76 3.24
45 18.3 22 15.4 3.22 99 0.57 1.81
44 18.3 21.8 15.3 3.05 93 0.54 1.79

Table 5.1: A summary of the equilibrium state parameters used for the results reported
in Fig. 5.4. The first three columns give the parameters used to generate the initial
states and the remaining columns give the macroscopic parameters determined for these
states.
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Figure 5.4: Equilibrium state properties. (a) Temperature, (b) total atom number, and
(c) condensate number as a function of T/Tc. PGPE results (diamonds) and lines are
guides to the eye.

98



CHAPTER 5. Two point Correlations of the Bose Gas

0
5

10
15

0

5

10

15

0

5

10

15

x  [µm]

(a)                                                                              

x ′ [µm
]

G
1   [

10
12

cm
−

3 ]

0
5

10
15

0

5

10

15

0

0.5

1

x  [µm]

(b)                                                                              

x ′ [µm
]

G
1 (x

,x
′ ) 

[1
012

cm
−

3 ]

Figure 5.5: The one body density matrix G1(x, x′) for the coherent (a) and incoherent
(b) regions, for a cloud of 3× 105 87Rb atoms in a trap described in the text T = 93 nK

region (note that the coherent region is made up of not just the condensate mode

but all low energy highly occupied modes of the system). (ii) The broad background

feature represents the off-diagonal long range order in the system. According to Penrose

and Onsager [121], this off-diagonal long range order is a signature of the presence of

a condensate in a system, with the condensate number corresponding to the largest

eigenvalue of the one body density matrix, as detailed in Sec. 2.3.4. Using the PGPE

formalism, we can directly calculate and study this quantity, and so have an advantage

over symmetry breaking methods [135].

The one body density matrix for the incoherent region (b), by contrast, shows only a

ridge down the diagonal. This shows that in the incoherent region the only phase coher-

ence present is over short distance scales consistent with near neighbour interactions.

The peak height of G1
I(x, x

′) is a factor of 10 smaller than G1
C(x, x′). This shows that

at this temperature, the majority of atoms are contained within the coherent region.

Another feature of this graph is the dip in the ridge height near the center of the trap.

We see here that the thermal atoms of the incoherent region are repelled by the large

potential caused by the meanfield of the condensate. This can be seen clearly in Fig.

5.6, where we show the densities G1
cond(x, x), G

1
C(x, x), and G1

I(x, x). In this figure,

the top line gives G1
C(x, x), the middle line G1

cond(x, x), and the lowest G1
I(x, x). From

G1
C(x, x)−G1

cond(x, x) we see, in fact, that there is a large amount of thermal cloud at

the center of the trap, accounted for in the PGPE formalism. We interpret the repulsion

of G1
I(x, x) from the center to be largely due to the meanfield treatment of this region.

Figure 5.7 shows the one body density matrix (G1(x, x′)) and the normalised first and

second order correlation functions for temperatures 93 nK [(a)-(c)] and 159 nK [(d)-(f)].
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Figure 5.6: Density for a cloud of 3× 105 87Rb atoms in a trap described in the text t
93 nK, showing (top to bottom) G1

C(x, x), G1
cond(x, x), and G1

I(x, x) contributions.

In the one body density matrix for the full system we see the two separate features,

the off-diagonal long range order and the thermal ridge, that were described separately

above. For the lower temperature result [Fig. 5.7 (a)] the long range order dominates

due to the large condensate fraction. In contrast, in the higher temperature case [Fig.

5.7 (d)] the thermal component is much more significant compared to the condensate,

which is smaller in peak density and spatial extent. This result is close to the critical

point and the thermal component has a substantial density even at the trap center.

We note that while the background feature arises entirely from the coherent region, the

ridge has contributions from both coherent and incoherent regions.

In the normalised first order correlations [Fig. 5.7 (b) and (e)], the background and ridge

features are still apparent. However, normalisation emphasises the thermal component’s

contribution at large distances from the trap center. The ridge peak value is now unity,

as is clear from Eq. (5.4).

The broadened feature seen in the ridge at large x (x≈ x′≈ 15µm) is an artefact that

arises from the limitations of our semiclassical description for the incoherent region.

The position where this occurs corresponds to the classical turning point for the energy

cutoff used to define the coherent region 2. Beyond this point all the modes of the

coherent region are evanescent, and in examination of G1
C(x, x′) this manifests as an

apparent long range order. The local nature of the semiclassical approximation means

that G1
I(x, x

′) does not cancel this feature, as we would expect in a more complete (wave)

treatment of the incoherent region. With reference to Fig. 5.7(a) and (d) we note that

2The classical turning point for the harmonic trapping is defined as V0(r) = ǫcut.
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Figure 5.7: Position space correlation functions of a harmonically trapped Bose gas. (a)-
(c) at 93nK and (d)-(f) 159nK. Other parameters: (a)-(c)Ncond = 153×103 (condensate
number), NC = 1.8 × 105, NI = 1.2 × 105, ǫcut = 44~ωz, EC = NC × 21.8~ωz; (d)-(f)
Ncond = 3540, NC = 1.8× 104, NI = 2.9× 105, ǫcut = 36~ωz, EC = NC × 20.5~ωz.

101



CHAPTER 5. Two point Correlations of the Bose Gas

1234

1

2

3

4

1

1e3

1e6

(a)                                                                              

  p
x
/m  [mm/s]

p
x ′/m

  [m
m

/s]

G
1   [

A
rb

.]

1234

1

2

3

4

1

1e3

1e6

(b)                                                                              

  p
x
/m  [mm/s]

p
x ′/m

  [m
m

/s]

G
1   [

A
rb

.]

Figure 5.8: The one body density matrix G1(px, p
′
x) for the coherent (a) and incoherent

(b) regions, for a cloud of 3 × 105 87Rb atoms in a trap described in the text T = 93
nK.

this artefact occurs in a low density region and should have a minor effect when results

are averaged over the whole system.

We now consider the second order correlations shown in Fig. 5.7 (c) and (f), which show

a ridge, but no background feature. The height of the ridge varies from a value of slightly

above one up to two. Comparing the second order results with the respective first order

results, we see that in locations where the density is dominated by the condensate, the

value of g2 is suppressed from the maximum value of two.

These observations are consistent with the well known behaviour of g2 for photons.

For the case of an ideal laser g2(x, x′) = 1, whereas for a thermal light source photon

bunching occurs with g2(x, x) = 2.

We note that the artefact seen in Fig. 5.7 (b) and (e), and discussed above, is also seen

in these results.

5.3.2 Results of Correlation Functions in Momentum Space

Figure 5.8 shows the one body density matrix (G1
C(px, p

′
x)) at 93 nK for the coherent

(a) and incoherent (b) regions of our system. The dominant feature in G1
C(px, p

′
x) is

a sharp spike in momentum which is a signature of condensation. Indeed, we enhance

the appearance of the thermal component in Fig 5.8 (a) by using a logarithmic scale

in which the density varies by six orders of magnitude. In contrast, the position case

Fig 5.5 (a) has a clearly discernible thermal component on a linear scale. The cross-like
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structure extending along the px and p′x axes in Fig 5.8 (a) is due to the enhancement

that the large condensate momentum space peak provides (this feature is negligible after

normalisation, see Fig 5.9 (b) below).

The one body density matrix for the incoherent region (Fig 5.8 (b)) has just the ridge

down the diagonal, where the width of the ridge shows the range over which one would

expect to see phase coherence, analogous to the position space results. We see here as

well the effect of the condensate excluding the thermal cloud from the zero momentum

states.

Figure 5.9 shows the one body density matrix (G1(px, p
′
x)) and the normalised first and

second order correlation functions in momentum space for temperatures 93 nK [(a)-(c)]

and 159 nK [(d)-(f)].

We see that Fig 5.9 (a) is almost identical to Fig 5.8 (a), even though the latter shows

the one body density matrix for the full system. This can be understood by observing

that the peak density of the incoherent region is four orders of magnitude smaller than

that for the incoherent region, and so it makes only very little contribution to the final

result.

Comparing the low and high temperature results in Figures 5.9(a) and (d) respectively,

we observe the peak density of the condensate spike to vary by approximately two orders

of magnitude, whereas for the same temperature change the position space density is

observed to only change by a factor of around two. This observation emphasises that

condensation is in some sense a momentum space phenomenon, but also marks a rather

important difference between the position and momentum space correlation functions.

The normalised versions of the correlation functions more clearly reveals the non-

condensed modes in the system. Due to the massive contrast between condensate and

non-condensate modes in momentum space, experimental measurement of these corre-

lations will likely prove challenging. Indeed, in Ref. [44] results were restricted to above

Tc due to saturation issues with the detector when a condensate was present.

5.3.3 Coherence length

In this section we wish to study the long range order present in our system at varying

temperatures. We first explore this by analysing our results for the one body density

matrix for a greater number of temperatures. In later sections we calculate the coher-

ence length, first with the PGPE formalism, and then using a self-consistent meanfield

approach.
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Figure 5.9: Momentum space correlation functions of a harmonically trapped Bose gas.
(a)-(c) at 93nK and (d)-(f) 159nK. Other parameters: (a)-(c) Ncond = 153 × 103,
NC = 1.8×105, NI = 1.2×105, ǫcut = 44~ωz, EC = NC×21.8~ωz; (d)-(f) Ncond = 3540,
NC = 1.8× 104, NI = 2.9× 105, ǫcut = 36~ωz, EC = NC × 20.5~ωz.
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Figure 5.10: One body density matrix cross-section G1(0, x) for systems with various
temperatures. Systems have 3× 105 87Rb atoms in a trap described in the text.

Emergence of Long Range Order

In Figure 5.10 we plot G1(0, x) for a range of temperatures {0.54, 0.82, 0.87, 0.91}Tc,

where Tc is the critical temperature calculated with finite size and mean-field shifts.

The highest temperature data set we have, at 0.97Tc, is not plotted here because it is

not clearly visible on the same scale.

We start by discussing the three lowest temperature results, {0.54, 0.82, 0.87}Tc. In these

lines, there are two features present. (i) A small spike which starts at x = 0µm. The

width of this spike is∼ λdB, corresponding to the length scale over which phase coherence

occurs for the thermal component of the system. As the temperature increases, this spike

accounts for a larger proportion of the curve, corresponding to an increased thermal

component of the system. (ii) A broad curve decaying down to the x axis. This curve

shows the off-diagonal long range order present in the system. This feature reduces

in width and relative contribution as temperature is increased, and the condensate

responsible for it diminishes. We note also that the decay in this long range order is

quite sharp at low temperature, and much more gradual at high temperature, showing

increasing coherence in the system.

The curve at highest temperature here, 0.91Tc, doesn’t show the two aforementioned

features, showing a distinctly flattened or more linear looking curve. This change in

behaviour signals the beginning of the Bose-Einstein condensate phase transition regime,

further changes of the correlation function across this parameter regime will be the

subject of the next chapter.
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Coherence Length

The coherence length is a measure of first order correlations that specifies the typical

length scale over which reproducible interference fringes might be expected. Recent

experiments [50] have made detailed measurements of the coherence between atoms at

different spatial locations within a trapped Bose gas using RF-fields to output couple

the atoms. This approach has the advantage that it avoids volume averaging which

tends to smear features of the correlation functions (e.g. see [52]). This motivates us to

consider an on-axis coherence length defined as

L2
x =

∫

dx dx′ |G1(x, x′)|2(x− x′)2

2
∫

dx dx′ |G1(x, x′)|2 (5.29)

which will be used to compare results at different temperatures. This expression is

similar in form to the coherence length defined by Barnett et al. [56] (also see Ref. [136]),

but without volume averaging over the whole system, and should be more appropriate

for the aforementioned experiments. For reference, the uniform Boltzmann gas with

G1(x, x′) ∼ exp (−π|x−x′|2/λ2
dB), gives Lx = λdB/

√
8π where λdB = h/

√
2πmkT is the

thermal de Broglie wavelength. We calculate the coherence length using two different

methods, as detailed below.

PGPE

The coherence length is calculated using the one body density matrix for the total

system, as previously calculated. We note that the expression for the coherence length is

dominated by the condensate mode. In Figure 5.11 we compare G1(0, x) and G1
cond(0, x)

to show this effect, where

G1
cond(0, x) = ψ∗

cond(0)ψcond(x), (5.30)

and the condensate wavefunction ψcond is found as specified in the method of Sec. 2.3.4.

The functions G1(x, x′) and G1
cond(x, x

′) give nearly identical results when used to cal-

culate the coherence length, and so we present just the full system results in the results

section below.

Meanfield approach

As a comparison we also calculate the coherence length using a self consistent meanfield

approach. This approach describes the condensate (for T < Tc) using the Thomas-Fermi
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Figure 5.11: One body density matrix cross-section calculated using the coherent region
(solid line) and just condensate mode (dotted), for systems as described in the text.

approximation and the non-condensate using Hartree-Fock Bogoliubov Popov (HFBP)

theory in the semiclassical limit (e.g. see Ref. [134]).

We use the Thomas-Fermi approximation as detailed in Sec. 2.3.6, and choose µTF so

that the Thomas-Fermi density is normalised to the condensate number, Ncond. We

construct the Wigner function for the distribution, as given in Eq. (2.52), using energy

as in Eq. (2.53). The thermal density is now calculated as Eq. (2.54), but our integral is

restricted differently, we integrate over all states except the ground state (i.e. ǫcut → 0).

We find our Wigner function self consistently - i.e. we iterate with the thermal density

until we have reached an equilibrium state. We then use this Wigner function to find the

first order correlation function for the thermal component as detailed in Section 5.2.4.

The first order coherence function is then constructed as G1
HFBP(x, x′) = G1

cond(x, x
′) +

G1
th(x, x

′).

Results

Figure 5.12 shows the behaviour of the on-axis coherence length for the same system

considered in the previous section. Our results using the PGPE formalism show the

coherence length decreases steadily as the critical temperature is approached from below.

The results of Figure 5.12 indicate that the value of Lx calculated using meanfield

theory is always greater than the value obtained from the PGPE simulations for the

temperatures considered. This primarily occurs because the equilibrium condensate

107



CHAPTER 5. Two point Correlations of the Bose Gas

0 50 100 150 200
0

1

2

3

4

5

6

7

T [nK]

L x  [
µm

]

Figure 5.12: Coherence length Lx calculated using classical field approach (circles), and
semiclassical HFBP theory (line with dots). For reference λdB/

√
8π is shown as the

dashed line. System parameters as in Fig. 5.7

fraction in the meanfield results is greater than the PGPE case at the same temperature3.

Nevertheless, while there is reasonable agreement between these theories for T < Tc, as

T → Tc their behaviour appears to be rather different, with the classical field prediction

for Lx decreasing much less rapidly on the approach to the critical point. We note

that for the highest temperature classical field result (i.e. T = 159 nK) the condensate

fraction is ∼ 1% and the many other low-lying modes will necessarily play an important

role in the coherence properties of the system in this regime. A complete investigation

of this behaviour is probably best done via the correlation length, ξ, defined such that

G1(x, 0) ∝ x−1 exp(−x/ξ), valid for x & λdB, and we detail investigations of this nature

in the following chapter.

3Discrepancies between the HFBP and PGPE calculations for the system equilibrium properties, in
particular condensate fraction, may be due to limitations of the semiclassical approximation in addition
to beyond meanfield effects.
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Chapter 6

Critical Region of the Trapped Bose

Gas

In this chapter we extend the formalism of the previous chapter to study the onset of

coherence in the Bose system around the transition region. We give details of how we

will extend our formalism to the critical region in Sec. 6.1, and give the results of our

investigations in Sec. 6.2.

6.1 Critical Region Methods

We wish to study the onset of critical behaviour of a BEC. Studies in this regime pose

new problems. Because of the strong fluctuations expected, we will be required to take

our time averages over increased time periods, so that a true representation of the system

can be found. In the following section, we typically use ∼ 7000 samples over the 140

trap periods of our simulation to perform averages to find the macroscopic parameters

of the system, and to calculate the appropriate correlation functions.

Our investigations will be centered around the analysis of the first order correlation

function, as given in Eq. (5.2). However, we note that for our purposes in this region

it is appropriate to use just the first order correlation function for the classical region,

as this will contain all of the critical fluctuations we wish to study, and to disregard

any contribution from the incoherent region. This is because we take ǫcut > U0n, and

so G1
I(r, r

′) contains only normal system correlations that decay on the length scale of

the thermal de Broglie wavelength, λdB = h/
√

2πmkBT , so that the contribution of

G1
I(r, r

′) is negligible for |r− r′| & λdB.

For the remainder of this section, we will use the notation 〈Ncond〉 for the mean conden-
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CHAPTER 6. Critical Region of the Trapped Bose Gas

sate number we find as in Eq. (2.30), i.e.

∫

dr′G1
C(r, r′)ψcond(r

′) = 〈Ncond〉ψcond(r). (6.1)

This will distinguish it from the equilibrium distribution of Ncond we consider in Sec.

6.2.3.

6.2 Results

6.2.1 Sampling Equilibrium States across the Transition Re-

gion

We now discuss our procedure for generating equilibrium states spanning the condensa-

tion transition. We fix the variables NC and ǫcut to define our system and the generate

equilibrium states with various energy values (EC) finely spaced over a range where the

thermalised condensate fraction is of order 1%. Varying EC in this way causes T to

vary (as is desired), but also causes the total number of atoms to vary (see Fig. 6.1).

For each simulation we calculate the temperature and total atom number using the

methods described in the previous section. The results for these quantities for the case

of a 87Rb system with ωx,y = 2π×129Hz, ωz = 2π×364Hz, ǫcut = 32~ωx and NC = 7573

are shown in Figs. 6.1(a) and (b). We have chosen to use these parameters rather than

those of the ETH experiment [50] which was carried out in a weaker trap. This is

because we need to take more care in choosing the classical region C when we study

the phase transition. Typically strong fluctuations occur in the infra-red modes up to

the energy scale U0n where n is the density. Above this energy scale the modes are

well-described by mean-field theory (e.g. see the discussion in [137, 138]). We choose

our trap so that

ǫcut ∼ kBT > U0n. (6.2)

For each energy we perform 20 simulations (using different random initial states) and

the spread in results seen in Figs. 6.1(a) and (b) for each energy is indicative of the

typical uncertainties in the thermal parameters. These results also show that as we

change EC the total number of atoms in the system changes quite appreciably. It is

therefore convenient to work in terms of the reduced temperature, T ′ = T/Tc1, where

Tc1 = Tc0 −
(

0.73
ω̄

ω
N− 1

3 + 1.33
a

aho

N
1

6

)

Tc0, (6.3)
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with

kBTc0 = 0.94~ωN1/3, (6.4)

ω = (ωxωyωz)
1/3, ω̄ = (ωx +ωy +ωz)/3, and aho =

√

~/mω, see [134]. The two terms in

brackets in Eq. (6.3) correspond to the finite-size (∝ N−1/3) and meanfield interaction

(∝ N1/6) shifts of the critical temperature, respectively.

In Fig. 6.1(c) we show the condensate fraction from these simulations as a function of T ′.

We note that T ′ = 1 does not identify the transition precisely enough for understanding

critical properties, as the above expression for Tc1 excludes meanfield effects beyond first

order and does not account for any critical fluctuation effects.

6.2.2 Spatial Correlations and the Correlation Length

In this section we consider the behaviour of spatial correlations and the correlation

length across the transition region. The spatial inhomogeneity of the trapped system

requires explicit consideration. Unlike the homogeneous system, where spatial fluctu-

ations are only a function of the separation between coordinates, in the trapped case

both coordinates are separately important. So to study the development of order in the

trapped system, we choose to examine correlations symmetrically about the trap center

to minimise inhomogeneous effects 1. We do this by defining the normalised correlation

function

gC(∆x) ≡ G1
C

(

1
2
∆x x̂,−1

2
∆x x̂

)

nC(0)
, (6.5)

where x̂ is the unit vector in the x direction, and nC(0) is the C region density at trap

center. As discussed in Sec. 6.1, the spatial correlations over distances exceeding λdB

are described completely by the C region one-body density matrix.

We evaluate G1
C(r, r′) by time-averaging (see Eq. (5.18)), but due to our system’s

symmetry in the xy-plane, we can improve the quality of our results for gC(∆x) by

making use of radial averaging. Examples of gC(∆x) are shown in Fig. 6.2. In the

region of the phase transition the first order correlation function is expected to take the

form

gC(∆x) ∝ 1

∆x
e−∆x/ξ (6.6)

for ∆x > λdB, where ξ is the correlation length of the system. The variation in the

correlation length as the temperature approaches the critical value is given by

ξ ∝ |T ′ − T ′
c|−ν

, (6.7)

1In the experiments of Donner et al. correlations were also measured at points symmetrically placed
about the trap center.
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Figure 6.1: Macroscopic parameters for a critical trapped Bose gas. (a) Total number
of atoms and (b) temperature as the PGPE energy EC is changed. (c) Condensate
fraction as a function of the reduced temperature T/Tc1(N). Parameters: 87Rb system
with ωx,y = 2π × 129 Hz, ωz = 2π × 364 Hz, ǫcut = 18.9~ωx and NC = 7573.
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Figure 6.2: First order correlation function gC(∆x) for, from highest to lowest curves,
T ′ = {0.957, 0.962, 0.969, 0.981, 0.990}. Parameters for calculations as in Fig. 6.1. Ther-
mal de Broglie wavelength distance scale indicated for reference.

for the uniform system, where ν is the relevant critical exponent.

To determine ξ we fit (6.6) to our numerical results for gC(∆x) on the spatial range

0.5µm ≤ ∆x ≤ 2.2µm (i.e. 1.5λdB ≤ ∆x ≤ 6.4λdB). This range matches that used by

Donner et al. [50], and ensures that we avoid having to deal with normal correlations at

small separations, and inhomogeneous/finite-size effects at larger separations (also see

Sec. 6.2.2). The values of ξ we obtain are shown in Fig. 6.3, where we see ξ growing

rapidly as T ′ approaches ∼ 0.96 from above. At temperatures below this the quality of

the fits used to determine ξ is quite poor and there is appreciable scatter in the data

points for ξ. This poor fit arises from the development of appreciable condensate in

the system (e.g. see the coldest results shown in Fig. 6.2). In the uniform system the

condensate is spatially uniform and is easily neglected in correlation functions, however

in the trapped system it appears at the transition point in a spatially localised mode

with a size of order the oscillator length, which is difficult to distinguish from the

non-condensate correlations. We interpret the data for T ′ . 0.963 as being below the

transition point and our ξ values extracted using fits to (6.6) in this regime as being

unreliable.

We then fit expression (6.7) to the correlation length results with T ′
c, ν, and an overall

constant of proportionality as fitting parameters. The fit for our data is shown in Fig.

6.3, with a value of ν = 0.8 ± 0.12 and T ′
c = 0.963. We notice that while the fit is

reasonable, there appears to be a certain degree of rounding off in the divergence of ξ

near the critical point. While our data has appreciable scatter (mainly due to uncertainty
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Figure 6.3: The behaviour of the correlation length across the condensation transition.
Solid line is a fit using (6.7) with ν = 0.8 and T ′

c = 0.963. Other parameters as in
Fig. 6.1. Shaded region around the solid line indicates fits within the error bar range
(ν = 0.8 ± 0.12). Rectangular shaded region indicates points excluded as being below
T ′

c. Dashed lines show values of quantities discussed in the text.

in T ), we expect that this rounding off is primarily due to finite-size effects. Additionally,

our large uncertainty in the critical exponent arises because of the difficulty in locating

the precise value of Tc for our system. In principle the divergence of ξ marks Tc, however

the rounding off of this divergence and the scatter in our results adds uncertainties to

the precise value of Tc that is difficult to quantify without a theory for the finite-size

behaviour of ξ.

Our fit value for ν differs from that for the 3D XY model (i.e. ν ≈ 0.67) which is

expected to be of the same universality class, but is within the error bars of the Donner

et al. experiment, which reported ν = 0.67±0.13. The critical temperature identified by

our fit (i.e. T ′
c ≈ 0.963) is also shifted downward from the prediction of (6.6). A similar

downward shift in Tc was found by Davis et al. [94] in their analysis of the trapped

Bose gas, arising because meanfield effects are typically underestimated by the analytic

expression (6.3).

Finite-size effects

As our above results motivate, an important issue to consider in the trapped system is

the role of finite-size effects [85]. At fixed temperature, the Ginzburg criterion for the

dominance of critical fluctuations requires that the chemical potential (µ) differs from
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the critical value (µc) by no more than

δµ = |µ− µc| ≤
16π2ma2k2

BT
2
c0

~2
, (6.8)

e.g. see [134]. In the trapped system the effective system chemical potential varies

spatially according to µ(r) = µ − V0(r) and, taking µ(r = 0) = µc, we can map the

Ginzburg condition to a spatial length scale over which the system is critical. This

length scale (diameter), along direction xj = {x, y, z}, is

Lj = 8
√

2πa
kBTc0

~ωj

, (6.9)

which we shall refer to as the Ginzburg length. This sets the maximum correlation

length that can occur in the system, thus defining the relevant parameter for assessing

finite-size effects, and takes this (its largest) value when the center of the system is at the

critical point. For the case of two-point correlations (measured along the x-direction

for definiteness) another important length scale in the trapped system is ∆xmax, the

maximum point separation (about trap center) used to measure the correlation length

(i.e. the fit of exp(−∆x/ξ)/∆x is made over the range λdB < ∆x < ∆xmax).

System λdB(Tc) ∆xmax Lx ν

Expt. 0.5µm 2.2µm 20µm 0.67± 0.13
Th. 1 0.34µm 2.2µm 9µm 0.8± 0.12
Th. 2 0.42µm 2.2µm 6µm 0.8± 0.12†

Table 6.1: A summary of the parameters for critical property measurements. Expt.
values refer to those of Donner et al. [50]. Th. 1 refer to the values for the main
theoretical results presented in this Chapter. Th. 2 refer to the results presented in Sec.
6.2.2, where we investigate a smaller system size. † These numbers are not fit, see text
for additional discussion.

The following conditions are required to accurately measure critical properties and min-

imise finite-size effects

λdB ≪ ∆xmax ≪ Lj. (6.10)

The first inequality ensures that there is a reasonable distance scale over which corre-

lation measurements can be made to accurately determine the correlation length. The

second inequality ensures that finite-size effects are minimised. Obviously, finite-size

effects cannot be completely avoided, since the correlation length can never diverge in

the finite system, and Lj sets the maximum value we might expect for ξ. The values of

these various quantities for experiments and our results are shown in Table 6.1.

To examine the influence of finite-size effects, we have performed calculations for a

system with the same trap parameters considered for the main results presented in this
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Figure 6.4: The correlation length for a smaller system with NC = 3.03×103 and ǫcut =
23~ωx, with other parameters as described in Sec. 6.2.1. Solid line and surrounding
shaded region are not fits to the data, but are precisely the same as those used in Fig.
6.3 (see text). Rectangular shaded region indicates points excluded as being below T ′

c.
Dashed lines show values of quantities discussed in the text.

paper, but with fewer atoms. In this case the critical physics occurs at a temperature

of Tc ≈ 200 nK and a lower ǫcut value of 23~ωx is used. The relevant parameters for this

system are summarised as “Th. 2” in Table 6.1, revealing that for this system all three

length scales in (6.10) are similar. Our results for the correlation length behaviour of

this system are given in Fig. 6.4 and show a rather striking broadening of the critical

behaviour, as compared to the previous case displayed in Fig. 6.3. As a result, this data

is difficult to fit to the infinite system result (6.7) for the purposes of extracting the

critical exponent. Instead of fitting, we simply place the same curves used in Fig. 6.3

(i.e. same ν, T ′
c, and error bars) on the data and observe that it provides an acceptable

characterisation of these results also. For both cases (Figs. 6.3 and 6.4) we see that fits

to the normal divergent expression (6.7) are good for ξ . Lx/2, but significantly depart

from this fit for larger values of ξ. Since the values of Lx differ by roughly a factor of

two between these calculations, this suggests that Lx is indeed the correct length scale

for assessing finite-size effects.

6.2.3 Condensate Number Fluctuations and the Generalised

Binder Cumulant

An important issue to deal with in the trapped system is the identification of the crit-

ical point, as this will be needed for a better understanding of the critical region and
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Figure 6.5: Binder cumulant behaviour across the condensation transition. Parameters
same as in Fig. 6.1.

the future development of higher precision calculations. For the uniform Bose gas the

transition point is conveniently identified using a Binder cumulant, defined as

Cb =
〈N2

0 〉
〈N0〉2

, (6.11)

where N0 the population of the zero-momentum (condensate) mode. This Binder cu-

mulant characterises condensate number fluctuations, and takes the universal value of

Ccrit
b = 1.2430 at the transition (see [98]).

Here we propose a generalisation of the Binder cumulant to the trapped system of the

form

Cg
b ≡

〈N2
cond〉

〈Ncond〉2
, (6.12)

with Ncond the condensate mode occupation. Our procedure to analyse the conden-

sate number fluctuations is as follows. The condensate (lowest energy normal mode),

ψcond(r), is determined according to the Penrose-Onsager method described in Sec. 2.3.4

using the time-averaged density matrix. We then use this mode to determine the in-

stantaneous condensate amplitude by evaluating the inner product

αcond(tj) =

∫

drψ∗
cond(r)ψC(r, tj), (6.13)

on every microstate used to sample system properties. We identify Ncond = |αcond(tj)|2
as the condensate number in this microstate, and by sampling over long times, we can

obtain histograms of the condensate fluctuations.
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Figure 6.6: Histograms of condensate/ground mode number fluctuations across the
critical point.

In Fig. 6.5 we show our results for Cg
b across the critical region. These exhibit a

rather dramatic reduction in the number fluctuations from values approaching Cg
b = 2

(expected for the normal system) at temperatures slightly above the transition point,

to values of Cg
b ≈ 1 below the transition. At our transition temperature of T ′

c ≈ 0.963

(as determined from fitting the critical exponent) we find a mean value of Cg
b ≈ 1.03,

a value well-below the expected for the uniform system in the thermodynamic limit.

This suggests that if the Binder cumulant is a useful quantity for characterising the

condensation transition in the trapped case, the critical value of Cg
b is much lower than

the uniform system.

Investigations of the number fluctuations of the condensate across the transition are of

interest in their own right, and may be suitable to the techniques available in ultra-cold

atom experiments. The subject of condensate number fluctuations has been extensively

discussed in the dilute gas BEC literature (e.g. see the review of [139] and references

therein), particularly the unphysical large fluctuations for the ideal gas predicted within

the grand canonical ensemble.

In Fig. 6.6 we show histograms of the the condensate (lowest mode) number distribution

across the transition. We see the development of coherence in the system as the shape

of the distribution changes from being maximum at Ncond = 0 above the transition,
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to having a maximum at finite Ncond below the transition. We also find that as the

temperature decreases the condensate number fluctuations are suppressed, i.e.

〈(Ncond − 〈Ncond〉)2〉
〈Ncond〉2

→ 0, (6.14)

(as was implicit in the behaviour of Cg
b observed above) and that the distribution has

negative skew.

Given the phenomenal recent interest in measuring spatial correlations in ultra-cold

atom systems [66–71], it would be of great interest to develop analogous techniques for

observing these condensate number distribution in experiments. It is difficult to devise

an experimental procedure which could be used to measure αcond (or Ncond) in a manner

equivalent to (6.13), which requires complete phase and amplitude information about

the field. So here we propose a quantity that can be directly measured in experiments

and used to reveal the transition from incoherent to coherent number statistics of the

condensate mode. In particular, we consider the central momentum column density

np=0 ≡
[
∫

dpz n(p)

]

px=py=0

, (6.15)

as an observable, since it is proportional to the peak density measured in the usual

absorption images taken of ultra-cold systems [140]. The motivation for choosing this

quantity is that the long range coherence of the condensate is clearly revealed as a peak in

momentum space, thus the central momentum value is correlated with the condensate

occupation. The detailed relationship between np=0 and Ncond is not unique, due to

the contribution of the noncondensate to np=0. So measurements of np=0 cannot be

considered equivalent to the condensate yet, as we show below, there is clear qualitative

similarities between the distributions of both quantities.

In Fig. 6.7 we compare the distributions for np=0 and Ncond obtained from analysis

of data sets from the same PGPE calculations. Qualitatively, the behaviour of these

distributions appears to be quite similar. The np=0 distribution is clearly seen to be

offset from zero at high temperatures as compared to the Ncond distribution (see Figs.

6.7(e) and (j)). This offset is related to the average momentum column density of the

noncondensate component.
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Figure 6.7: Comparison of (a-e) histograms of condensate/ground mode number dis-
tribution and (f-j) the the central momentum column density distribution across
the critical point. Results (a-e) and (f-j) correspond to the temperatures T ′ =
{0.957, 0.962, 0.969, 0.981, 0.990} respectively.
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Conclusions

We have developed the PGPE formalism to study finite temperature experiments cur-

rently of interest in the field. We have made a quantitative comparison of the PGPE

predictions of quadrupolar excitation frequencies with experiment [3], and an assessment

of the validity of the PGPE formalism for describing dynamical systems. We have stud-

ied the correlations in the finite temperature Bose gas, and study critical phenomena in

the gas.

Excitations

We have presented a comprehensive study of the excitation spectrum of a Bose cloud

at finite temperature by modelling the experiment of Jin et al. [3] with the PGPE

formalism. Our results for the frequency of the m = 2 mode is in good agreement

with experiment. We found that our formalism failed to predict the anomalous jump in

frequency of the m = 0 mode that occurs around 0.65Tc. We have demonstrated that

the origin of this failure in the current formalism is that we only provide a dynamical

description for the portion of the noncondensate in the C region.

We are able to show that the frequency of the m = 0 mode oscillation relies on the

inclusion of the noncondensate dynamics, through a study of the cutoff dependence.

While the equilibrium properties of the system are insensitive to the energy cutoff,

we found that certain dynamic properties weren’t. The study of cutoff dependence

in the collective mode results clearly reveals the importance of the interplay between

condensate and noncondensate components in the mode behaviour, and suggests a new

practical validity check for the PGPE theory: Dynamical predictions (in the absence of

a dynamical theory for the I region) should be verified to be independent of the cutoff

energy.
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We suggest that future work should be directed towards developing a fully dynamical

description of the incoherent region I, coupled to the coherent region C. We believe that

in cases where there is cutoff dependence, this method would allow correct prediction

of system properties. Such a method has been implemented for the ZNG theory, but

for the case where all the noncodensate atoms are described as a classical ”billiard ball“

gas. A challenge for our case would be to implement this description only for atoms

with energy exceeding ǫcut.

We also note that other types of collective excitations have been studied experimentally,

e.g. scissor modes. These studies would be another avenue for comparison with our

theory.

Correlations

We have presented the theoretical development of an efficient, computationally tractable

method for calculating correlation functions of the finite temperature trapped Bose gas

in position and momentum space. Our results show the generic characteristics of these

functions, emphasise the striking differences between their behaviour in position and

momentum space, and reveal the interplay between condensate and thermal components

of the system. We study the dependence of the coherence length on the temperature of

the system, for temperatures up to Tc.

We then focused this formalism to study the critical fluctuations in the Bose system

motivated by the recent theoretical work by the ETH group [50]. For numerical conve-

nience we have studied a trapped Bose gas with different parameters to the experimental

system, yet obtain a critical exponent that agrees to within the error bars of both results.

We have discussed finite-size effects and show that they can significantly alter the critical

physics for systems with a small Ginzburg length. Finally, we considered fluctuations

of the condensate mode occupation across the transition region, and have shown that

measurements of the central momentum column density can be used to experimentally

reveal the emergence of coherent statistics in the system.

Our study here represents the first quantitative theoretical calculations for this system

beyond meanfield level. However, there are numerous avenues for improvement of our

approach that could be used to obtain higher precision results, which we believe will be

needed to develop a better understanding of the trapped system critical physics, and

stimulate more experiments in this fascinating new area for ultra-cold atomic gases.

For instance, it would be interesting to apply the SPPE formalism [111] to the critical

regime, as both the chemical potential and temperature are control parameters in this
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approach. This may allow more precise measurement of critical exponents and would

make direct comparisons with the fixed N experiment of Donner et al. [50] more easy

to achieve. Another avenue of investigation would be to build on our formalism a more

efficient method of sampling, e.g. using Monte Carlo algorithms (e.g. see [137]). With

additional improvements in precision we believe our formalism will be able to provide a

detailed characterisation of the finite-size cross over functions for the trapped Bose gas.

Knowledge of these functions would be useful for several problems of current interest in

the ultra-cold atomic physics, such as better understanding of the quasi-2D behaviour

and the emergence of phase defects in quenches across the critical regime [141].
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Fourier Methods

We want to calculate

G1(x, x′) =

∫

dkW

(

x+ x′

2
, k

)

eik(x−x′), (A.1)

where certain physical requirements dictate that the appropriate x-grid is given by

−L
2
≤ xj ≤

L

2
, 1 ≤ j ≤M, (A.2)

with spacing δx. The Fourier related momentum grid is given by

−K
2
≤ kj ≤

K

2
, 1 ≤ j ≤M, (A.3)

where K = 2π/δx, and δk = 2π/L.

To efficiently evaluate this function it is useful to change variables to center of mass

(R = (x+ x′)/2) and relative (r = (x− x′)) coordinates, defined as

Rα ≡ 1

2
(xi + xj), (A.4)

rα ≡ (xi − xj), (A.5)

where α = i+ j is an index that goes from 1 to 2M , with −L
2
≤ R ≤ L

2
, δR = 1

2
δx, and

−L ≤ r ≤ L, δr = δx.

The problem is now (for G(r, R))

Gαβ = δk̃
∑

J

e−ik̃JrαW (Rβ, k̃J), (A.6)

where k̃J is the appropriate momentum grid to transform the r-coordinate. Now, because
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the r-coordinate grid has the same spacing as the x-grid, yet twice the range, the k̃-grid

has the same range as the k-grid yet half the spacing. We then get back G1(x, x′) by

choosing the appropriate pairs of Gαβ.

A.1 Scaling

We can make a simple analysis of the harmonically trapped system. Let f be a term

used to set the energy cutoff for thermal description of the system, i.e. we include

all contributions up to energy scale E = fkBT . This is important because it sets

constraints on the coordinate and momentum grids we must use in our description, i.e.

for the case of a harmonically trapped system we use a position grid of extent L (i.e.

L/2 ≤ x ≤ L/2) so where we choose L according to 1
2
mω2(L/2)2 = fkBT , i.e.

L =

√

8fkBT

mω2
. (A.7)

Similarly for momentum we choose K (with K/2 ≤ k ≤ K/2) so that ~
2(K/2)2/2m =

fkBT , i.e.

K =

√

8mfkBT

~2
. (A.8)

the momentum and spatial extents are related as reciprocal (Fourier) grids, thus the

spacing of points on one grid relates to the extent of its reciprocal grid as δk = 2π/L,

δx = 2π/K. Thus the number of grid points is given by

M =
KL

2π
=

8fkBT

~ω
. (A.9)

To understand how this scales for typical problems, we note the typical temperature

scale of interest is the critical temperature, given by

Tc =
~ω

kB

(

N

1.202

)1/3

, (A.10)

for the trapped system. Thus we have

M ∼ 8fN1/3, (A.11)

and so for typical f values (f ∼ 10) and numbers of atoms (N ∼ 106) we will need grids

of order 104 points. Note that the size of these grids need to double when we transform

to the r and R grid, so in general this procedure is quite demanding numerically, and

efficient techniques are necessary.
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TDPT comparison with PGPE

We will consider a perturbation of the form

δV (x, t) = A sin(ωxt)ω
2
xx

2, (B.1)

We apply this only in the x direction. We can evaluate the applicability of using the

quadrature grids used to calculate Fαβγ to calculate Gαβγ by comparing the results

from a PGPE calculation with an analytical result, and we do this for the case of the

noninteracting gas. In this case we will use time-dependent perturbation theory (TDPT)

to make this comparison.

Using TDPT, we know that for a noninteracting harmonically trapped Bose gas, the

probability of a transition from an initial state (φi) to an excited state (φf ) is given by

〈φf |ÛI(t)|φi〉 =
Vfi

2~

(

1− exp(i(ωfi + ω)t)

ωfi + ω
+

1− exp(i(ωfi − ω)t)

ωfi − ω

)

(B.2)

where

Vfi = 〈φf |V̂ |φi〉 (B.3)

and

ωfi =
ǫf − ǫi

~
. (B.4)

In this case we will take the perturbation to be of the form

V̂ = sin(ωt)x̂2. (B.5)

We calculate the probability of a transition from the ground state to the first excited

state in the x direction for a three dimensional system. We compare this to the popula-

tion of the first excited state found using the PGPE, when the initial state is a c-vector

with all the amplitude in the ground harmonic oscillator state, and interactions between
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Figure B.1: Comparison of TDPT (dots) with PGPE(line) for a sinusoidal perturbation
of the form given in Eq. (B.1)

particles are zero (i.e. C = 0). The form of our perturbation means that only the x

oscillator states will couple to it.

The results for the two different methods are shown in Fig. B.1. We see reasonable

agreement between the two, and conclude that this approximation is adequate for the

extra perturbation potentials that we will explore later in this work.
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Adiabatic cooling of fermions in an optical lattice
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The entropy-temperature curves are calculated for noninteracting fermions in a three-dimensional optical

lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the tempera-

ture, and we demonstrate regimes in which the atomic sample can be significantly heated or cooled. When the

Fermi energy of the system is near the location of a band gap, the cooling regimes disappear for all tempera-

tures and the system can be heated by only lattice loading. For samples with greater than one fermion per site,

we find that lattice loading can lead to a large increase in the degeneracy of the system. We study the scaling

properties of the system in the degenerate regimes and assess the effects of nonadiabatic loading.

DOI: 10.1103/PhysRevA.71.033616 PACS numberssd: 03.75.Ss, 32.80.Pj, 05.30.2d

I. INTRODUCTION

Tremendous progress has been made in the preparation,
control, and manipulation of Fermi gases in the degenerate
regime f1–7g. Such systems have many potential applications
in the controlled study of fermionic superfluidity and the
production of ultracold molecules. Another area of develop-
ing theoretical interest is in the physics of fermions in optical
lattices f8–11g, and initial experiments have already begun to
examine the properties of Fermi gases sprepared as boson-
fermion mixturesd in one-dimensional optical lattices
f12,13g. For Bose gases, optical lattices have been used to
demonstrate an impressive array of experiments, such as
quantum matter-wave engineering f14,15g; the Mott-
insulator quantum-phase transition f16g; quantum entangle-
ment f17g; and coherent molecule production f18g. It seems
likely that a similar range of rich physics lies ahead for fer-
mions in optical lattices.

Many of the physical phenomena that are suitable to ex-
perimental investigation in optical lattices are sensitive to
temperature, and it is therefore of great interest to understand
how the temperature of a quantum degenerate gas changes
with lattice depth. Experimental results by Kastberg et al.
f19g in 1995 showed that loading laser-cooled atoms into a
three-dimensional s3Dd optical lattice caused the atoms to
increase their temperature f20g. Recently, one of us con-
ducted a detailed thermodynamic study of bosonic atoms in
optical lattices f21g. In that work we showed that for suffi-
ciently low initial temperatures, a new regime would be en-
tered in which adiabatically ramping up the lattice depth
would have the desirable effect of cooling the system. The
typical temperatures at which Bose-Einstein condensates are
produced lie well within this cooling regime, and thus benefit
from reduced thermal fluctuations when adiabatically loaded
into an optical lattice. In this paper we examine how degen-
erate fermions are affected by adiabatic loading into an op-
tical lattice. In Fermi gases, the lowest temperatures obtained
in experiments tend to be much higher than in Bose gas
experiments. It is therefore important to understand to what
extent the introduction of an optical lattice might affect the
temperature; in particular, to determine in what regimes ad-
ditional cooling can occur during lattice loading.

The quintessential difference in the properties of degener-
ate fermions and bosons is embodied by the Fermi energy:

the energy that marks the top of the Fermi sea of occupied
states sat T=0d. The Fermi energy sets a new energy scale
that has no analog in boson systems and plays a crucial role
in determining the effect that lattice loading has upon the
system. We find that as the Fermi energy approaches a band
gap, the cooling regime vanishes and the system can heat
only with increasing lattice depth. However, we also find that
when the Fermi energy lies in the second band swhen the
average number of fermions per site is greater than 1d, a
cooling regime is re-established. This cooling regime for the
second band is accompanied by a large amplification of de-
generacy; i.e., adiabatically loading into the lattice causes
both T and the ratio T /TF to decrease.

The results we present in this paper are obtained from a
numerical study of the thermodynamic properties of an ideal
gas of fermions in a 3D cubic lattice. We work with the
grand canonical ensemble and use the exact single-particle
eigenstates of the lattice to determine the entropy-
temperature curves for the system for various lattice depths
and filling factors. We develop analytic expressions for the
plateaus that develop in the entropy-temperature curves and
characterize a scaling relationship that holds for low tem-
peratures and in deep lattices. A fast-loading procedure is
considered to ascertain how robust our results are to nona-
diabatic effects. The physics we explore here will be relevant
to current experiments, and many of the predictions we make
should be easily seen.

II. FORMALISM

A. Single-particle eigenstates

We consider a cubic 3D optical lattice made from three
independent si.e., noninterferingd sets of counterpropagating
laser fields of wavelength l, giving rise to a potential of the
form

VLattsrd =
V

2
fcoss2kxd + coss2kyd + coss2kzdg , s1d

where k=2p /l is the single-photon wave vector, and V is the
lattice depth. We take the lattice to be of finite extent with a
total of Ns sites, consisting of an equal number of sites along
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each of the spatial directions with periodic boundary condi-
tions. The single-particle energies eq are determined by solv-
ing the Schrödinger equation

eqcqsrd =
p2

2m
cqsrd + VLattsrdcqsrd , s2d

for the Bloch states fcqsrdg of the lattice. For notational sim-
plicity, we choose to work in the extended zone scheme
where q specifies both the quasimomentum and band index
of the state under consideration f22g. By using the single-
photon recoil energy ER="2k2 /2m as our unit of energy, the
energy states of the system are completely specified by the
lattice depth V and the number of lattice sites Ns si.e., in
recoil units eq is independent of kd.

For completeness, we briefly review some important fea-
tures of the band structure of Eq. s2d relevant to the thermo-
dynamic properties of the system. For sufficiently deep lat-
tices, an energy gap segapd will separate the ground and first
excited bands ssee Fig. 1d. For the cubic lattice we consider
here, a finite gap appears at a lattice depth of V<2ER f23g
smarked by the vertical asymptote of the dashed line in Fig.
1d. For lattice depths greater than this, the gap increases with
lattice depth. In forming the gap, higher-energy bands are
shifted upwards in energy, and the ground band becomes
compressed — a feature characteristic of the reduced tunnel-
ing between lattice sites. We refer to the energy range over
which the ground band extends as the sgroundd band width
eBW. As is apparent in Fig. 1, the ground band width de-
creases exponentially with V, causing the ground band to
have an extremely high density of states for deep lattices.

B. Equilibrium properties

Our primary interest lies in understanding the process of
adiabatically loading a system of Np fermions into a lattice.
Under the assumption of adiabaticity, the entropy remains
constant throughout this process, and the most useful infor-
mation can be obtained from knowing how the entropy de-
pends on the other parameters of the system. In the thermo-
dynamic limit, where Ns→` and Np→` while the filling
factor n;Np /Ns remains constant, the entropy per particle is

completely specified by the intensive parameters
T , V , and n. The calculations we present in this paper are
for finite-sized systems that are sufficiently large to approxi-
mate the thermodynamic limit. We would like to emphasize
at this point the remarkable fact that V is an adjustable pa-
rameter in optical lattice experiments, in contrast to solid
state systems in which the lattice parameters are immutable.

The entropy is determined as follows: The single-particle
spectrum heqj of the lattice is calculated for given values of
Ns and V. We then determine the thermodynamic properties
of the lattice with Np fermions in the grand canonical en-
semble, for which we calculate the partition function Z as

log Z =o
q

logs1 + e−bseq−mdd , s3d

where m is found by ensuring particle conservation. The en-
tropy of the system can then be expressed as

S = kBslog Z + bE − mbNpd , s4d

where b=1/kBT, and E=−] ln Z /]b is the mean energy.

Multiple components

In most current experiments, mixtures of Fermi gases in
different internal states are studied. This is required because
s-wave elastic collisions, needed for re-equilibration, are pro-
hibited by the Pauli principle for spin-polarized samples
f24g. The theory we present here is for the spin-polarized
case, but is trivially extensible to multiple components if the
lattice potential is spin independent and the number of atoms
in each component is the same: in this case all extensive
parameters are doubled se.g., hE ,Sjd and intensive param-

eters se.g., hT ,mjd remain the same. The inclusion of inter-

action effects, which will be important in the multiple-
component case, is beyond the scope of this paper.

III. RESULTS

A. Effect of lattice loading on Fermi-gas temperature

In Fig. 2 we show entropy-temperature curves for various
lattice depths and filling factors n. These curves have been
calculated for a lattice with 31 lattice sites along each spatial
dimension; i.e., Ns<33104.

A general feature of these curves is the distinct separation
of regions where adiabatic loading causes the temperature of
the sample to increase or decrease, which we will refer to as
the regions of heating and cooling, respectively. These re-
gions are separated by a value of entropy at which the curves
plateau — a feature that is more prominent in the curves for
larger lattice depths. This plateau entropy is indicated by a
horizontal dashed line and is discussed below. For the case of
unit filling factor shown in Fig. 2scd, this plateau occurs at
S=0, and only a heating region is observed.

We now explicitly demonstrate the temperature changes
that occur during adiabatic loading using two possible adia-
batic processes labeled A and B, and marked as dotted lines
in Fig. 2sad. Process A begins with a gas of free particles in
a state with an entropy value lying above the plateau entropy.
As the gas is loaded into the lattice, the process line indicates

FIG. 1. The dependence of the energy gap segap, dashed lined

and ground band width seBW, solid lined on the lattice depth ssee the

textd.
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that the temperature increases rapidly with the lattice depth.
Conversely, process B begins with a gas of free particles in a
state with entropy below the plateau. For this case, adiabatic
lattice loading causes a rapid decrease in temperature. This
behavior can be qualitatively understood in terms of the
modifications the lattice makes to the energy states of the
system. As is apparent in Fig. 1, the ground band rapidly
flattens for increasing lattice depth, causing the density of
states to be more densely compressed at lower energies.
Thus, in the lattice, all these states can be occupied at a much
lower temperature than for the free particle case. As we dis-
cuss below, S0 is the maximum entropy available from ac-
cessing states of only the lowest band. If S,S0, the tempera-
ture of the system must decrease with increasing lattice depth
to remain at constant entropy. Alternatively, for S.S0, the
occupation of states in higher bands is important, and as the
lattice depth and hence egap increase, the temperature must
increase for these excited states to remain accessible.

B. Fermi-gas degeneracy

In addition to the effect that lattice loading has on the
temperature of a Fermi gas, it is of considerable interest to
understand how the ratio of temperature to the Fermi tem-
perature sTFd f25g changes. Indeed, the ratio T /TF is the

standard figure of merit used to quantify the degeneracy of
dilute Fermi gases. In Fig. 3 we show how T /TF changes
with adiabatic lattice loading for the same parameters used in
Fig. 2. In Figs. 3sad and 3sbd the same general behavior is
seen: Below the entropy plateau where cooling is observed
fsee Figs. 2sad and 2sbdg, the ratio of T /TF remains approxi-
mately constant, so that there is little change in the degen-

eracy of the gas. Above the entropy plateau where heating
was observed, the ratio of T /TF rapidly increases, so that in
this regime the gas will rapidly become nondegenerate as it
is loaded into the lattice. For the unit filling case fFig. 3scdg,
there is no cooling regime, and heating is accompanied by a
rapid increase in T /TF for all initial conditions of the gas. In
Fig. 3sdd, where the filling factor is n=1.2, rather different
behavior is seen: In the cooling regime, the ratio of T /TF is
rapidly suppressed as the temperature decreases; see, e.g., the
dotted line marked C in Fig. 3sdd. This most desirable be-
havior could be used, for example, to prepare a Fermi gas
into a highly degenerate state where the BCS transition
might be observable. We also note that for the same param-
eters, but in the heating regime, the ratio T /TF remains rela-
tively constant.

We can give a simple explanation for the behavior of
T /TF. For the three cases considered in Fig. 3sad–3scd, the
Fermi energy lies within or at the top of the first band of
energy states. As shown in Fig. 1, the width of the ground
band seBWd decreases rapidly with lattice depth. Because the

number of states contained in each band is constant sgiven
by the number of lattice sitesd, both the Fermi energy and TF
scale identically to eBW, and thus will rapidly decrease with
lattice depth. In the cooling regime, the temperature scales in
the same manner as eBW ssee Sec. III D and Fig. 4d, and thus
the ratio T /TF remains approximately constant. In the heat-
ing regime T increases slowly, while the ratio T /TF increases
rapidly with lattice depth sdue to TF becoming smalld.

For the case considered in Fig. 3sdd, the filling factor sat-
isfies n.1 and the Fermi energy lies in the second band. As
the lattice depth increases, the Fermi energy and TF now
scale like egap; i.e.. slowly increase with lattice depth ssee
Fig. 1d. Thus, in the regime wherein the temperature de-
creases, the ratio T /TF must become smaller. We note that

FIG. 2. Entropy versus temperature curves for a Ns<33104

site cubic lattice, at various depths V=0 to 20ER swith a spacing of

2ER between each curved. Filling factors used are sad n=0.25, sbd

n=0.8, scd n=1.0, and sdd n=1.2. The entropy plateau is shown as a

dashed line. Dotted line marked A shows a path along which adia-

batic loading into the lattice causes the temperature to increase.

Dotted line marked B shows a path along which adiabatic loading

into the lattice causes the temperature to decrease.

FIG. 3. Entropy versus temperature over Fermi temperature

curves for the same cases considered in Fig. 2 ssee that figure for

details of parameters usedd. The entropy plateau is shown as a

dashed line. The dotted line marked C shows a path along which

adiabatic loading into the lattice causes the ratio of the temperature

to the Fermi temperature to decrease.
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the temperature reduction occurs because the width of the
second band decreases with lattice depth.

C. Entropy plateau

In Figs. 2sad and 2sbd a horizontal plateau sat the level
marked by the dashed linesd is common to the entropy-
temperature curves for larger lattice depths sV*8ERd. This

occurs because for these lattices, the energy range over
which the ground band extends is small compared to the
energy gap to the excited band, and there is a large tempera-
ture range over which states in the excited bands are inac-
cessible; yet all the ground band states are uniformly occu-
pied. The entropy value indicated by the dashed line in Figs.
2sad and 2sbd corresponds to the total number of Np-particle
states in the ground band. Since the number of single-particle
energy states in the ground band is equal to the number of
lattice sites, the total number of available Np-particle states
sV0d is given by V0=Ns ! / fNp ! sNs−Npd ! g svalid for Np

øNsd. The associated entropy S0=kB log V0, which we shall
refer to as the plateau entropy, can be evaluated using Ster-
ling’s approximation

S0 . kBfNp log Np + Ns log Ns − sNs − NpdlogsNs − Npdg;

s5d

the validity condition for this result is that 1!Ns!Np. An
important case for which the above approximation is invalid
is for Np=Ns; i.e., we have a filling factor of n=1, where
S0=0. This case corresponds to the unit filling factor result
shown in Fig. 2scd where, as a result of the entropy plateau
occurring at S=0, only a heating region is observed.

Similar entropy plateaus are observed for greater than unit
filling sNp.Nsd; e.g., as is seen in Fig. 2sdd. For fermions

such high filling factors necessarily means that higher bands
are occupied, and in general the precise details of these
higher plateaus will depend on the particle band structure of
the lattice. For example, in the lattice we consider here s1d,

there are three degenerate first excited bands that contain a
total of 3Ns single-particle states. Because the first band is
fully occupied, only Np8=Np−Ns particles are available to
occupy the excited band, so that the total number of available
states is found according to the ground band result s5d, but
with the substitutions Ns→3Ns and Np→Np−Ns. This result
is shown as the dashed horizontal in Fig. 2sdd labeled as S1.

The suppression of the plateaus at specific integer filling
factors se.g., n=1 for S0→0 and n=4 for S1→0d corre-
sponds to the Fermi energy of the system approaching a band
gap. Whenever this occurs it means that all the states below
the gap are occupied at T=0, and excitations in the system
require the promotion of particles into the excited band
sabove the gapd. As all band gaps increase in size with lattice
depth, the temperature of the system must increase for the
entropy to remain constant. Thus, in regimes wherein the
Fermi energy lies at a band gap, the system exhibits heating
only with increasing lattice depth fe.g., see Fig. 2scdg.

D. Scaling: Tight-binding limit at low temperatures and filling

factors

Here we give limiting results for the entropy-temperature
curves.

As discussed in Sec. III C, when Np,Ns and the tempera-
ture is sufficiently low that S,S0, then only single-particle
states within the ground band are accessible to the system. In
addition, when the tight-binding description is applicable for
the initial and final states of an adiabatic process, the initial
and final thermodynamic variables are related by a scaling
transformation.

In the tight-binding regime, which is a good approxima-
tion for V*4ER, the ground band dispersion relation takes
the form

eTBsqd = −
eBW

6
o

j=hx,y,zj

cossq jad , s6d

where a=p /l is the lattice period, the ground band width
eBW has already been introduced se.g., see Fig. 1d, and the
wave vector q is restricted to the first Brillouin zone. We
refer the reader to Refs. f26,27g for more details on the tight-
binding approximation.

To illustrate the scaling transformation, we consider an
initial system in equilibrium with entropy S,S0, in lattice of
depth Vi sufficiently large enough for tight-binding expres-
sion s6d to provide an accurate description of the ground
band energy states. If an adiabatic process is used to take the
system to some final state at lattice depth V f salso in the
tight-binding regimed it is easily shown that the macroscopic
parameters of the initial and final states are related as

X f = aXi, s7d

where X= hE , T , or mj, and the scaling parameter a
= seBWd f / seBWdi is given by the ratio of the final and initial

band widths. The requirement that the initial and final states
are in the tight-binding regime is because the single-particle
states are then related as feTBsqdg f=afeTBsqdgi, which is es-

sential for s7d to hold.

FIG. 4. Scaled temperature change during adiabatic lattice load-

ing. Ratio of temperature to bandwidth for various lattice depths

along adiabatic contours for several values of entropy. Initial tem-

perature sat V=0d and ratio of entropy to the plateau entropy is

indicated for each curve. Results are indicated for the case of filling

factor n=0.25.
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This type of scaling suggests that the occupations of the
single-particle levels are unchanged during the change in lat-
tice: the products beTBsqd and bm are independent of V, so

that the Fermi distribution fFsqd= hexpfbeTBsqd−bmg+1j−1

will also be independent of V. This suggests that being adia-
batic in this regime will not require redistribution through
collisions, and may allow the lattice depth to be changed
more rapidly.

To confirm the scaling predictions, in Fig. 4 we plot the
ratio of the temperature to ground band width as a function
of lattice depth along contours of constant entropy fi.e., how
kBT /eBW varies along the process curves labeled A and B in
Fig. 2sadg. In regimes wherein the scaling relationship s7d
holds true, the ratio kBT /eBW should be constant sindepen-
dent of Vd. In Fig. 4 this is clearly observed for initial entro-
pies less than S0 and lattice depths V*5ER. For S.S0,
single-particle states of higher bands necessarily play an im-
portant role in the thermodynamic state of the system, and
the scaling transformation clearly does not hold at any lattice
depth, as is seen in the dotted curve in Fig. 4. For this case,
as the lattice depth increases, the cooling effect of the ground
band compression is offset by the f particles in the excited
band that are lifted to larger energies as the gap segapd grows
ssee Fig. 1d.

E. Adiabaticity

Finally, we note that interactions between particles are
essential for establishing equilibrium in the system, and un-
derstanding this in detail will be necessary to determine the
time scale for adiabatic loading. In general, this requirement
is difficult to assess, and in systems where there is an addi-
tional external potential, it seems that the adiabaticity re-
quirements will likely be dominated by the process of atom
transport within the lattice to keep the chemical potential
uniform, although recent proposals have suggested ways of
reducing this problem f28g for Bose systems. A study of the
effects of interactions or inhomogeneous potentials is beyond
the scope of this work; however, it is useful to assess the
degree to which nonadiabatic loading would cause heating in
the system. We consider lattice loading on a time scale to be
fast compared to the typical collision time between atoms,
yet slow enough to be quantum mechanically adiabatic with
respect to the single-particle states. This latter requirement
excludes changing the lattice so quickly that band excitations
are induced, and it has been shown that in practice this con-
dition can be satisfied on very short time scales f29g. We will
refer to this type of loading as fast lattice loading, to distin-
guish it from the fully adiabatic loading we have been con-
sidering thus far.

To simulate the fast lattice loading, we take the system to
be initially in equilibrium at temperature Ti for zero lattice
depth. For the final lattice depth we fast-load into, we map
the initial single-particle distribution onto the equivalent
states in the final lattice, and calculate the total energy for
this final nonequilibrium configuration fi.e., we calculate E

=oq e
q

sfd
fFse

q

sid
,Tid, where e

q

sid
and e

q

sfd
are the single-particle

energies for the initial and final lattice depths, respectively,
and fF is the Fermi distribution functiong. This procedure

assumes that there has been no collisional redistribution to
allow the system to adjust to the lattice potential during the
period it is changed. To determine the thermodynamic state
the final distribution will relax to, we use the energy of the
nonequilibrium distribution as a constraint for finding the
equilibrium values of temperature and entropy. In general,
the final state properties will depend on the initial tempera-
ture, filling factor, and final depth of the lattice. To illustrate
typical behavior we show a set of fast-loading process curves
in Fig. 5 for two different values of the filling factor.

These curves show, as is expected from standard thermo-
dynamic arguments, that entropy increases for nonadiabatic
processes; i.e., all loading curves in Figs. 5sad and 5sbd bend
upwards with increasing lattice depth. For the results with
filling factor n=0.25 and for initial temperatures deep in the
cooling regime si.e., initial states far below the entropy pla-
teaud a useful degree of temperature reduction can be
achieved with fast lattice loading up to certain maximum
depth. For example, the second-lowest fast-loading curve in
Fig. 5sad cools with increasing lattice depth up to V<15ER,
and then begins to heat for larger final lattice depths. Gener-
ally, for low filling factors sn,1d where the ground band

plays the dominant role in the system behavior at low tem-
peratures, the entropy increase is due mainly to the reshaping
of the single-particle energy states that occurs at low lattice
depth f30g. This effect can be reduced by taking, as the initial
condition for fast-loading, a system in equilibrium at a finite
lattice depth for which the dispersion relation is more tight-
binding-like. This situation was considered in Ref. f8g in
preparing a superfluid Fermi gas using in an optical lattice.
Their results, for the case n=0.5 and an initial lattice depth
of V<1ER, predicted a useful degree of cooling.

As was demonstrated in Fig. 2scd, for filling factor n=1,
adiabatic lattice loading causes the atoms to heat. This effect

FIG. 5. Fast lattice loading of a Ns<33104 site cubic lattice,

with filling factors of sad n=0.25 and sbd n=1. Dark solid lines

indicate fast-loading curves ssee textd. The initial V=0 state for

each of this curves is indicated with a dot. The lattice depth on these

curves can be determined from their intercept with the equilibrium

entropy versus temperature curves sgray solid linesd, which are de-

scribed in Figs. 2sad and 2scd for n=0.25 and n=1, respectively.
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is exacerbated by nonadiabatic loading, as shown in Fig.
5sbd. This case also benefits from beginning in a lattice of
nonzero depth, since at fixed temperature but increasing lat-
tice depth shence larger eBWd, a smaller number of particles
will be found in the excited bands.

IV. CONCLUSION

In this paper we have calculated the entropy-temperature
curves for fermions in a 3D optical lattice at various depths
and filling factors. We have identified general features of the
thermodynamic properties relevant to lattice loading, indi-
cated regimes wherein adiabatically changing the lattice
depth will cause heating or cooling of the atomic sample, and
have provided limiting results for the behavior of the entropy
curves. The results presented in this work suggest optimal

regimes sfilling factors and temperaturesd that will facilitate
the suppression of thermal fluctuations in a fermionic gas by
lattice loading. These predictions should be easily verifiable
with current experiments. We have also shown that for a
sample of fermions with a filling factor greater than 1, the
cooling regime is accompanied by a significant reduction of
the temperature compared to the Fermi temperature. This
regime would clearly be desirable for experiments to inves-
tigate as an avenue for producing dilute Fermi gases with
T /TF!1. We have shown that many of our predictions are
robust to nonadiabatic effects.
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In this paper we derive an analytic approximation to the density of states for atoms in a combined optical

lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare

this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly

considers the role of higher bands and when they are important in quantitative analysis of this system.

Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic

trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that

occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate

Fermi gases in optical lattices.
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I. INTRODUCTION

Tremendous progress has been made in the preparation,

control, and manipulation of Fermi gases in the degenerate

regime f1–7g. Such systems have many potential applications
in the controlled study of fermionic superfluidity and the

production of ultracold molecules. Another area of develop-

ing theoretical interest is in the physics of fermions in optical

lattices f8–12g, and experiments have already begun to ex-
amine the properties of Fermi gases sprepared as boson-
fermion mixturesd in one-dimensional f13,14g and three-
dimensional f15–17g optical lattices.
Optical lattices have many features in common with crys-

tals where a periodic lattice is also present, and many of the

ideas and techniques from solid-state physics have been ap-

plied to this system. A unique property of optical lattices, as

realized in experiments, is that the periodic lattice is accom-

panied by a harmonic confining potential, arising from an

external magnetic trap or from effects related to the focused

laser beams used to form the lattice. We shall refer to this

potential as the combined harmonic-lattice potential, which

is the main subject of the investigation presented in this pa-

per ssee Fig. 1d.
While the harmonic potential and translationally invari-

ant periodic potential are well characterized individually,

their properties when combined are not as well understood.

Even though the harmonic trap is often much weaker than

the confinement provided by each lattice site, its effect on the

spectrum and properties of the system can hardly be consid-

ered small: it breaks the translational invariance of the sys-

tem and changes the nature of the energy states in the deep

lattice from compressed bands, to a set of unbounded over-

lapping bands. Several recent articles have considered as-

pects of this system f12,18–20g. In the context of a tightbind-
ing model of ultracold bosons, the spectrum of the combined

potential appears to have been first considered by Polkovni-

kov et al. f21g. References f18,19g have made detailed stud-
ies of the combined potential spectrum salso within a tight-
binding descriptiond, and closed-form solutions to this

problem were recently given by Rey et al. f20g. In Refs.

f12,22g an ideal gas of fermions in a one-dimensional s1Dd
combined potential was examined without making the tight-
binding approximation. All of these studies have confirmed
that, for appropriate parameter regimes, parts of the single
particle spectrum will contain localized states. This is in con-
trast to the translationally invariant system, where inter-
atomic interactions or disorder are needed for localization to
occur se.g., see f23,24gd. In the combined potential localiza-
tion arises solely from single-particle effects. Experiments

with ultracold sthough noncondensedd bosons f25g have pro-
vided evidence for these localized states.

Many of the physical phenomena that are suitable to ex-

perimental investigation in optical lattices are sensitive to

temperature and it is therefore of great interest to understand

how the temperature of a quantum degenerate gas changes

with lattice depth. Experimental results by Kastberg et al.

f26g in 1995 showed that loading laser cooled atoms into a
three-dimensional optical lattice caused the atoms to increase

their temperature f27g. In previous work we have studied
how the depth of a translationally invariant lattice affects the

thermodynamic properties of quantum degenerate Bose f28g
and Fermi f29g systems salso see f30–33gd. The most impor-
tant predictions of those studies relate to the temperature

changes induced by the lattice, in particular that in appropri-

ate regimes increasing the lattice depth could be used to cool

the system. For Fermi gases this cooling effect was used to

predict that loading into an optical lattice could be used to

enhance the conditions for observing the superfluid transition

f8g. However, recent work with a tightbinding model has

Translationally Invariant Lattice

Combined Harmonic−Lattice

FIG. 1. Schematic diagram comparing the translationally invari-

ant lattice to the combined harmonic lattice considered in this paper.
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shown that including the effects of the harmonic potential

leads to an increase in the temperature of the system scom-
pared to the Fermi temperatured by a factor of 2 f34g, dem-
onstrating the importance of fully treating the combined po-

tential.

In this paper we consider the thermal properties of a

Fermi gas in the combined harmonic-lattice potential includ-

ing the role of higher vibrational states. We derive an ana-

lytic approximation to the single-particle density of states

and compare this analytic density of states to numerical so-

lutions and determine validity criteria. We give characteristic

energy and atom-number scales which can be used to predict

when higher band effects will be important. Applying these

density of states to a degenerate Fermi gas we consider how

adiabatic loading from a harmonic trap into the combined

harmonic-lattice potential affects the degeneracy temperature

over a wide parameter regime. Our results show that beyond

tightbinding effects provide an appreciable correction to the

adiabatic loading calculations presented in Ref. f34g. Also, in
the regime where higher band states are appreciably occu-

pied, we find that the degeneracy temperature tends to in-

crease to a lesser extent or even reduce during loading, sug-

gesting that this regime might be useful for preparing a

strongly degenerate Fermi gas in an optical lattice. Recently

molecule production was used to measure the temperature of

fermions in an optical lattice f15g and using this sor other
approaches f35gd the predictions of our work can be exam-
ined in current experiments.

II. FORMALISM

A. Analytic density of states in the inhomogeneous lattice

potential

Here we consider the properties of a system described by

the single-particle Hamiltonian

H = −
"2

2m
¹
2 + Vc, s1d

where the combined potential Vc is formed by an optical

lattice potential and harmonic trap potential, i.e.,

Vc = Vh + Vl, s2d

Vh =
1

2
msvx

2
x2 + vy

2
y2 + vz

2
z2d , s3d

Vl = V0fsin
2skxd + sin2skyd + sin2skzdg . s4d

The harmonic trap is taken to be anisotropic, with angular

frequencies hvx ,vy ,vzj along the coordinate directions. The
lattice is of depth V0, k is the wave vector of the counter-

propagating light fields used to form the lattice, and a=p /k

is the direct lattice vector. We also use k to define the recoil

frequency vR="k2 /2m, and associated recoil energy ER

="vR. The combined harmonic-lattice potential, as defined

in Eqs. s2d–s4d, has minima si.e., lattice sitesd at positions r

=nxax̂+nyaŷ+nzaẑ, where hx̂ , ŷ , ẑj are unit vectors, and

hnx ,ny ,nzj are integers that are convenient for labeling par-

ticular lattice sites. We note that our highly symmetric choice

of the lattice potential, having a site coincident with the

minimum of the harmonic potential, may be rather difficult

to arrange experimentally. However, our primary interest is

in the thermodynamic properties of the system which are

insensitive to this symmetry.

We are interested in the limit where the lattice dominates

the short-length scale properties of the system, and will take

a!aho, where aho=minhÎ" /mv jj j=x,y,z is the smallest har-

monic oscillator length. This removes our need to consider

systems where extremely tight harmonic confinement causes

all the atoms to coalesce to a single site.

1. 1D spectrum

Viverit et al. f12g have shown for the one-dimensional

case of Eq. s1d that when the lattice is sufficiently deep the

eigenstates are localized to lattice sites. For our symmetric

potential the eigenstate localized at site n will necessarily

also localize at site −n, so strictly we should not call such

states localized. However, this property is fragile to any

asymmetry in the system, and has no discernible effect on

the energy spectrum swhich is of primary interest to usd. In
this regime, the lattice site index n forms a convenient quan-

tum number for the eigenstates, specifying the site where the

state is localized. The respective energy eigenvalue is given

by the value of the harmonic potential at that site, i.e.,

en
s0d =

1

2
ma2v2n2, s5d

where v is the trap frequency and we have set to zero the

zero-point energy associated with the confinement in each

lattice site. We will refer to these states as ground band states

for clarity. The condition for localization is DEsnd.J0,

where DEsnd;e
n+1

s0d
−e

n

s0d
is the difference in sharmonic trapd

potential energy between lattice site n and n+1, and J0 is the

tunneling between sites f36g. This requirement is most diffi-
cult to satisfy near the trap potential minimum, where the

difference in energy between adjacent sites is least. This va-

lidity condition is equivalent to

unu . ncrit ; q/8, s6d

where ncrit is the approximately the index of the closest site

to the origin for which the localization condition is satisfied

and q;8J0 /mv2a2 is a dimensionless parameter which we

discuss below soriginally defined in f20gd.
While states satisfying Eq. s5d are valid for sufficiently

large values of n, this expression neglects the existence of

excited vibrational states, which for the case of a translation-

ally invariant lattice would correspond to the first excited

band. The energy scale for the emergence of these excita-

tions is egap, and an analytic approximation for this quantity
is calculated in the Appendix. Like the ground band states,

these states will also localize when the difference between

potential energy at neighboring sites exceeds the tunneling

matrix element for the first excited band, which we denote

J1. Where this condition is satisfied the spectrum of these

states will take the analytic form
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en
s1d =

1

2
ma2v2n2 + egap. s7d

For clarity we shall refer to these as the first excited band

states. This argument could be extended to additional bands

of states, in particular, at an energy of roughly 2egap the next
vibrational states will be accessible. However, the tunneling

rate Jm increases with the band index m, making the local-

ization condition more difficult to satisfy, and analytic esti-

mates for the energy gap to higher bands less accurate. In-

deed, for single-particle energies large compared to the

lattice depth the spectrum will cross over to that of a har-

monic oscillator. Additionally, for typical experimental pa-

rameters, the first two bands include sufficiently many states,

and a large enough energy range to provide an accurate de-

scription description of the system. Of course, high tempera-

tures, or large lattice constants would require consideration

of additional bands.

2. 3D spectrum and density of states

For more than one spatial dimension the wave-function

localization may be broken by neighboring sites which have

approximately the same local potential value. However, since

Eq. s1d is separable, the 3D ground band spectrum is com-

pletely determined by the one-dimensional results s5d and
s7d, and under the assumption of localized states ssee belowd,
the ground and first excited band spectra are given by the

expressions

enxnynz

s0d =
1

2
ma2svx

2
nx
2 + vy

2
ny
2 + vz

2
nz
2d , s8d

enxnynz

s1d =
1

2
ma2svx

2
nx
2 + vy

2
ny
2 + vz

2
nz
2d + egap, s9d

respectively. Because of the lattice symmetry, there are three

equivalent sand completely overlappingd first excited bands.
Thus each energy state specified by the quantum numbers

hnx ,ny ,nzj in Eq. s9d is threefold degenerate f37g. This de-
generacy would be broken if the lattice depth was different in

each direction causing the first excited bands to separate in

energy, but we do not consider that case here. The separabil-

ity of the potential means that the validity conditions dis-

cussed for the one-dimensional case apply immediately, us-

ing the respective trap frequency in each direction, i.e., n j

.n
crit

sjd
, j=x ,y ,z, where n

crit

sjd
is ncrit evaluated according to Eq.

s6d using the trap frequency along direction j.

The density of states for the spectra in Eqs. s8d and s9d is
given by

gcsed =
16

p2
SvR

v̄
D3/2 e1/2

s"v̄d3/2

+
48

p2
SvR

v̄
D3/2 se − egapd

1/2

s"v̄d3/2
use − egapd , s10d

where usxd is the unit step function, and v̄;Î3vxvyvz. The

first term, corresponding to the ground band contribution to

the density of states, exhibits a Îe scaling with energy, simi-
lar to that of a homogeneous gas of free particles f34g. The

second term includes the contribution of the first excited

band states that occur at energies e.egap. As was noted in

our discussion of the validity conditions of the spectra, addi-

tional bands will become accessible at e,2egap, and so Eq.
s10d should only be used in situations where kBT and the

Fermi energy are much less than 2egap.

B. Numerical results for single-particle spectrum

1. 1D spectrum

Here we show some typical results of the 1D spectrum of

the combined potential in Fig. 2. In Refs. f18–21g a detailed
analysis of the spectrum has also been made, but in the tight

binding sHubbardd limit where only the vibrational ground

state of each lattice site are included. Those studies consid-

ered a wide parameter regime of trapping frequencies and

lattice depths, however in the tight-binding limit a single

parameter describing the ratio of tunneling to harmonic po-

tential is sufficient to characterize the nature of the

eigenspectrum. Several choices of parameter are used in the

literature, and we follow the choice of Rey et al. f20g who
define q;4J0 / s

1

2
mv2a2d. With the inclusion of higher bands

this single parameter by itself is insufficient to characterize

the spectrum and both the lattice depth and harmonic con-

finement parameters are independently important. In Fig. 2

we show the level spacing obtained from numerical diago-

nalization of the one-dimensional case of Eq. s1d. The pa-

rameters for this calculation were taken to correspond to

those of the experiment f16g. For Fig. 2sad with V0=5ER we

find that q<193 and for Fig. 2sbd with V0=10ER we find that

q<28. It is useful to compare our results to Fig. 1sbd of Ref.
f19g to assess the effects of higher band states on the spec-

trum. We have segmented our spectrum with vertical dashed

lines and indicated the characteristic regions by the letters

A–E, which we explain: In region A tunneling dominates

over the offset between lattice sites and the eigenstates are

delocalized ffor these states Eq. s5d will be a poor approxi-
mationg. In region B localized states emerge which are ap-

proximately degenerate in energy sthe spacing between every
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FIG. 2. Energy level spacing for the 1D eigenspectrum relevant

to the experimental setup in Ref. f16g. sad V0=5ER, v=0.024vR. sbd
V0=10ER, v=0.033vR. Parameters derived for 40K with lattice

made from counter propagating l=826 nm lasers with harmonic

confinement arising from the focused lasers sbeam waist taken to be

50 mmd. Labels A–E explained in text.
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second eigenvalue is approximately zerod. Because of the
localizations fand applicability of Eq. s5dg, the energy spac-
ing between degenerate pairs increases linearly throughout

this region. Regions A and B, as identified in Fig. 2, are

equivalent to those in Fig. 1sbd of Ref. f19g, and in general
we find that the tightbinding description is in good qualita-

tive agreement with our more general analysis. For the next

regions si.e., C, D, etc.d the role of higher bands is essential
and cannot be described within a simple tightbinding model.

Region C has a similar appearance to region A, and consists

of delocalized excited band states. The scatter in level spac-

ing seen in C occurs because ground band states are also

available in this energy range. In region D the excited bands

state have become localized ssimilar to what happened in
region B to the ground band statesd. In region E we have

reached a sufficiently high energy scale that a third band of

states have begun to contribute.

The harmonic confinement used in Fig. 2 originates from

the dipole confinement provided by the focused lasers used

to make the lattice f38g, and as the lattice depth increases so
does the strength of harmonic confinement. We note that for

Fig. 1sbd of f19g, q<133106, which is many orders of mag-
nitude away from that found in current experiments f39g. The
number of states in region A roughly scales as Îq f20g so that
in experimentally realized lattices region A is quite small and

the majority of ground band states are well localized.

2. Critical site index

In Fig. 3 we present ncrit s6d for a wide range of lattice
depths and trap frequencies snote that we have used band
structure calculations in a translationally invariant lattice to

determine J0 for each value of V0d. We observe that ncrit is

large for small trap frequencies and shallow lattices so that

only neighboring lattice sites quite far from the harmonic

trap minimum have a sufficiently large potential difference to

tunneling ratio to cause eigenstate localization. In such cases

the analytic approximation for the eigenspectra given in Eqs.

s8d and s9d, and density of states given in Eq. s10d will not be
valid, and the result of the full numerical diagonalization will

be necessary.

With increasing lattice depth the ground band tunneling

matrix element decreases and the potential difference to tun-

neling ratio increases. Thus we find that ncrit decreases with

increasing V0. Similarly, increasing the harmonic trap fre-

quency also leads to a decrease in ncrit. The particular value

of ncrit that justifies the use of our analytic density of states

s10d depends on the parameters of system under consider-

ation. If the system extends over Ns lattice sites in each di-

rection, then ncrit!Ns will be sufficient to ensure that the

majority of the occupied states are well described by the

localized spectrum.

3. Density of states

Equation s10d for the density of states in the combined
potential is one of the central results of this paper. In this

section we present numerical results to confirm the validity

regime of this expression. To do this we diagonalize Eq. s1d
to obtain the single particle eigenspectrum he jj for various
trap frequencies and lattice depths. For the purposes of com-

parison to the analytic results, it is useful to construct a

smoothed density of states, defined as

ḡsed =
1

2De
E

e−De

e+De

o
j

dse − e jd , s11d

giving the average number of eigenstates with energy lying

within De of e.
In Fig. 4 we compare the numerically calculated

smoothed density of states against the analytic result gcsed
for various lattice depths in an isotropic trap of frequency

v̄=0.051vR. Agreement between the analytic and numerical

calculations is seen to improve as the lattice depth increases.

We also observe that at energies greater than approximately

twice the gap energy the analytic and numerical results begin

to differ more significantly as the contribution of additional

bands become important sthe gap energy in each case is the
energy at which the cusp in the analytic density of states

occursd.
It is of interest to more closely examine the reliability of

the analytic density of states at low energy scales and for

weak harmonic traps. In Fig. 5 we show such a comparison

for an isotropic trap of frequency v̄=0.01vR. For V0=4ER
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the analytic result is in poor agreement with the numerical
result, as the low energy states in this case are not localized.
For V0=8ER and more so V0=12ER, the analytic result is
seen to provide a useful description of the numerical density
of states. To quantify the degree of agreement seen in these
results it is useful to consider the energy of the sfirstd local-
ized state at site n<ncrit, i.e., ecrit=mv̄2a2ncrit

2 /2, indicated as
vertical dashed lines in Fig. 5. The quantity ecrit is the energy
scale above which the ground band states become localized,
and hence the lowest energy at which spectrum s5d is valid.
For the case of V0=4ER, ecrit exceeds egap so that no states in
the ground band are localized below the energy scale at
which excited band states become accessible. For the case of
V0=8ER, ecrit.0.5ER and for energies above this better
agreement between the analytic and numerical results is ob-
served in Fig. 5. For V0=12ER the critical energy is ecrit
.0.07ER and the analytic density of states furnishes better
agreement at much lower energies.
In summary, we make the following observations about

our analytic expression for the density of states:
s1d Within its regime of validity, the analytic density of

states provides an accurate description at intermediate energy
scales, i.e., at energies above ecrit where the spectrum is well
localized, yet below e,2egap, where additional bands be-
come accessible.

s2d The agreement between the analytic density of states
and numerical calculations improves with increasing lattice
depth and increasing trap frequency.

III. APPLICATIONS TO FERMI GASES

A. General properties

The Fermi energy in the combined harmonic-lattice po-
tential, eF,c, is determined from the number of particles in the
system according to

N = E
0

eF,c

degcsed . s12d

To compute the Fermi energy from our analytic result s10d it

is convenient to define the cusp number f40g Nc as the num-

ber of particles for which eF,c=egap. Because the energy gap
depends on the lattice depth, so does Nc. Using Eqs. s10d and
s12d we obtain

Nc =
32

3p2
SvR

v̄
D3/2S egap

"v̄
D3/2. s13d

For N,Nc si.e., e,egapd only the first term in the density of
states s10d is nonzero in Eq. s12d and we can invert to obtain
the Fermi energy

eF,c = S3p2N

32
D2/3"v̄2

vR

, N , Nc. s14d

For N.Nc excited band states contribute. In this case a gen-

eral analytic expression for the Fermi energy in terms of N is

not available, but for sN−Ncd!Nc we make a series expan-

sion of the integral of the density of states about egap. This
expression can then be solved perturbatively to yield the ap-

proximate expression

eF,c = egapH1 + d −
2d3/2

1 + 3d1/2
J, 0 , d ! 1, s15d

where d;2sN−Ncd /3Nc is the small parameter.

It is also convenient to define the cusp depth Vc, as the

lattice depth at which eF,c=egap. The cusp depth is a function
of the number of particles and harmonic trap frequency,

given by

Vc =
"vR

4
FS3p2N

32
D2/3S v̄

vR

D2 + 1G2, s16d

where we have made use of the analytic expression relating

egap to V0, as derived in the Appendix.

The two cusp parameters characterize the interesting fea-

tures of the combined harmonic-lattice system and can be

interpreted as follows:

sid Nc: For a system with fixed combined potential si.e.,
fixed V0, hv jjd, Nc is the maximum number of atoms that can

be accommodated in the ground band only. For N.Nc, the

T=0 ground state of the system will contain excited band

states.

siid Vc: For a system with fixed atom number and har-

monic trap frequencies, Vc is the smallest lattice depth for

which the atoms can be accommodated in the ground band.

For V0,Vc, the T=0 ground state of the system will contain

excited band states.

These parameters motivate us to emphasize the distinctive

properties of the energy spectrum in the combined potential

as compared to the usual periodic lattice case. In the trans-

lationally invariant lattice, there is a fixed number of single-

particle states in each band sequal to the number of lattice

sitesd, and for sufficiently deep lattices stypically V0*2ERd
the ground and first excited bands occupy disjoint energy

regions separated by a finite energy gap. In contrast, for the

combined harmonic-lattice potential, the energy bands are

overlapping and can only be differentiated by the local nodal

structure of the wave functions at each site, where they have

a spatial character approximately given by harmonic oscilla-
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tor states ssee the Appendixd. This local structure of the wave
functions is apparent in experiment, and leads to states of

different bands sas we have defined them hered residing in
distinctive regions of momentum space in expansion images

se.g., see Refs. f16,41gd. If it is desirable to restrict the sys-
tem to access only states of the ground band, so as to realize

a system well described by a Hubbard model, then according

to our above prescription this necessarily requires N,Nc or

equivalently V0.Vc, in addition to having sufficiently low

temperature.

B. Sommerfeld analysis of isentropic loading

of a degenerate Fermi gas

The properties of a quantum degenerate Fermi gas can be

approximated by the Sommerfeld expansion se.g., see f42gd.
Of particular interest is the expression for entropy S

=
p2

3
gseFdkB

2T, valid for T!TF, where gseFd is the density of
states evaluated at the Fermi energy, eF. For many applica-

tions to Fermi gas experiments, the parameter of most inter-

est is the degeneracy parameter t;kBT /eF, i.e., the ratio of

the temperature to the Fermi temperature, for which the

Sommerfeld expression can be written as

S =
p2

3
eFgseFdkBt . s17d

Here we consider the change in degeneracy temperature

of a Fermi gas as it is slowly loaded from a harmonic trap

into the combined harmonic-lattice potential, as is done in

experiments. To characterize this temperature change we as-

sume that the loading is isentropic so that the initial entropy

in the harmonic potential swith initial degeneracy tempera-
ture tid is the same as the final entropy when the system is in
the combined harmonic-lattice potential swith final degen-
eracy temperature t fd. Within the validity regime of the Som-
merfeld relation s17d, the ratio of these temperatures is given
by

t f

ti

=
khsNd

kcsNd
, ti,t f ! 1, s18d

obtained by assuming that S remains constant, where we

have introduced the dimensionless extensive parameter

kxsNd;eF,xgxseF,xd sx=h ,cd, with ghsed and eF,h the density

of states and Fermi energy for a harmonic trap, respectively.

We have chosen to express k as a function of N rather than

eF, since the number of atoms remains constant during the

loading procedure, whereas the Fermi energy may change

significantly.

For the purely harmonic trap ghsed=e2 / s2"3v̄3d and eF,h

="v̄s6Nd1/3 se.g., see f43gd, which give

khsNd = 3N . s19d

For N,Nc, the excited band states do not contribute to kc

and using results s10d and s14d we obtain

kcsNd =
3

2
N, N , Nc. s20d

Thus for N,Nc, the ratio of degeneracy temperatures will

increase by a factor of 2. Because Nc is a monotonically

increasing function of V0, it might be expected that for suf-

ficiently deep final lattice depth we will always obtain this

factor of 2 increase in the degeneracy temperature. However,

Nc decreases with increasing v̄, and since v̄ may change

with lattice depth se.g., if the lattice is produced by focused
lasersd a large final lattice depth may in fact lead to N.Nc.

We also note that when N,Nc the ratio of the degeneracy

temperatures s18d is independent of the harmonic trap fre-
quency, even if this parameter changes during the loading

f44g. Similar conclusions to those presented in this section
are given in Ref. f34g.

C. Numerical results for isentropic loading of the combined

harmonic lattice

In this section we numerically examine the temperature of

an ideal Fermi gas loaded into a combined harmonic-lattice

potential for a range of lattice depths. Our main results are

calculated using the energy spectrum found by numerically

diagonalizing s1d. To determine the temperature under this
type of loading we calculate the entropy of a gas of N fer-

mions over a range of temperatures and lattice depths, i.e.,

SsT ,V0 ,vW ,Nd, where vW = hvx ,vy ,vzj. We numercially invert
this function to find temperature as a function of the other

quantities TsS ,V0 ,vW ,Nd, and by examining the behavior of T

for fixed S, we can predict the temperature of the gas as a

function of lattice depth.

Our procedure for determining entropy is as follows: The

single particle spectrum he jj of the lattice is calculated for
given values of vW and V0. We then calculate the partition

function Z

ln Z =o
j

lns1 + e−bsej−mdd , s21d

where m is found by ensuring particle conservation. The en-

tropy of the system can then be expressed as

S = kBsln Z + bE − mbNd , s22d

where b=1/kBT, and E=−] ln Z /]b is the mean energy.

In Figs. 6sad–6sfd we show the properties of an isentropi-

cally loaded gas for various parameters. In Figs. 6sad and

6scd we show the ratio of the final to initial reduced tempera-

tures for N=503103 and N=2503103, respectively. In both

cases, the reduced temperature is seen to increase as the lat-

tice depth increases. For N=503103 atoms the critical lat-

tice depth is Vc<2.3ER. For the lowest initial reduced tem-

perature fi.e., the frontmost curve in Fig. 6sadg we see that
the reduced temperature increases by a factor of 2 by the

time that V0 increases beyond Vc, in agreement with the pre-

dictions of Eqs. s18d–s20d salso see Ref. f34gd. Similarly, for
the case of N=2503103 atoms, Vc<12.4ER and for the low-

est temperature result in Fig. 6scd, we see that the reduced
temperature increases by a factor of 2 as V0 increases beyond

this value of Vc. For higher initial temperatures the Sommer-

feld result does not hold. In Figs. 6sad and 6scd we see that
the warmer systems slarger ti valuesd have the contrasting

behavior of heating up more or less than the Sommerfeld

prediction, respectively. In that regime the degeneracy tem-

perature is dominated by the change in the Fermi energy that
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occurs during the lattice loading procedure, as shown in Fig.

6sed. That is, for the case in Fig. 6sad f6scdg the Fermi energy
tends to decrease fincreaseg with increasing lattice depth.
In Fig. 6scd fand to a lesser extent in Fig. 6sadg we see that

while excited bands are occupied si.e., for V,Vcd the degen-
eracy temperature increases by a factor of less than 2. This

suggests that having excited bands occupied might provide

more favorable conditions for investigating fermionic super-

fluidity in lattices. Additionally, because the tunneling rate is

larger for higher bands it may be more easy to reversibly

manipulate the lattice in this regime.

In Figs. 6sbd, 6sdd, and 6sfd we show the results equivalent
to those in Figs. 6sad, 6scd, and 6sed, but calculated using the
analytic density of states given in Eq. s10d. Qualitatively the
agreement between the results is good for V0*4ER. The

main discrepancy is observed for small V0 values where the

role of nonlocalized states and higher bands is important.

IV. RELATION TO EXPERIMENTS

It is of interest to compare how important excited band

effects might be for current experiments. In Fig. 7 we show

Nc for parameters similar to those used in recent experiments

by the ETH Zürich group f15,16g. In those experiments up to

105 atoms were prepared in each spin state. Because the

harmonic confinement increases with lattice depth sv̄
,ÎV0ER /"d, we find that the Fermi energy will eventually

lie in the first excited band, but only for very large lattice

depths sV0*280ERd. We also consider a longer wavelength

lattice made from lasers with l=1200 nm with slightly

tighter focus sbeam waist of 50 mmd for which the recoil

energy and the gap to higher bands is smaller. In such a

configuration sdashed curved we see that higher bands would
become important for much lower atom numbers.

In Fig. 8 we consider the effect of loading on the degen-

eracy temperature for parameters relevant to the experiment

in Ref. f15g. The results in Fig. 8sad are for the same param-

eters considered by Köhl who made a calculation in the

tightbinding limit ssee Fig. 1 of Ref. f34gd. We broadly find

agreement with those results, however, make note of several

differences. First, at the lowest depths considered sV0

,5ERd Köhl observed the reduced temperature to initially

decrease with increasing lattice depth. In contrast our results,
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FIG. 6. Temperature of an

ideal Fermi gas isentropically

loaded into a combined harmonic-

lattice potential. The ratio of the

final degeneracy temperature saf-
ter loadingd to the initial degen-

eracy temperature in the harmonic

trap are shown for various initial

temperatures and lattice depths for

the case sad N=503103 and scd
N=2503103. In sed the Fermi en-

ergy is shown as a function of lat-

tice depth for N=503103

scirclesd, N=2503103 scrossesd.
sbd, sdd, and sfd correspond to sad,
scd, and sed, respectively, but are
calculated using the analytic den-

sity of states s10d. For all results
we have used an isotropic har-

monic trap of frequency of v̄

=0.04vR.
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which are valid for all lattice depths, do not exhibit this

feature, and instead are seen to smoothly connect with the

V0=0ER spurely harmonic cased. We conclude that in this
region the tightbinding approximation and the neglect of

higher bands is not valid.

Second, in Köhl’s results the reduced temperature is ob-

served to saturate to a value of twice that of the initial har-

monic trap when the lattice is sufficiently deep stypically
V0*15ERd. Many of our high temperature curves instead

show a slight decrease in reduced temperature as the depth of

the lattice increases. We have verified that this behavior is

due to higher band states, and that if we neglect them from

our calculations our results saturate in agreement with those

in f34g. This indicates that even when the deep lattice behav-

ior is dominated by the ground band si.e., we have N,Ncd, if
a small number of atoms are able to thermally access excited

band states they can have a significant effect on the tempera-

ture of the system during loading.

In Fig. 8sbd the same parameters are used, except the

number of atoms is increased to 750 000. According to Fig. 7

for this number of atoms Vc<15ER. In this case we see that

only a small increase in the degeneracy temperature occurs

during loading and ultimately for sufficiently large final lat-

tice depth si.e., V0*20ERd the reduced temperature is ob-

served to be approximately the same as in the initial har-

monic trap. We note that this result requires the occupation

of higher bands and cannot be analyzed using a tightbinding

approach.

The discussion in this section shows that while current

experiments are likely not strongly affected by higher bands,

the parameter regime where they become important is rather

close. Experiments could enter this regime by using larger

wavelength lattices or tighter harmonic confinement se.g.,
more tightly focused lasers to produce the optical latticed.

V. CONCLUSIONS

We have discussed the nature of the spectrum of a Fermi

gas in a combined harmonic trap and optical lattice potential.

Using this spectrum we have derived an analytic density of

states that is relatively accurate for the lattice depths and

harmonic confinements used in experiments. We have char-

acterized the validity criteria for this density of states and

have used it to characterise a Fermi gas in the combined

potential. As an application we have examined how adiabatic

loading from a harmonic trap into the combined harmonic-

lattice potential affects the degeneracy temperature of an

ideal Fermi gas. Our results show that when excited band

states are occupied the system is less heated by the lattice

loading, and may be less sensitive to nonadiabatic effects,

suggesting that this regime is worthy of further investigation

in experiments.
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APPENDIX: ANALYTIC APPROXIMATION

TO BAND-GAP ENERGY

In this section we derive an analytic expression for the

band gap in deep lattices. We go beyond the usual harmonic

oscillator approximation and obtain results equivalent to

those used in Ref. f45g.
We will consider the standard harmonic approximation

the optical lattice potential, by making a Taylor expansion

about the lattice site minimum at x=0, i.e.,

Vl =
V0

2
f1 − cossbxdg <

V0b
2

4
x2 −

V0b
4

48
x4, sA1d

where b=2k is the reciprocal lattice vector.

Casting the harmonic term in the form of a harmonic os-

cillator potential, 1 / 2mvLatt
2 x2, yields the effective harmonic

oscillator frequency of vLatt=ÎV0b
2 /2m, and the localized

states in the optical lattice can be approximated as harmonic

oscillator states. This approximation neglects the influence of

tunneling between sites that gives a quasimomentum depen-

dence, and predicts that the band gap is equal to "vLatt. For

our purposes it is desirable to go beyond this approximation

and obtain a more accurate analytic expression for the band-

gap energy. To do this we use the harmonic oscillator states

to treat the quartic term in Eq. sA1d perturbatively. This is
most easily done using the normal ladder operators, so that

x4= s "

2mvLatt
d2sa†+ad4, which gives the first-order shifts in the

oscillator state energies as

DEn = −
ER

4
s2n2 + 2n + 1d . sA2d

Thus the approximate energies of the localized states are

given by

En = F2ÎV0

ER

sn + 1/2d −
1

4
s2n2 + 2n + 1dGER. sA3d

Of most interest is the difference in energy between the n

=0 and n=1 states, which provides an estimate of the energy

gap between the ground and first excited bands, i.e.

egap = 2ÎV0ER − ER. sA4d

We see that treating the quartic term leads to a 1 recoil sup-

pression of the band gap compared to the harmonic oscillator

frequency. In Fig. 9 we compare this analytical expression

with the band gap determined numerically by evaluating the

full band structure of the
V0

2
f1−cossbxdg potential. For shal-

low lattices the band gap is strongly dependent on the value

of quasimomenta considered and error bars indicate the

range of energy gaps from band center to band edge.
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