UNIVERSITY OF OTAGO EXAMINATIONS 2013

(TIME ALLOWED: 2 HOURS)

$\underline{\text { This examination paper comprises } 5 \text { pages }}$

Candidates should answer questions as follows:
Answer TWO out of the THREE questions.
Questions carry equal weight.
The following material is provided:

Use of calculators:
No restriction on the model of calculator to be used, but no device with communication capability shall be accepted as a calculator.
(Subject to inspection by the examiners.)
Candidates are permitted copies of:
No additional material.
Other Instructions:
DO NOT USE RED INK OR PENCIL.
USEFUL RELATIONSHIPS can be found on page 2.

A table of Fourier transforms and properties

Forward: $F(\nu)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} 2 \pi \nu t} d t \quad$ Inverse: $f(t)=\int_{-\infty}^{\infty} F(\nu) \mathrm{e}^{\mathrm{j} 2 \pi \nu t} d \nu$

Some properties

$$
\begin{aligned}
F(t) & \leftrightarrow f(-\nu) \\
f^{*}(t) & \leftrightarrow F^{*}(-\nu) \\
f(a t) & \leftrightarrow \frac{1}{|a|} F\left(\frac{\nu}{a}\right) \\
f\left(t-t_{0}\right) & \leftrightarrow \mathrm{e}^{-\mathrm{j} 2 \pi \nu t_{0}} F(\nu) \\
\mathrm{e}^{\mathrm{j} 2 \pi \nu_{0} t} f(t) & \leftrightarrow F\left(\nu-\nu_{0}\right) \\
\frac{d^{n}}{d t^{n}} f(t) & \leftrightarrow(\mathrm{j} 2 \pi \nu)^{n} F(\nu) \\
-\mathrm{j} 2 \pi t f(t) & \leftrightarrow \frac{d F(\nu)}{d \nu} \\
\int_{-\infty}^{t} f(\tau) d \tau & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu} F(\nu)+\frac{1}{2} F(0) \delta(\nu) \\
(f * g)(t) & \leftrightarrow F(\nu) G(\nu) \\
f(t) g(t) & \leftrightarrow(F * G)(\nu)
\end{aligned}
$$

Some transform pairs

$$
\begin{aligned}
\delta(t) & \leftrightarrow 1 \\
u(t) \mathrm{e}^{-a t} & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu+a} \\
u(t) & \leftrightarrow \frac{1}{2} \delta(\nu)+\frac{1}{\mathrm{j} 2 \pi \nu} \\
\exp \left(\mathrm{j} 2 \pi \nu_{0} t\right) & \leftrightarrow \delta\left(\nu-\nu_{0}\right) \\
\cos \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{1}{2}\left[\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\sin \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{\mathrm{j}}{2}\left[-\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\Pi(t) & \leftrightarrow \operatorname{sinc}(\nu) \\
\operatorname{sgn}(t) & \leftrightarrow \frac{1}{\mathrm{j} \pi \nu} \\
\sum_{k=-\infty}^{\infty} \delta(t-k T) & \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(\nu-\frac{k}{T}\right) \\
\exp \left(-\pi t^{2}\right) & \leftrightarrow \exp \left(-\pi \nu^{2}\right)
\end{aligned}
$$

DFT: $X[r]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp \left(-\frac{\mathrm{j} 2 \pi r k}{N}\right) \quad$ IDFT: $x[k]=\sum_{r=0}^{N-1} X[r] \exp \left(\frac{\mathrm{j} 2 \pi r k}{N}\right)$ Hilbert transform: $\hat{f}(t)=f(t) * \frac{1}{\pi t}$

Convolution integral: $(f * h)(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) \mathrm{d} \tau$

1. (a) Use $f_{1}(t)$ and $f_{2}(t)$ to denote arbitrary inputs and $g_{1}(t)$ and $g_{2}(t)$ to denote the respective outputs. Describe what it means for a system to be:
(i) Linear
(ii) Causal
(iii) Memoryless
(iv) Time-invariant
(b) Show that $\exp \left(j 2 \pi \nu_{0} t\right)$ is an eigen-function of a linear time invariant system. What is the eigenvalue?
(c) Calculate the convolution of $\operatorname{sinc}(t)$ and $\sin (20 \pi t) \operatorname{sinc}(t)$.
(d) The function $f(t)$ is real valued, even, and has Fourier transform $F(\nu)$. Find the real part of the Fourier transform of

$$
g(t)=u(t) f(t)
$$

(Here $u(t)$ is the unit step function)
(e) A system is said to be BIBO-stable if every bounded input leads to a bounded output.
(i) Show that a system with an impulse response function that is absolutely integrable is BIBO stable.
(ii) From the definition of BIBO-stability, and a carefully chosen input function, show that the system with the impulse response function

$$
h(t)=\frac{u(t) \sin (t)}{t}
$$

is not BIBO-stable.
(f) Either by using the properties of convolution or directly from the definition, show that:

If

$$
F(t)=\int_{-\infty}^{t} f(\tau) d \tau
$$

then

$$
(F * g)(t)=\int_{-\infty}^{t}(f * g)(\tau) d \tau
$$

2. (a) Prove Parseval's theorem, which is that

$$
\int_{-\infty}^{\infty} f(t) g^{*}(t) d t=\int_{-\infty}^{\infty} F(\nu) g^{*}(\nu) d \nu .
$$

Here the Fourier transforms of $f(t)$ and $g(t)$ are $F(\nu)$ and $G(\nu)$, respectively. You may use any of the results on page 2 .
(b) Suppose that $m(t)$ is a real valued function that has analytic signal $m_{a}(t)$, and that

$$
f(t)=\operatorname{Re}\left[m_{a}(t) \exp \left(j 2 \pi \nu_{0} t\right)\right] .
$$

Derive an expression for $F(\nu)$, the Fourier transform of $f(t)$. Write your answer in terms of $M(\nu)$ the Fourier transform of $m(t)$.
Copy the following graph into your answer booklet and add a sketch of $F(\nu)$ to it.

(c) Using the fact that $F_{a}(\nu)=2 u(\nu) F(\nu)$, or otherwise, show that a function $f(t)$ and its Hilbert transform $\hat{f}(t)$ have the same energy spectral density.
(d) The power auto-correlation function of a function $f(t)$ is defined as

$$
\phi_{f f}^{p}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} f^{*}(t) f(t+\tau) d \tau
$$

(i) State the Wiener-Khinchin Theorem.
(ii) Prove the Wiener-Khinchin theorem by considering the average output power after $f(t)$ is passed through an ideal bandpass filter.
3. (a) (i) State formally using test functions the definition of the Fourier transform for generalised functions.
(ii) Suppose that the generalised function $G(\nu)$ is the Fourier transform of the generalised function $g(t)$. Starting from the above definition, show that

$$
g^{\prime}(t) \leftrightarrow j 2 \pi \nu G(\nu) .
$$

You may assume that the properties on page 2 hold for test functions.
(b) Show using their actions on test functions that
(i) $u^{\prime}(t)=\delta(t)$
(ii) $f(t) \delta^{\prime}(t)=f^{\prime}(0) \delta(t)-f(0) \delta^{\prime}(t)$
(c) A function $s(t)$ is uniformly sampled every T seconds to give the sequence

$$
\{s[k]: s[k]=s(k T)\} .
$$

(i) State the conditions given in the Sampling Theorem that are required for $s(t)$ to be determined from its samples $s[k]$.
(ii) Calculate the Fourier transform of

$$
s_{s}(t)=s(t) \sum_{k=-\infty}^{\infty} \delta(t-k T) .
$$

(iii) From your answer in (ii), derive a method for calculating $s(t)$ from $s[n]$ in the situation where the conditions of the sampling theorem are satisfied. Illustrate your answer with diagrams where appropriate.
(iv) Suppose that $s(t)$ is periodic and repeats every $N T$, where N is a positive integer. (This means that for all k, we have that $s[k]=s[k \bmod n]$.) Calculate the Fourier transform of $s_{s}(t)$ for this periodic case, and express your answer in terms of $S[r]$ the discrete Fourier transform of $s[k]$.

