UNIVERSITY OF OTAGO EXAMINATIONS 2014

(TIME ALLOWED: 2 HOURS)

$\underline{\text { This examination paper comprises } 5 \text { pages }}$

Candidates should answer questions as follows:
Answer TWO out of the THREE questions.
Questions carry equal weight.
$\underline{\text { The following material is provided: }}$

Use of calculators:
No restriction on the model of calculator to be used, but no device with communication capability shall be accepted as a calculator.
(Subject to inspection by the examiners.)
Candidates are permitted copies of:
No additional material.
Other Instructions:
DO NOT USE RED INK OR PENCIL.
USEFUL RELATIONSHIPS can be found on page 2.

A table of Fourier transforms and properties

Forward: $F(\nu)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} 2 \pi \nu t} d t \quad$ Inverse: $f(t)=\int_{-\infty}^{\infty} F(\nu) \mathrm{e}^{\mathrm{j} 2 \pi \nu t} d \nu$

Some properties

$$
\begin{aligned}
F(t) & \leftrightarrow f(-\nu) \\
f^{*}(t) & \leftrightarrow F^{*}(-\nu) \\
f(a t) & \leftrightarrow \frac{1}{|a|} F\left(\frac{\nu}{a}\right) \\
f\left(t-t_{0}\right) & \leftrightarrow \mathrm{e}^{-\mathrm{j} 2 \pi \nu t_{0}} F(\nu) \\
\mathrm{e}^{\mathrm{j} 2 \pi \nu_{0} t} f(t) & \leftrightarrow F\left(\nu-\nu_{0}\right) \\
\frac{d^{n}}{d t^{n}} f(t) & \leftrightarrow(\mathrm{j} 2 \pi \nu)^{n} F(\nu) \\
-\mathrm{j} 2 \pi t f(t) & \leftrightarrow \frac{d F(\nu)}{d \nu} \\
\int_{-\infty}^{t} f(\tau) d \tau & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu} F(\nu)+\frac{1}{2} F(0) \delta(\nu) \\
(f * g)(t) & \leftrightarrow F(\nu) G(\nu) \\
f(t) g(t) & \leftrightarrow(F * G)(\nu)
\end{aligned}
$$

Some transform pairs

$$
\begin{aligned}
\delta(t) & \leftrightarrow 1 \\
u(t) \mathrm{e}^{-a t} & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu+a} \\
u(t) & \leftrightarrow \frac{1}{2} \delta(\nu)+\frac{1}{\mathrm{j} 2 \pi \nu} \\
\exp \left(\mathrm{j} 2 \pi \nu_{0} t\right) & \leftrightarrow \delta\left(\nu-\nu_{0}\right) \\
\cos \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{1}{2}\left[\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\sin \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{\mathrm{j}}{2}\left[-\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\Pi(t) & \leftrightarrow \operatorname{sinc}(\nu) \\
\operatorname{sgn}(t) & \leftrightarrow \frac{1}{\mathrm{j} \pi \nu} \\
\sum_{k=-\infty}^{\infty} \delta(t-k T) & \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(\nu-\frac{k}{T}\right) \\
\exp \left(-\pi t^{2}\right) & \leftrightarrow \exp \left(-\pi \nu^{2}\right)
\end{aligned}
$$

DFT: $X[r]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp \left(-\frac{\mathrm{j} 2 \pi r k}{N}\right) \quad$ IDFT: $x[k]=\sum_{r=0}^{N-1} X[r] \exp \left(\frac{\mathrm{j} 2 \pi r k}{N}\right)$ Hilbert transform: $\hat{f}(t)=f(t) * \frac{1}{\pi t}$

Convolution integral: $(f * h)(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) \mathrm{d} \tau$

1. (a) Give definitions for:
(i) What it means for a system to be linear.
(ii) What it means for a system to be shift invariant.
(iii) The impulse response of a linear system.
(iv) The transfer function for a linear shift invariant system.
(b) Why is the transfer function not a useful concept for a linear system that is not shift invariant?
(c) Derive expressions for the Fourier transforms of the following functions. Do so directly from the definition of the Fourier transform and use $F(\nu)$ to denote the Fourier transform of $f(t)$.
(i) $t f(t)$
(ii) $f^{\prime}(t)$
(iii) $f(\alpha t)$ where $\alpha>0$
(d) Give an approximation to the convolution of $\exp \left(-\pi t^{2}\right)$ and $\sin (40 \pi t) \exp \left(-\pi t^{2}\right)$. Explain your answer fully.
(e) Prove the following equalities:

$$
\frac{d}{d t}(f * g)(t)=\left(f^{\prime} * g\right)=\left(f * g^{\prime}\right)
$$

2. (a) Using their actions on test functions show that the derivative of the unit step is the delta function.
(b) A system h, which produces diminishing echoes, has the impulse response

$$
h(t)=\sum_{k=0}^{\infty} a^{k} \delta(t-k T)
$$

where $0<a<1$.
(i) Is this system stable? Fully explain your answer.
(ii) Prove that the transfer function satisfies

$$
H(\nu)=H\left(\nu+\frac{n}{T}\right)
$$

for all integers n.
(c) A white noise signal with a power spectral density given by $\Phi_{x x}(\nu)=N_{0} / 2$ is passed through a filter with transfer function $H(\nu)=\Pi(\nu T)$
(i) What is the power spectral density of the output?
(ii) What is the auto correlation function for the output?
(iii) Show that if the output is sampled every T the result is random numbers that are independent of one another. What is their variance?
(d) What does it mean for a random process to be ergodic? Give a real world example of an ensemble of functions of time, that is:
(i) ergodic
(ii) not ergodic.
3. (a) State and prove Rayleigh's theorem for energy invariance. You may use any of the results on page 2.
(b) Using Rayleigh's theorem show that a real valued function $f(t)$, its analytic signal $f_{a}(t)$ and its Hilbert transform $\hat{f}(t)$ satisfy

$$
\int_{-\infty}^{\infty}|f(t)|^{2} d t=\int_{-\infty}^{\infty}|\hat{f}(t)|^{2} d t=\frac{1}{2} \int_{-\infty}^{\infty}\left|f_{a}(t)\right|^{2} d t
$$

(c) The causal system h, has an impulse response function, $h(t)$, which has no singularities at $t=0$.
(i) Show that

$$
H(\nu)=-\frac{j}{\pi} \int_{-\infty}^{\infty} \frac{H(s)}{\nu-s} d s
$$

(ii) And hence derive the Kramers-Kronig relations between the real and imaginary parts of $H(\nu)$.
(d) For an arbitrary function $f(t)$ we can define the Hermitian and anti-Hermitian parts via

$$
f_{h}(t)=\frac{1}{2}\left(f(t)+f^{*}(-t)\right), \quad \text { and } \quad f_{a h}(t)=\frac{1}{2}\left(f(t)-f^{*}(-t)\right)
$$

Show that

$$
\mathcal{F}\left(f_{h}(t)\right)=\operatorname{Re}[F(\nu)], \quad \text { and } \quad \mathcal{F}\left(f_{a h}(t)\right)=j \operatorname{Im}[F(\nu)] .
$$

(e) Now consider an $f(t)$ that is real, is zero for $t<0$, and has with no singularities at $t=0$.
(i) Show that $f(t)=2 u(t) f_{h}(t)$.
(ii) Suppose that we also have $\operatorname{Re}[F(\nu)]=\operatorname{sinc}(\nu)$, find $f(t)$ and $\operatorname{Im}[F(\nu)]$.

