UNIVERSITY OF OTAGO EXAMINATIONS 2019

PHYSICS

ELEC441

Linear Systems and Noise Semester One

(TIME ALLOWED: 2 HOURS)

This examination paper comprises 5 pages

Candidates should answer questions as follows:

Answer TWO out of the THREE questions. Questions carry equal weight.

The following material is provided:

Use of calculators:

No restriction on the model of calculator to be used, but no device with communication capability shall be accepted as a calculator.

(Subject to inspection by the examiners.)

Candidates are permitted copies of:

No additional material.

Other Instructions:

DO NOT USE RED INK OR PENCIL. USEFUL RELATIONSHIPS can be found on page 2.

A table of Fourier transforms and properties

Convolution integral:
$$(f * h)(t) = \int_{-\infty}^{\infty} f(\tau) h(t - \tau) d\tau$$

(2 marks)

- 1. (a) What is required of a system for it to be *linear*?
 - (b) Evaluate

$$\frac{d^2}{dt^2} \left(u(t) \exp(-\alpha t) \right).$$

(Show your working but please note that you are not expected to start from first principles) (3 marks)

(c) White noise with power spectral density $\Phi_{nn}^p(\nu) = \frac{N_0}{2}$ is passed through a filter with impulse response function

$$h(t) = u(t) \exp(-\alpha t).$$

- (i) What is the power spectral density of the resulting signal?
- (ii) What is the power autocorrelation function of the resulting signal?
- (iii) What is the average power in the resulting signal?
- (iv) A large number of samples are taken of the resulting signal over a long time interval. What is your best guess for the variance of this set of samples?

The following result might be helpful,

$$\exp(-b|t|) \leftrightarrow \frac{2b}{b^2 + 4\pi^2\nu^2}.$$
 (10 marks)

(d) State and prove the convolution theorem.

(5 marks)

(3 marks)

- 2. (a) What is a *causal* system? Give the condition that must be satisfied for the impulse response function $h(t|\tau)$ for an *linear causal* system. (2 marks)
 - (b) For the function

$$f(t) = \cos^2(2\pi\nu_0 t)$$

- (i) Sketch the function.
- (ii) Calculate the Fourier transform.
- (iii) Sketch the Fourier transform.
- (c) Show for an open support test function $\phi(t)$, which has Fourier transform $\Phi(\nu)$, that:

(i)
$$\phi(t - t_0) \leftrightarrow \Phi(\nu) \exp(-j2\pi\nu t_0)$$

(ii) $\phi'(t) \leftrightarrow j2\pi\nu F(\nu)$ (4 marks)

- (d) Give the definition of the Fourier transform $(G(\nu))$ of a generalised function (g(t)). (2 marks)
- (e) Starting with this defition show the following results are true for generalised functions. (You may assume any of the results on page 2 of this exam are true for test functions.)
 - (i) $g(at) \leftrightarrow \frac{1}{|a|} G\left(\frac{\nu}{a}\right)$ (ii) $\delta(t) \leftrightarrow 1$ (6 marks)
- (f) Copy the following graph into your answer book and then add in curves for:
 - (i) The Hilbert transform, $\hat{f}(t)$.
 - (ii) The absolute value of the analytic signal, $|f_a(t)|$.

(3 marks)

3. (a) Either using the properties of the convolution or directly from the definition for the convolution show that if

$$F(t) = \int_{-\infty}^{t} f(\tau) d\tau,$$
$$(F * g)(t) = \int_{-\infty}^{t} (f * g)(\tau)$$

 $d\tau$.

(4 marks)

(b) A signal f(t) has Fourier transform $F(\nu)$. f(t) is sampled to give

$$f_s(t) = \sum_{k=-\infty}^{\infty} f(kT) \,\delta(t-kT)$$

and then $f_a(t)$, an approximation to f(t) is made by convolving $f_s(t)$ with $\Pi(t/T)$.

(i) Derive an expression for $F_s(\nu)$ in terms of $F(\nu)$

then

- (ii) For a f(t) of your choosing, sketch f(t), $f_s(t)$ and $f_a(t)$
- (iii) Derive an expression for $F_a(\nu)$ in terms of $F(\nu)$.
- (iv) For a $F(\nu)$ of your choosing, sketch $F(\nu)$, $F_S(\nu)$ and $F_a(\nu)$. (10 marks)
- (c) Let s(t) be a complex valued function that has Fourier transform $S(\nu)$. Derive a expression, in terms of $S(\nu)$, for the Fourier transform of Re[s(t)], the real part of s(t). (2 marks)
- (d) Give the definition for (BIBO) stability and show that a linear time invariant system with an absolutely integrable inpulse response function is BIBO stable.

(4 marks)

ELEC441

PLEASE DO NOT TURN OVER THE EXAMINATION PAPER UNTIL INSTRUCTED TO DO SO