UNIVERSITY OF OTAGO EXAMINATIONS 2018

(TIME ALLOWED: 2 HOURS)

This examination paper comprises 5 pages

Candidates should answer questions as follows:
Answer TWO out of the THREE questions.
Questions carry equal weight.
The following material is provided:

Use of calculators:
No restriction on the model of calculator to be used, but no device with communication capability shall be accepted as a calculator.
(Subject to inspection by the examiners.)
Candidates are permitted copies of:
No additional material.
Other Instructions:
DO NOT USE RED INK OR PENCIL.
USEFUL RELATIONSHIPS can be found on page 2.

A table of Fourier transforms and properties

Forward: $F(\nu)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} 2 \pi \nu t} d t \quad$ Inverse: $f(t)=\int_{-\infty}^{\infty} F(\nu) \mathrm{e}^{\mathrm{j} 2 \pi \nu t} d \nu$

Some properties

$$
\begin{aligned}
F(t) & \leftrightarrow f(-\nu) \\
f^{*}(t) & \leftrightarrow F^{*}(-\nu) \\
f(a t) & \leftrightarrow \frac{1}{|a|} F\left(\frac{\nu}{a}\right) \\
f\left(t-t_{0}\right) & \leftrightarrow \mathrm{e}^{-\mathrm{j} 2 \pi \nu t_{0}} F(\nu) \\
\mathrm{e}^{\mathrm{j} 2 \pi \nu_{0} t} f(t) & \leftrightarrow F\left(\nu-\nu_{0}\right) \\
\frac{d^{n}}{d t^{n}} f(t) & \leftrightarrow(\mathrm{j} 2 \pi \nu)^{n} F(\nu) \\
-\mathrm{j} 2 \pi t f(t) & \leftrightarrow \frac{d F(\nu)}{d \nu} \\
\int_{-\infty}^{t} f(\tau) d \tau & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu} F(\nu)+\frac{1}{2} F(0) \delta(\nu) \\
(f * g)(t) & \leftrightarrow F(\nu) G(\nu) \\
f(t) g(t) & \leftrightarrow(F * G)(\nu)
\end{aligned}
$$

Some transform pairs

$$
\begin{aligned}
\delta(t) & \leftrightarrow 1 \\
u(t) \mathrm{e}^{-a t} & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu+a} \\
u(t) & \leftrightarrow \frac{1}{2} \delta(\nu)+\frac{1}{\mathrm{j} 2 \pi \nu} \\
\exp \left(\mathrm{j} 2 \pi \nu_{0} t\right) & \leftrightarrow \delta\left(\nu-\nu_{0}\right) \\
\cos \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{1}{2}\left[\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\sin \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{\mathrm{j}}{2}\left[-\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\Pi(t) & \leftrightarrow \operatorname{sinc}(\nu) \\
\operatorname{sgn}(t) & \leftrightarrow \frac{1}{\mathrm{j} \pi \nu} \\
\sum_{k=-\infty}^{\infty} \delta(t-k T) & \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(\nu-\frac{k}{T}\right) \\
\exp \left(-\pi t^{2}\right) & \leftrightarrow \exp \left(-\pi \nu^{2}\right)
\end{aligned}
$$

DFT: $X[r]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp \left(-\frac{\mathrm{j} 2 \pi r k}{N}\right) \quad$ IDFT: $x[k]=\sum_{r=0}^{N-1} X[r] \exp \left(\frac{\mathrm{j} 2 \pi r k}{N}\right)$ Hilbert transform: $\hat{f}(t)=f(t) * \frac{1}{\pi t}$

Convolution integral: $(f * h)(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) \mathrm{d} \tau$

1. (a) For a linear time invariant system derive an expression that relates the input $f(t)$, the output $g(t)$, and the impulse response function $h(t)$.
(b) Calculate the Fourier transforms of the following functions:
(i) $a(t)=t \operatorname{sinc}(4 t)$
(ii) $b(t)=\int_{-\infty}^{\infty} u(\tau) \exp (-\alpha \tau) \Pi(\beta(t-\tau)) d \tau \quad$ (where $\alpha>0$)
(iii) $c(t)=u(t) \cos \left(2 \pi \nu_{0} t\right)$
(c) Starting from Parseval's theorem and using the properties of the Fourier transform on page 2, prove the convolution theorem.
(d) For a real, finite energy signal $f(t)$, show that $f(t)$ and its Hilbert transform $\hat{f}(t)$ have the same energy spectral density.
(e) Consider the sampling of a function with sampling period T. Which frequencies will be aliases of a given frequency ν_{0} ? Show that $f(t)=\sin \left(2 \pi \nu_{0} t\right)$ and all of its aliases have the same value for their samples.
2. (a) The function $f(t)$ has Fourier transform $F(\nu)$ and is sampled at the times

$$
t=0, T, 2 T, \ldots,(N-1) T
$$

to give the vector of values

$$
\{f[0], f[1], f[2], \ldots ., f[N-1]\}
$$

(i) Consider the function

$$
f_{c}(t)=\sum_{k=0}^{N-1} f[k] \delta(t-k T)
$$

Show that

$$
F[r]=\frac{1}{N} F_{c}\left(\frac{r}{N T}\right),
$$

where the $F[r]$ are the elements of the discrete Fourier transform of the $f[k]$ and $F_{c}(\nu)$ is the Fourier transform of $f_{c}(t)$.
(ii) Using fact

$$
f_{c}(t)=f(t) \Pi\left(\frac{t-(N-1) T / 2}{N T}\right) \sum_{k=-\infty}^{\infty} \delta(t-k T)
$$

derive an expression that relates $F_{c}(\nu)$ and $F(\nu)$. Using your expression, or otherwise, give the cause of aliasing, and of spectral leakage?
(b) For a vector x show that:

$$
\operatorname{IDFT}(\operatorname{DFT}(\mathbf{x}))=\mathbf{x}
$$

(c) Consider the generalised function

$$
f(t)=t \exp \left(j 2 \pi \nu_{0} t\right) .
$$

(i) What is the Fourier transform of $f(t)$?
(ii) Show that your answer satisfies the formal definition for the Fourier transform of a generalised function.
3. (a) A stationary random process $x(t)$ has power spectral density given by

$$
\Phi_{x x}^{p}(\nu)=A \operatorname{sinc}^{2}(\beta \nu) .
$$

(i) A large number of widely separated samples are taken of $x(t)$. What would you expect for the variance of this set?
(ii) How large does T need to be for $x(t)$ and $x(t+T)$ to be uncorrelated?
(b) A system has the impulse response function

$$
h(t)=\frac{u(t) \cos \left(2 \pi \nu_{0} t\right)}{1+t^{2}} .
$$

(i) Give a definition, in terms of the systems inputs and outputs, for what it means for a system to be stable.
(ii) State the stability theorem.
(iii) Is this system stable?
(iv) Prove your answer to (iii), starting from the definition of stability.
(c) A function $f(t)$ is sampled every T in time and the sampling satisfies the Nyquist criterion.
(i) What is the Nyquist criterion?
(ii) Derive an expression for $F_{s}(\nu)$, the Fourier transform of

$$
f_{s}(t)=\sum_{k=-\infty}^{\infty} f(k T) \delta(t-k T)
$$

Express your answer in terms of $F(\nu)$ the Fourier transform of $f(t)$.
(iii) Copy the graph below and add to it a sketch of $\left|F_{s}(\nu)\right|^{2}$.

(iv) Aided by your sketch derive an expression for $f(t)$ in terms of $f_{s}(t)$.

ELEC441

PLEASE DO NOT TURN OVER

THE EXAMINATION PAPER

UNTIL INSTRUCTED TO DO SO

