UNIVERSITY OF OTAGO EXAMINATIONS 2017

(TIME ALLOWED: 2 HOURS)

$\underline{\text { This examination paper comprises } 5 \text { pages }}$

Candidates should answer questions as follows:
Answer TWO out of the THREE questions.
Questions carry equal weight.
$\underline{\text { The following material is provided: }}$

Use of calculators:
No restriction on the model of calculator to be used, but no device with communication capability shall be accepted as a calculator.
(Subject to inspection by the examiners.)
Candidates are permitted copies of:
No additional material.
Other Instructions:
DO NOT USE RED INK OR PENCIL.
USEFUL RELATIONSHIPS can be found on page 2.

A table of Fourier transforms and properties

Forward: $F(\nu)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} 2 \pi \nu t} d t \quad$ Inverse: $f(t)=\int_{-\infty}^{\infty} F(\nu) \mathrm{e}^{\mathrm{j} 2 \pi \nu t} d \nu$

Some properties

$$
\begin{aligned}
F(t) & \leftrightarrow f(-\nu) \\
f^{*}(t) & \leftrightarrow F^{*}(-\nu) \\
f(a t) & \leftrightarrow \frac{1}{|a|} F\left(\frac{\nu}{a}\right) \\
f\left(t-t_{0}\right) & \leftrightarrow \mathrm{e}^{-\mathrm{j} 2 \pi \nu t_{0}} F(\nu) \\
\mathrm{e}^{\mathrm{j} 2 \pi \nu_{0} t} f(t) & \leftrightarrow F\left(\nu-\nu_{0}\right) \\
\frac{d^{n}}{d t^{n}} f(t) & \leftrightarrow(\mathrm{j} 2 \pi \nu)^{n} F(\nu) \\
-\mathrm{j} 2 \pi t f(t) & \leftrightarrow \frac{d F(\nu)}{d \nu} \\
\int_{-\infty}^{t} f(\tau) d \tau & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu} F(\nu)+\frac{1}{2} F(0) \delta(\nu) \\
(f * g)(t) & \leftrightarrow F(\nu) G(\nu) \\
f(t) g(t) & \leftrightarrow(F * G)(\nu)
\end{aligned}
$$

Some transform pairs

$$
\begin{aligned}
\delta(t) & \leftrightarrow 1 \\
u(t) \mathrm{e}^{-a t} & \leftrightarrow \frac{1}{\mathrm{j} 2 \pi \nu+a} \\
u(t) & \leftrightarrow \frac{1}{2} \delta(\nu)+\frac{1}{\mathrm{j} 2 \pi \nu} \\
\exp \left(\mathrm{j} 2 \pi \nu_{0} t\right) & \leftrightarrow \delta\left(\nu-\nu_{0}\right) \\
\cos \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{1}{2}\left[\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\sin \left(2 \pi \nu_{0} t\right) & \leftrightarrow \frac{\mathrm{j}}{2}\left[-\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)\right] \\
\Pi(t) & \leftrightarrow \operatorname{sinc}(\nu) \\
\operatorname{sgn}(t) & \leftrightarrow \frac{1}{\mathrm{j} \pi \nu} \\
\sum_{k=-\infty}^{\infty} \delta(t-k T) & \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(\nu-\frac{k}{T}\right) \\
\exp \left(-\pi t^{2}\right) & \leftrightarrow \exp \left(-\pi \nu^{2}\right)
\end{aligned}
$$

DFT: $X[r]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp \left(-\frac{\mathrm{j} 2 \pi r k}{N}\right) \quad$ IDFT: $x[k]=\sum_{r=0}^{N-1} X[r] \exp \left(\frac{\mathrm{j} 2 \pi r k}{N}\right)$ Hilbert transform: $\hat{f}(t)=f(t) * \frac{1}{\pi t}$

Convolution integral: $(f * h)(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) \mathrm{d} \tau$

1. (a) Give definitions for:
(i) What it means for a system to be linear.
(ii) What it means for a system to be shift invariant.
(iii) The impulse response of a linear system.
(iv) The transfer function for a linear shift invariant system.
(b) Consider a linear time invariant system, h, which is formed by cascading two linear time invariant systems.

(i) Derive an expression that relates the impulse response function of the cascaded system, $h(t)$, to the impulse response functions for the two sub-systems, $h_{1}(t)$ and $h_{2}(t)$.
(ii) Derive an expression that relates the transfer function of the cascaded system, $H(\nu)$, with the transfer functions of the two sub-systems, $H_{1}(\nu)$ and $H_{2}(\nu)$.
(c) For each of the following, sketch the functions and find their Fourier transforms.
(i) $f(t)=\operatorname{sinc}(4 t)$
(ii) $g(t)=|\cos (t)|$
(iii) $h(t)=\left\{\begin{array}{cc}\cos ^{2}(t), & t \in[-\pi / 2, \pi / 2] \\ 0, & \text { otherwise }\end{array}\right.$
2. (a) State and prove the convolution theorem.
(b) Using the formal definition of the Fourier transform of generalised functions show that the Fourier transform of

$$
f(t)=\cos \left(2 \pi \nu_{0} t\right)
$$

is

$$
F(\nu)=\frac{\delta\left(\nu-\nu_{0}\right)+\delta\left(\nu+\nu_{0}\right)}{2}
$$

(c) A system h, which produces an infinite number of non-diminishing echoes, has the impulse response

$$
h(t)=\sum_{k=0}^{\infty} \delta(t-k T)
$$

Is this system stable? Fully explain your answer.
(d) For the function $f(t)=\sin (8 \pi t) \operatorname{sinc}(t / 4)$:
(i) Calculate the Fourier transform of $f(t)$.
(ii) Sketch the $f(t)$ and its Fourier transform.
(iii) Calculate the analytic signal for $f(t)$.
(iv) Calculate the Hilbert transform of $f(t)$.
(e) Suppose the Fourier transform of $f(t)$ is $F(\nu)$. Derive an expression for the Fourier transform of $|f(t)|^{2}$.
3. (a) The function $f_{p}(t)$ is periodic with period T, that is $f_{p}(t)=f_{p}(t+T)$.
(i) Show that the Fourier transform is of the form

$$
\begin{equation*}
F_{p}(\nu)=\sum_{k=-\infty}^{\infty} w_{k} \delta(\nu-k / T) \tag{1}
\end{equation*}
$$

(ii) Give an expression for the w_{k} in terms of $f_{p}(t)$.
(b) Consider the sampling of a function with sampling period T. Show that $f(t)=$ $\sin \left(2 \pi \nu_{o} t\right)$ and all of its aliases have the same value for their samples.
(c) White noise signal n with a power spectral density given by

$$
\begin{equation*}
\Phi_{n n}(\nu)=N_{0} / 2, \tag{2}
\end{equation*}
$$

is passed through a low pass filter with transfer function

$$
\begin{equation*}
H(\nu)=\frac{1}{j 2 \pi \nu+a} . \tag{3}
\end{equation*}
$$

(i) Show that

$$
\exp (-a|t|) \leftrightarrow \frac{2 a}{a^{2}+4 \pi^{2} \nu^{2}}
$$

(ii) What is the power auto-correlation function and average power of the resulting signal?
(iii) A set of samples, widely spaced in time is taken from the output. What would you expect for the standard deviation of this set of samples?

ELEC441

PLEASE DO NOT TURN OVER

THE EXAMINATION PAPER

UNTIL INSTRUCTED TO DO SO

